The Use of Ceftazidime–Avibactam in a Pediatric Intensive Care Unit—An Observational Prospective Study
Abstract
:1. Introduction
2. Results
2.1. Patients and Clinical Characteristics
2.2. Empirical Treatment
2.3. Targeted Treatment
2.4. Other Characteristics of the Treatment
3. Discussion
4. Materials and Methods
4.1. Definitions
- -
- -
- Community-acquired pneumonia (CAP) was characterized in accordance with the British Thoracic Society guidelines [45,46,47,48,49]. Bacterial pneumonia should be considered in children when there is persistent fever >38.5 °C, with chest recession and raised respiratory rate. The presence of an alveolar infiltration in the CXR and the elevation of acute phase reactants are thought to be secondary to bacterial cause. CAP diagnosis should be considered when patients were outside the hospital environment or within 48 h of admission.
- -
- Ventilator-associated pneumonia (VAP) was suspected when there was an acute infection of the pulmonary parenchyma, associated with clinical signs and symptoms, and increased oxygen requirements, in a patient receiving mechanical ventilation for more than 48 h [50]. It was diagnosed based on the CDC’s definition [51].
- -
- Surgical wound infection was suspected when there was an infection that occurred after surgery in the body region where the surgery took place. Symptoms included redness and pain around the surgical area, fever or drainage of cloudy fluid from the surgical wound. The diagnosis was based on the CDC’s definition [52].
- -
- -
- Previous MDR colonization: Colonization with MDR bacteria, which were methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE) and MDR P. aeruginosa [53].
- -
- Current infection cultures were defined as cultures obtained from blood, urine, respiratory, skin or other tissue samples removed from the suspicious infected tissue and cultured before the initiation of antibiotic therapy.
- -
- Control cultures were defined as cultures collected after 24 h of antibiotic therapy from the suspicious infected tissue.
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asokan, G.; Ramadhan, T.; Ahmed, E.; Sanad, H. WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Med. J. 2019, 34, 184–193. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [CrossRef]
- Chiotos, K.; Tamma, P.D.; Flett, K.B.; Karandikar, M.V.; Nemati, K.; Bilker, W.B.; Zaoutis, T.; Han, J.H. Increased 30-Day Mortality Associated with Carbapenem-Resistant enterobacteriaceae in Children. Open Forum Infect. Dis. 2018, 5, ofy222. [Google Scholar] [CrossRef] [PubMed]
- Folgori, L.; Bielicki, J. Future Challenges in Pediatric and Neonatal Sepsis: Emerging Pathogens and Antimicrobial Resistance. J. Pediatr. Intensive Care 2019, 8, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Baquero-Artigao, F.; Ramos, J.; Cercenado, E.; Rodrigo, C.; Saavedra-Lozano, J.; Soler-Palacín, P.; Goycochea-Valdivia, W.; Escosa-García, L.; Aguilera-Alonso, D. Documento de Posicionamiento de La Asociación Española de Pediatría-Sociedad Española de Infectología Pediátrica Sobre El Tratamiento de Las Infecciones Por Bacterias Multirresistentes. Rev. Latinoam. De Infectología Pediátrica 2020, 33, 7–18. [Google Scholar] [CrossRef]
- Logan, L.K.; Renschler, J.P.; Gandra, S.; Weinstein, R.A.; Laxminarayan, R.; Centers for Disease Control and Prevention Epicenters Program. Carbapenem-resistant Enterobacteriaceae in children, United States, 1999–2012. Emerg. Infect. Dis. 2015, 21, 2014–2021. [Google Scholar] [CrossRef]
- Chiotos, K.; Hayes, M.; Gerber, J.S.; Tamma, P.D. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J. Pediatr. Infect. Dis. Soc. 2020, 9, 56–66. [Google Scholar] [CrossRef]
- Chiotos, K.; Tamma, P.D.; Flett, K.B.; Naumann, M.; Karandikar, M.; Bilker, W.B.; Zaoutis, T.E.; Han, J.H. Multicenter Study of the Risk Factors for Colonization or Infection with Carbapenem-Resistant Enterobacteriaceae in Children. Antimicrob. Agents Chemother. 2017, 61, 10-1128. [Google Scholar] [CrossRef]
- Pannaraj, P.S.; Bard, J.D.; Cerini, C.; Weissman, S.J. Pediatric Carbapenem-Resistant Enterobacteriaceae in Los Angeles, California, a High-Prevalence Region in the United States. Pediatr. Infect. Dis. J. 2015, 34, 11–16. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar] [CrossRef]
- Palacios-Baena, Z.R.; Oteo, J.; Conejo, C.; Larrosa, M.N.; Bou, G.; Fernández-Martínez, M.; González-López, J.J.; Pintado, V.; Martínez-Martínez, L.; Merino, M.; et al. Comprehensive Clinical and Epidemiological Assessment of Colonisation and Infection due to Carbapenemase-Producing Enterobacteriaceae in Spain. J. Infect. 2016, 72, 152–160. [Google Scholar] [CrossRef]
- Zaragoza, R.; Vidal-Cortés, P.; Aguilar, G.; Borges, M.; Diaz, E.; Ferrer, R.; Maseda, E.; Nieto, M.; Nuvials, F.X.; Ramirez, P.; et al. Update of the treatment of nosocomial pneumonia in the ICU. Crit. Care 2020, 24, 383. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Ceftazidime-Avibactam Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/206494s005,s006lbl.pdf (accessed on 3 October 2019).
