Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis
Abstract
1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Patients and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Van Heuverswyn, J.; Valik, J.K.; Desirée van der Werff, S.; Hedberg, P.; Giske, C.; Nauclér, P. Association Between Time to Appropriate Antimicrobial Treatment and 30-Day Mortality in Patients with Bloodstream Infections: A Retrospective Cohort Study. Clin. Infect. Dis. 2023, 76, 469–478. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The Evolution in Definition, Pathophysiology, and Management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef]
- Liu, D.; Huang, S.-Y.; Sun, J.-H.; Zhang, H.-C.; Cai, Q.-L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Mil. Med. Res. 2022, 9, 56. [Google Scholar] [CrossRef]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis-Pathophysiology and Therapeutic Concepts. Front. Med. 2021, 8, 628302. [Google Scholar] [CrossRef] [PubMed]
- Bode, C.; Weis, S.; Sauer, A.; Wendel-Garcia, P.; David, S. Targeting the Host Response in Sepsis: Current Approaches and Future Evidence. Crit. Care 2023, 27, 478. [Google Scholar] [CrossRef]
- De Waele, J.J.; Boelens, J.; Leroux-Roels, I. Multidrug-Resistant Bacteria in ICU: Fact or Myth. Curr. Opin. Anaesthesiol. 2020, 33, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.-F.; Bassetti, M.; Cremer, O.; Daikos, G.; de Waele, J.; Kallil, A.; Kipnis, E.; Kollef, M.; Laupland, K.; Paiva, J.-A.; et al. Rationalizing Antimicrobial Therapy in the ICU: A Narrative Review. Intensive Care Med. 2019, 45, 172–189. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A.; Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America 2024; Version 4.0. Available online: https://www.idsociety.org/practice-guideline/amr-guidance/ (accessed on 3 September 2024).
- Giannella, M.; Verardi, S.; Karas, A.; Abdel Hadi, H.; Dupont, H.; Soriano, A.; Santerre Henriksen, A.; Cooper, A.; Falcone, M. ARES Study Group Carbapenem-Resistant Acinetobacter Spp Infection in Critically Ill Patients With Limited Treatment Options: A Descriptive Study of Cefiderocol Therapy During the COVID-19 Pandemic. Open Forum Infect. Dis. 2023, 10, ofad329. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, I.; Oliva, A.; Pages, R.; Sivori, F.; Truglio, M.; Fabrizio, G.; Pasqua, M.; Pimpinelli, F.; Di Domenico, E.G. Acinetobacter Baumannii in the Critically Ill: Complex Infections Get Complicated. Front. Microbiol. 2023, 14, 1196774. [Google Scholar] [CrossRef] [PubMed]
- Iovleva, A.; Mustapha, M.M.; Griffith, M.P.; Komarow, L.; Luterbach, C.; Evans, D.R.; Cober, E.; Richter, S.S.; Rydell, K.; Arias, C.A.; et al. Carbapenem-Resistant Acinetobacter Baumannii in U.S. Hospitals: Diversification of Circulating Lineages and Antimicrobial Resistance. mBio 2022, 13, e0275921. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Chen, C.-L.; Wu, S.-R.; Huang, C.-W.; Chiu, C.-H. Risk Factors and Outcome Analysis of Acinetobacter Baumannii Complex Bacteremia in Critical Patients. Crit. Care Med. 2014, 42, 1081–1088. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Oliva, A.; Ceccarelli, G.; De Angelis, M.; Sacco, F.; Miele, M.C.; Mastroianni, C.M.; Venditti, M. Cefiderocol for Compassionate Use in the Treatment of Complicated Infections Caused by Extensively and Pan-Resistant Acinetobacter Baumannii. J. Glob. Antimicrob. Resist. 2020, 23, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol Treatment for Carbapenem-Resistant Acinetobacter Baumannii Infection in the ICU during the COVID-19 Pandemic: A Multicentre Cohort Study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of Hospital-Acquired Bacterial and Fungal Superinfections in COVID-19: A Prospective Observational Study. J. Antimicrob. Chemother. 2021, 76, 1078–1084. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter Baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- Gatti, M.; Bartoletti, M.; Cojutti, P.G.; Gaibani, P.; Conti, M.; Giannella, M.; Viale, P.; Pea, F. A Descriptive Case Series of Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill Patients with Documented Severe Extensively Drug-Resistant Acinetobacter Baumannii Bloodstream Infection and/or Ventilator-Associated Pneumonia Treated with Cefiderocol. J. Glob. Antimicrob. Resist. 2021, 27, 294–298. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Analyses of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia, Bloodstream Infection/Sepsis, or Complicated Urinary Tract Infection. Antimicrob. Agents Chemother. 2021, 65, e01437-20. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, M.; Denny, K.J.; Lipman, J.; Conway Morris, A. Differentiating Infection, Colonisation, and Sterile Inflammation in Critical Illness: The Emerging Role of Host-Response Profiling. Intensive Care Med. 2023, 49, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Venet, F.; Monneret, G. Advances in the Understanding and Treatment of Sepsis-Induced Immunosuppression. Nat. Rev. Nephrol. 2018, 14, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Venet, F.; Textoris, J.; Blein, S.; Rol, M.-L.; Bodinier, M.; Canard, B.; Cortez, P.; Meunier, B.; Tan, L.K.; Tipple, C.; et al. Immune Profiling Demonstrates a Common Immune Signature of Delayed Acquired Immunodeficiency in Patients with Various Etiologies of Severe Injury. Crit. Care Med. 2022, 50, 565–575. [Google Scholar] [CrossRef]
- Dobson, G.P.; Morris, J.L.; Letson, H.L. Immune Dysfunction Following Severe Trauma: A Systems Failure from the Central Nervous System to Mitochondria. Front. Med. 2022, 9, 968453. [Google Scholar] [CrossRef]
- Duggal, N.A.; Snelson, C.; Shaheen, U.; Pearce, V.; Lord, J.M. Innate and Adaptive Immune Dysregulation in Critically Ill ICU Patients. Sci. Rep. 2018, 8, 10186. [Google Scholar] [CrossRef]
- Girardis, M.; David, S.; Ferrer, R.; Helms, J.; Juffermans, N.P.; Martin-Loeches, I.; Povoa, P.; Russell, L.; Shankar-Hari, M.; Iba, T.; et al. Understanding, Assessing and Treating Immune, Endothelial and Haemostasis Dysfunctions in Bacterial Sepsis. Intensive Care Med. 2024, 50, 1580–1592. [Google Scholar] [CrossRef]
- Monneret, G.; Venet, F. Immune Functional Testing in Clinics: Feasibility and Prediction of Deleterious Outcomes. Crit. Care Med. 2013, 41, 367–368. [Google Scholar] [CrossRef]
- Kreitmann, L.; Helms, J.; Martin-Loeches, I.; Salluh, J.; Poulakou, G.; Pène, F.; Nseir, S. ICU-Acquired Infections in Immunocompromised Patients. Intensive Care Med. 2024, 50, 332–349. [Google Scholar] [CrossRef]