- Bradley, J.S.; Roilides, E.; Broadhurst, H.; Cheng, K.; Huang, L.-M.; MasCasullo, V.; Newell, P.; Stone, G.G.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime–Avibactam in the Treatment of Children ≥3 Months to <18 Years with Complicated Urinary Tract Infection. Pediatr. Infect. Dis. J. 2019, 38, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Broadhurst, H.; Cheng, K.; Mendez, M.; Newell, P.; Prchlik, M.; Stone, G.G.; Talley, A.K.; Tawadrous, M.; Wajsbrot, D.; et al. Safety and Efficacy of Ceftazidime-Avibactam plus Metronidazole in the Treatment of Children ≥3 Months to <18 Years with Complicated Intra-Abdominal Infection. Pediatr. Infect. Dis. J. 2019, 38, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Carmeli, Y.; Omrani, A.S.; Moore, L.S.P.; Tawadrous, M.; Irani, P. Ceftazidime-Avibactam for the Treatment of Serious Gram-Negative Infections with Limited Treatment Options: A Systematic Literature Review. Infect. Dis. Ther. 2021, 10, 1989–2034. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, H.-B.; Peng, J.-M.; Weng, L.; Du, B. Efficacy and Safety of Ceftazidime-Avibactam for the Treatment of Carbapenem-Resistant Enterobacterales Bloodstream Infection: A Systematic Review and Meta-Analysis. Microbiol. Spectr. 2022, 10, e02603–e02621. [Google Scholar] [CrossRef] [PubMed]
- Tumbarello, M.; Raffaelli, F.; Giannella, M.; Mantengoli, E.; Mularoni, A.; Venditti, M.; De Rosa, F.G.; Sarmati, L.; Bassetti, M.; Brindicci, G.; et al. Ceftazidime-Avibactam Use for Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae Infections: A Retrospective Observational Multicenter Study. Clin. Infect. Dis. 2021, 73, 1664–1676. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Peghin, M.; Mesini, A.; Castagnola, E. Optimal Management of Complicated Infections in the Pediatric Patient: The Role and Utility of Ceftazidime/Avibactam. Infect. Drug Resist. 2020, 13, 1763–1773. [Google Scholar] [CrossRef]
- Tumbarello, M.; Trecarichi, E.M.; Corona, A.; De Rosa, F.G.; Bassetti, M.; Mussini, C.; Menichetti, F.; Viscoli, C.; Campoli, C.; Venditti, M.; et al. Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients with Infections Caused by Klebsiella Pneumoniae Carbapenemase-Producing K. Pneumoniae. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68, 355–364. [Google Scholar] [CrossRef]
- Wang, W.; Wang, R.; Zhang, Y.; Zeng, L.; Kong, H.; Bai, X.; Zhang, W.; Liang, T. Ceftazidime-Avibactam as Salvage Therapy in Pediatric Liver Transplantation Patients with Infections Caused by Carbapenem-Resistant Enterobacterales. Infect. Drug Resist. 2022, 15, 3323–3332. [Google Scholar] [CrossRef]
- Franzese, R.C.; McFadyen, L.; Watson, K.J.; Riccobene, T.; Carrothers, T.J.; Vourvahis, M.; Chan, P.L.S.; Raber, S.; Bradley, J.S.; Lovern, M. Population Pharmacokinetic Modeling and Probability of Pharmacodynamic Target Attainment for Ceftazidime-Avibactam in Pediatric Patients Aged 3 Months and Older. Clin. Pharmacol. Ther. 2021, 111, 635–645. [Google Scholar] [CrossRef]