- Serrano, M.A.; Gomes, A.M.C.; Fernandes, S.M. Monitoring of the Forgotten Immune System during Critical Illness-A Narrative Review. Medicina 2022, 59, 61. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, E.; Mokart, D.; Kouatchet, A.; Demoule, A.; Lemiale, V. Acute Respiratory Failure in Immunocompromised Adults. Lancet Respir. Med. 2019, 7, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Russell, L.; Pène, F.; Martin-Loeches, I. Multidrug-Resistant Bacteria in the Grey Shades of Immunosuppression. Intensive Care Med. 2023, 49, 216–218. [Google Scholar] [CrossRef] [PubMed]
- van Vught, L.A.; Klein Klouwenberg, P.M.C.; Spitoni, C.; Scicluna, B.P.; Wiewel, M.A.; Horn, J.; Schultz, M.J.; Nürnberg, P.; Bonten, M.J.M.; Cremer, O.L.; et al. Incidence, Risk Factors, and Attributable Mortality of Secondary Infections in the Intensive Care Unit After Admission for Sepsis. JAMA 2016, 315, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Frattari, A.; Polilli, E.; Rapacchiale, G.; Coladonato, S.; Ianniruberto, S.; Mazzotta, E.; Patarchi, A.; Battilana, M.; Ciulli, R.; Moretta, A.; et al. Predictors of Bacteremia and Death, Including Immune Status, in a Large Single-Center Cohort of Unvaccinated ICU Patients with COVID-19 Pneumonia. Eur. J. Med. Res. 2023, 28, 219. [Google Scholar] [CrossRef]
- Tremblay, J.-A.; Peron, F.; Kreitmann, L.; Textoris, J.; Brengel-Pesce, K.; Lukaszewicz, A.-C.; Quemeneur, L.; Vedrine, C.; Tan, L.K.; Venet, F.; et al. A Stratification Strategy to Predict Secondary Infection in Critical Illness-Induced Immune Dysfunction: The REALIST Score. Ann. Intensive Care 2022, 12, 76. [Google Scholar] [CrossRef]
- Ceccato, A.; Panagiotarakou, M.; Ranzani, O.T.; Martin-Fernandez, M.; Almansa-Mora, R.; Gabarrus, A.; Bueno, L.; Cilloniz, C.; Liapikou, A.; Ferrer, M.; et al. Lymphocytopenia as a Predictor of Mortality in Patients with ICU-Acquired Pneumonia. J. Clin. Med. 2019, 8, 843. [Google Scholar] [CrossRef]
- Finfer, S.; Venkatesh, B.; Hotchkiss, R.S.; Sasson, S.C. Lymphopenia in Sepsis-an Acquired Immunodeficiency? Immunol. Cell Biol. 2023, 101, 535–544. [Google Scholar] [CrossRef]
- Pei, F.; Song, W.; Wang, L.; Liang, L.; Gu, B.; Chen, M.; Nie, Y.; Liu, Y.; Zhou, Y.; Guan, X.; et al. Lymphocyte Trajectories Are Associated with Prognosis in Critically Ill Patients: A Convenient Way to Monitor Immune Status. Front. Med. 2022, 9, 953103. [Google Scholar] [CrossRef]
- Frattari, A.; Polilli, E.; Primiterra, V.; Savini, V.; Ursini, T.; Di Iorio, G.; Parruti, G. Analysis of Peripheral Blood Lymphocyte Subsets in Critical Patients at ICU Admission: A Preliminary Investigation of Their Role in the Prediction of Sepsis during ICU Stay. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418792310. [Google Scholar] [CrossRef]
- Polilli, E.; Esposito, J.E.; Frattari, A.; Trave, F.; Sozio, F.; Ferrandu, G.; Di Iorio, G.; Parruti, G. Circulating Lymphocyte Subsets as Promising Biomarkers to Identify Septic Patients at Higher Risk of Unfavorable Outcome. BMC Infect. Dis. 2021, 21, 780. [Google Scholar] [CrossRef]
- Fujii, T.; Mashimo, M.; Moriwaki, Y.; Misawa, H.; Ono, S.; Horiguchi, K.; Kawashima, K. Expression and Function of the Cholinergic System in Immune Cells. Front. Immunol. 2017, 8, 1085. [Google Scholar] [CrossRef] [PubMed]
- Schupp, T.; Weidner, K.; Rusnak, J.; Jawhar, S.; Forner, J.; Dulatahu, F.; Brück, L.M.; Hoffmann, U.; Kittel, M.; Bertsch, T.; et al. Diagnostic and Prognostic Role of Platelets in Patients with Sepsis and Septic Shock. Platelets 2023, 34, 2131753. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Decker, S.O.; Zirnstein, A.C.; Sigl, A.; Schmidt, K.; Weigand, M.A.; Hofer, S.; Brenner, T. A Sustained Reduction in Serum Cholinesterase Enzyme Activity Predicts Patient Outcome Following Sepsis. Mediat. Inflamm. 2018, 2018, 1942193. [Google Scholar] [CrossRef]