- Li, J.; Lovern, M.; Riccobene, T.; Carrothers, T.J.; Newell, P.; Das, S.; Talley, A.K.; Tawadrous, M. Considerations in the Selection of Renal Dosage Adjustments for Patients with Serious Infections and Lessons Learned from the Development of Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2020, 64, e02105–e02119. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lovern, M.; Green, M.L.; Chiu, J.; Zhou, D.; Comisar, C.; Xiong, Y.; Hing, J.; Macpherson, M.; Wright, J.G.; et al. Ceftazidime-Avibactam Population Pharmacokinetic Modeling and Pharmacodynamic Target Attainment across Adult Indications and Patient Subgroups. Clin. Transl. Sci. 2018, 12, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Bonomo, R.A. Metallo-β-Lactamase (MBL)-Producing Enterobacteriaceaein United States Children: Table 1. Open Forum Infect. Dis. 2016, 3, ofw090. [Google Scholar] [CrossRef]
- Mauri, C.; Maraolo, A.E.; Di Bella, S.; Luzzaro, F.; Principe, L. The revival of aztreonam in combination with avibactam against metallo-β-lactamase-producing Gram-negatives: A systematic review of in vitro studies and clinical cases. Antibiotics 2021, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215 (Suppl. S1), S28–S36. [Google Scholar] [CrossRef] [PubMed]
- Little, M.L.; Qin, X.; Zerr, D.M.; Weissman, S.J. Molecular Diversity in Mechanisms of Carbapenem Resistance in Paediatric Enterobacteriaceae. Int. J. Antimicrob. Agents 2012, 39, 52–57. [Google Scholar] [CrossRef]
- Jajoo, M.; Manchanda, V.; Chaurasia, S.; Sankar, M.J.; Gautam, H.; Agarwal, R.; Yadav, C.P.; Aggarwal, K.C.; Chellani, H.; Ramji, S.; et al. Alarming Rates of Antimicrobial Resistance and Fungal Sepsis in Outborn Neonates in North India. PLoS ONE 2018, 13, e0180705. [Google Scholar] [CrossRef]
- Nour, I.; Eldegla, H.E.; Nasef, N.; Shouman, B.; Abdel-Hady, H.; Shabaan, A.E. Risk Factors and Clinical Outcomes for Carbapenem-Resistant Gram-Negative Late-Onset Sepsis in a Neonatal Intensive Care Unit. J. Hosp. Infect. 2017, 97, 52–58. [Google Scholar] [CrossRef]
- González-Rubio, R.; Parra-Blázquez, D.; San-Juan-Sanz, I.; Ruiz-Carrascoso, G.; Gallego, S.; Escosa-García, L.; Robustillo-Rodela, A. Evolution of the Incidence of Colonized and Infected Patients by VIM Carbapenemase-Producing Bacteria in a Pediatric Hospital in Spain. PubMed 2019, 32, 60–67. [Google Scholar]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance due to Plasmid-Borne BlaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella Pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- Fiore, M.; Alfieri, A.; Di Franco, S.; Pace, M.C.; Simeon, V.; Ingoglia, G.; Cortegiani, A. Ceftazidime-Avibactam Combination Therapy Compared to Ceftazidime-Avibactam Monotherapy for the Treatment of Severe Infections Due to Carbapenem-Resistant Pathogens: A Systematic Review and Network Meta-Analysis. Antibiotics 2020, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Sibley, D.; Simar, S.; Ashcraft, D.; Pankey, G. In Vitro Synergy of Ceftazidime-Avibactam plus Rifampin against Pseudomonas Aeruginosa. Open Forum Infect. Dis. 2016, 3 (Suppl. S1), 2020. [Google Scholar] [CrossRef]
- Winkler, M.L.; Papp-Wallace, K.M.; Hujer, A.M.; Domitrovic, T.N.; Hujer, K.M.; Hurless, K.N.; Tuohy, M.; Hall, G.; Bonomo, R.A. Unexpected Challenges in Treating Multidrug-Resistant Gram-Negative Bacteria: Resistance to Ceftazidime-Avibactam in Archived Isolates of Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2015, 59, 1020–1029. [Google Scholar] [CrossRef]
- Van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2016, 8, 460–469. [Google Scholar] [CrossRef]
- Davido, B.; Fellous, L.; Lawrence, C.; Maxime, V.; Rottman, M.; Dinh, A. Ceftazidime-Avibactam and Aztreonam, an Interesting Strategy to Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae and Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef]
- Vargas, M.; Buonomo, A.R.; Buonanno, P.; Iacovazzo, C.; Servillo, G. Successful Treatment of KPC-MDR Septic Shock with Ceftazidime-Avibactam in a Pediatric Critically Ill Patient. IDCases 2019, 18, e00634. [Google Scholar] [CrossRef]
- Marshall, S.; Hujer, A.M.; Rojas, L.J.; Papp-Wallace, K.M.; Humphries, R.M.; Spellberg, B.; Hujer, K.M.; Marshall, E.K.; Rudin, S.D.; Perez, F.; et al. Can Ceftazidime-Avibactam and Aztreonam Overcome β-Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae? Antimicrob. Agents Chemother. 2017, 61, e02243-16. [Google Scholar] [CrossRef]
- Bakthavatchalam, Y.D.; Walia, K.; Veeraraghavan, B. Susceptibility testing for aztreonam plus ceftazidime/avibactam combination: A general guidance for clinical microbiology laboratories in India. Indian J. Med. Microbiol. 2022, 40, 3–6. [Google Scholar] [CrossRef]
- Europa.Eu. Retrieved. 20 October 2024. Available online: https://ec.europa.eu/health/documents/community-register/2024/20240422162367/anx_162367_en.pdf (accessed on 10 September 2024).
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef]
- Bone, R.C. Definitions for sepsis and organ failure. Crit. Care Med. 1992, 20, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.; Clark, J.; Coote, N.; Fletcher, P.; Harnden, A.; McKean, M.; Thomson, A. British Thoracic Society Guidelines for the Management of Community Acquired Pneumonia in Children: Update 2011. Thorax 2011, 66 (Suppl. S2), ii1–ii23. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, F.; Cappiello, A.R.; Mastrototaro, M.F.; Pignatelli, M.; Esposito, S. Community-acquired pneumonia in children. Early Hum. Dev. 2013, 89, S49–S52. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Cohen, R.; Domingo, J.D.; Pecurariu, O.F.; Greenberg, D.; Heininger, U.; Knuf, M.; Lutsar, I.; Principi, N.; Rodrigues, F.; et al. Antibiotic Therapy for Pediatric Community-acquired Pneumonia. Pediatr. Infect. Dis. J. 2012, 35, e78–e85. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-Acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.; McCracken, G.H.; Moore, M.R.; et al. The Management of Community-Acquired Pneumonia in Infants and Children Older than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [Google Scholar] [CrossRef]
- US Department of Health and Human Services Food and Drug Administration; Center for Drug Evaluation and Research (CDER) Guidance for Industry. Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia: Developing Drugs for Treatment. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/hospital-acquired-bacterial-pneumonia-and-ventilator-associated-bacterial-pneumonia-developing-drugs (accessed on 15 February 2024).
- TC for DC and P. Pneumonia (Ventilator-Associated [VAP] and Non-Ventilator-Associated Pneumonia [PNEU]). Event. 2020. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/6pscvapcurrent.pdf (accessed on 3 January 2023).