- Limaye, A.P.; Boeckh, M. CMV in Critically Ill Patients: Pathogen or Bystander? Rev. Med. Virol. 2010, 20, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Schinas, G.; Moustaka, V.; Polyzou, E.; Almyroudi, M.P.; Dimopoulos, G.; Akinosoglou, K. Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses 2023, 15, 1165. [Google Scholar] [CrossRef] [PubMed]
- Walton, A.H.; Muenzer, J.T.; Rasche, D.; Boomer, J.S.; Sato, B.; Brownstein, B.H.; Pachot, A.; Brooks, T.L.; Deych, E.; Shannon, W.D.; et al. Reactivation of Multiple Viruses in Patients with Sepsis. PLoS ONE 2014, 9, e98819. [Google Scholar] [CrossRef]
- Adrie, C.; Lugosi, M.; Sonneville, R.; Souweine, B.; Ruckly, S.; Cartier, J.-C.; Garrouste-Orgeas, M.; Schwebel, C.; Timsit, J.-F.; OUTCOMEREA study group. Persistent Lymphopenia Is a Risk Factor for ICU-Acquired Infections and for Death in ICU Patients with Sustained Hypotension at Admission. Ann. Intensive Care 2017, 7, 30. [Google Scholar] [CrossRef]
- Landelle, C.; Lepape, A.; Voirin, N.; Tognet, E.; Venet, F.; Bohé, J.; Vanhems, P.; Monneret, G. Low Monocyte Human Leukocyte Antigen-DR Is Independently Associated with Nosocomial Infections after Septic Shock. Intensive Care Med. 2010, 36, 1859–1866. [Google Scholar] [CrossRef]
- Le, C.; Pimentel, C.; Pasteran, F.; Tuttobene, M.R.; Subils, T.; Escalante, J.; Nishimura, B.; Arriaga, S.; Carranza, A.; Mezcord, V.; et al. Human Serum Proteins and Susceptibility of Acinetobacter baumannii to Cefiderocol: Role of Iron Transport. Biomedicines 2022, 10, 600. [Google Scholar] [CrossRef]
- de Roquetaillade, C.; Dupuis, C.; Faivre, V.; Lukaszewicz, A.C.; Brumpt, C.; Payen, D. Monitoring of Circulating Monocyte HLA-DR Expression in a Large Cohort of Intensive Care Patients: Relation with Secondary Infections. Ann. Intensive Care 2022, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Bhargava, P.; McCloskey, D.; Mao, N.; Palsson, B.O.; Collins, J.J. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function. Cell Host Microbe 2017, 22, 757–765.e3. [Google Scholar] [CrossRef] [PubMed]
- Arulkumaran, N.; Routledge, M.; Schlebusch, S.; Lipman, J.; Conway Morris, A. Antimicrobial-Associated Harm in Critical Care: A Narrative Review. Intensive Care Med. 2020, 46, 225–235. [Google Scholar] [CrossRef]
- Rohde, J.M.; Dimcheff, D.E.; Blumberg, N.; Saint, S.; Langa, K.M.; Kuhn, L.; Hickner, A.; Rogers, M.A.M. Health Care-Associated Infection after Red Blood Cell Transfusion: A Systematic Review and Meta-Analysis. JAMA 2014, 311, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Péju, E.; Llitjos, J.-F.; Charpentier, J.; François, A.; Marin, N.; Cariou, A.; Chiche, J.-D.; Mira, J.-P.; Lambert, J.; Jamme, M.; et al. Impact of Blood Product Transfusions on the Risk of ICU-Acquired Infections in Septic Shock. Crit. Care Med. 2021, 49, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, D.; Böhringer, J.; Körner, E.; Chiriac, U.; Förmer, S.; Sähr, A.; Hoppe-Tichy, T.; Heeg, K.; Nurjadi, D. Cefiderocol Protects against Cytokine- and Endotoxin-Induced Disruption of Vascular Endothelial Cell Integrity in an In Vitro Experimental Model. Antibiotics 2022, 11, 581. [Google Scholar] [CrossRef]