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef]
- Nabal Díaz, S.G.; Robles, O.A.; García-Lechuz Moya, J.M. New definitions of susceptibility categories EUCAST 2019: Clinic application. Rev. Esp. Quimioter. 2022, 35, 84–88. [Google Scholar] [CrossRef]
Episode No. | Sex | Age (Years) | Comorbidities | Origin Country |
---|---|---|---|---|
1 | Female | 0.6 | Congenital cardiopathy | Spain |
2 | Female | 7 | Chronic renal failure | Poland |
3 | Male | 0.6 | Congenital cardiopathy | Spain |
4 | Female | 6 | Solid neoplasia | India |
5–6 | Male | 1.5 | Solid neoplasia | United Arab Emirates |
7 | Male | 0.3 | Hematological neoplasia | Spain |
8–9 | Male | 8 | Hematological neoplasia | Peru |
10 | Female | 0.8 | Congenital cardiopathy | Nicaragua |
11 | Female | 5 | Hematological neoplasia | Peru |
12 | Female | 17 | Neuromuscular pathology | Spain |
Episode | Suspected Infection | Use of CAZ-AVI | Previous MDR Colonization | Current Infection Microbiological Identification | Control Cultures | Additional Treatment |
---|---|---|---|---|---|---|
1 | Secondary bacteremia | Empirical | Klebsiella pneumoniae ESBL and porin alterations | Klebsiella pneumoniae susceptible isolated in bronchoalveolar lavage | Not done | Vancomycin |
2 | Surgical prophylaxis | Prophylaxis | KPC-Klebsiella aerogenes and New Delhi MBL | Negative | Negative | Aztreonam |
3 | Sepsis | Empirical | ESBLs Klebsiella pneumoniae | Negative | Negative | Vancomycin |
4 | CAP | Empirical | Escherichia coli ESBLs and New Delhi MBL | Negative | Negative | Aztreonam |
5 | Sepsis | Empirical | Escherichia coli ESBL | Negative | Negative | Clindamycin, vancomycin |
6 | VAP | Targeted treatment | MDR Pseudomonas aeruginosa | MDR Pseudomonas aeruginosa isolated in bronchoalveolar lavage | Negative | Colistin |
7 | Catheter-associated bacteriemia | Empirical for gravity | Negative cultures | Negative | Negative | Aztreonam |
8 | Sepsis | Empirical | Salmonella enterica ESBL Escherichia coli New Delhi MBL | Stenotrophomonas maltophilia isolated in blood culture | Not done | Aztreonam |
9 | Sepsis | Empirical | Salmonella enterica ESBL Escherichia coli New Delhi MBL | Pseudomonas aeruginosa susceptible isolated in blood culture | Negative | Aztreonam, vancomycin |
10 | Sepsis | Empirical | Escherichia coli New Delhi MBL | Negative | Not done | Aztreonam, vancomycin |
11 | Sepsis | Empirical | Salmonella cholerasuis ESBL | Negative | Not done | Teicoplanin |
12 | Surgical wound infection | Targeted treatment | Negative cultures | Escherichia hermannii carbapenemase type VIM isolated in surgical wound culture | Negative | Aztreonam, vancomycin, teicoplanin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Romero, R.; Fresán-Ruiz, E.; Guitart, C.; Bobillo-Perez, S.; Jordan, I. The Use of Ceftazidime–Avibactam in a Pediatric Intensive Care Unit—An Observational Prospective Study. Antibiotics 2024, 13, 1037. https://doi.org/10.3390/antibiotics13111037
García Romero R, Fresán-Ruiz E, Guitart C, Bobillo-Perez S, Jordan I. The Use of Ceftazidime–Avibactam in a Pediatric Intensive Care Unit—An Observational Prospective Study. Antibiotics. 2024; 13(11):1037. https://doi.org/10.3390/antibiotics13111037
Chicago/Turabian StyleGarcía Romero, Raquel, Elena Fresán-Ruiz, Carmina Guitart, Sara Bobillo-Perez, and Iolanda Jordan. 2024. "The Use of Ceftazidime–Avibactam in a Pediatric Intensive Care Unit—An Observational Prospective Study" Antibiotics 13, no. 11: 1037. https://doi.org/10.3390/antibiotics13111037
APA StyleGarcía Romero, R., Fresán-Ruiz, E., Guitart, C., Bobillo-Perez, S., & Jordan, I. (2024). The Use of Ceftazidime–Avibactam in a Pediatric Intensive Care Unit—An Observational Prospective Study. Antibiotics, 13(11), 1037. https://doi.org/10.3390/antibiotics13111037