- Girardis, M.; Coloretti, I.; Antonelli, M.; Berlot, G.; Busani, S.; Cortegiani, A.; De Pascale, G.; De Rosa, F.G.; De Rosa, S.; Donadello, K.; et al. Adjunctive immunotherapeutic agents in patients with sepsis and septic shock: A multidisciplinary consensus of 23. J. Anesth. Analg. Crit. Care 2024, 4, 28. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
Survival (n = 20) | Death (n = 16) | Overall (n = 36) | p Value * | ||||
---|---|---|---|---|---|---|---|
Age, years | 52 | 40.5–68.5 | 73 | 64.5; 78 | 64.5 | 46.5–75.5 | 0.003 |
Sex (n. %) | |||||||
Male | 15 | 75 | 11 | 69 | 26 | 72 | |
Female | 5 | 25 | 5 | 31 | 10 | 28 | 0.677 |
Length of stay, days | 31 | 20–47 | 26 | 12; 35 | 30 | 18–38 | 0.149 |
Diagnosis (n. %) | |||||||
Septic shock | 3 | 15 | 7 | 43.8 | 10 | 27.8 | |
Polytrauma | 7 | 35 | 2 | 12.5 | 9 | 25 | |
Subarachnoid hemorrhage/ thromboembolism | 8 | 40 | 1 | 6.3 | 9 | 25 | |
Hemorrhagic shock | 1 | 5 | 4 | 25 | 5 | 13.9 | |
Respiratory failure | 1 | 5 | 2 | 12.5 | 3 | 8.3 | 0.02 |
Sepsis (n. %) | 17 | 85 | 16 | 100 | 33 | 91.7 | 0.106 |
Treatment (n. %) | |||||||
Monotherapy (n. %) | 10 | 50 | 9 | 56.3 | 19 | 52.8 | |
Combination (n. %) | 10 | 50 | 7 | 43.7 | 17 | 47.2 | 0.709 |
SAPS II, median (IQR) | 38.5 | 28–46.5 | 51 | 35–64 | 42 | 32–55 | 0.048 |
SOFA, median (IQR) | 5.5 | 4–7.5 | 8 | 6–11.5 | 6 | 4–9 | 0.018 |
Lymphocytopenia (n. %) | |||||||
Absent | 13 | 68.4 | 1 | 6.3 | 14 | 40 | |
Temporary | 6 | 31.6 | 2 | 12.5 | 8 | 22.9 | |
Persistent | 0 | 0 | 13 | 81.2 | 13 | 37.1 | <0.01 |
CD4-T, <400 c/µL | 10 | 62.5 | 12 | 80 | 22 | 71 | 0.283 |
CD8/CD19 | 3 | 18.8 | 3 | 20 | 6 | 19.4 | 0.93 |
Cholinesterase, <1600 U/L | 3 | 15 | 14 | 87.5 | 17 | 47.2 | <0.01 |
Reactivation (n. %) | 2 | 14.3 | 13 | 61.9 | 15 | 42.7 | 0.005 |
Non-Adjusted | Adjusted * | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (per 5-year increase) | 1.50 (1.11–2.02) | 0.008 | 1.42 (0.98–2.05) | 0.063 |
Sex: female vs. male | 1.36 (0.32–5.89) | 0.678 | ||
Treatment: monotherapy vs. combination | 1.29 (0.34–4.82) | 0.709 | ||
SAPS II (per 1 point increase) | 1.05 (1.01–1.10) | 0.042 | ||
SOFA (per 1 point increase) | 1.37 (1.06–1.76) | 0.017 | ||
Lymphocytopenia (persistent or temporary vs. absent) | 32.5 (3.45–306.35) | 0.002 | 18.16 (0.87–381.38) | 0.062 |
Reactivation | 9.75 (1.72–55.37) | 0.01 | ||
CD4 < 400 c/µL | 2.4 (0.47–12.13 | 0.29 | ||
CD8/CD19 ratio > 2.2 | 1.08 (0.18–6.44) | 0.93 | ||
Cholinesterase < 1600 U/L | 9.67 (5.79–271.63) | <0.01 | 9.77 (0.77–123.70) | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frattari, A.; Polilli, E.; Timelli, L.; Spagnuolo, F.; Fazii, P.; Parruti, G. Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis. Antibiotics 2024, 13, 1001. https://doi.org/10.3390/antibiotics13111001
Frattari A, Polilli E, Timelli L, Spagnuolo F, Fazii P, Parruti G. Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis. Antibiotics. 2024; 13(11):1001. https://doi.org/10.3390/antibiotics13111001
Chicago/Turabian StyleFrattari, Antonella, Ennio Polilli, Laura Timelli, Francesca Spagnuolo, Paolo Fazii, and Giustino Parruti. 2024. "Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis" Antibiotics 13, no. 11: 1001. https://doi.org/10.3390/antibiotics13111001
APA StyleFrattari, A., Polilli, E., Timelli, L., Spagnuolo, F., Fazii, P., & Parruti, G. (2024). Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis. Antibiotics, 13(11), 1001. https://doi.org/10.3390/antibiotics13111001