Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Patients and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Van Heuverswyn, J.; Valik, J.K.; Desirée van der Werff, S.; Hedberg, P.; Giske, C.; Nauclér, P. Association Between Time to Appropriate Antimicrobial Treatment and 30-Day Mortality in Patients with Bloodstream Infections: A Retrospective Cohort Study. Clin. Infect. Dis. 2023, 76, 469–478. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Gyawali, B.; Ramakrishna, K.; Dhamoon, A.S. Sepsis: The Evolution in Definition, Pathophysiology, and Management. SAGE Open Med. 2019, 7, 2050312119835043. [Google Scholar] [CrossRef]
- Liu, D.; Huang, S.-Y.; Sun, J.-H.; Zhang, H.-C.; Cai, Q.-L.; Gao, C.; Li, L.; Cao, J.; Xu, F.; Zhou, Y.; et al. Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Mil. Med. Res. 2022, 9, 56. [Google Scholar] [CrossRef]
- Jarczak, D.; Kluge, S.; Nierhaus, A. Sepsis-Pathophysiology and Therapeutic Concepts. Front. Med. 2021, 8, 628302. [Google Scholar] [CrossRef] [PubMed]
- Bode, C.; Weis, S.; Sauer, A.; Wendel-Garcia, P.; David, S. Targeting the Host Response in Sepsis: Current Approaches and Future Evidence. Crit. Care 2023, 27, 478. [Google Scholar] [CrossRef]
- De Waele, J.J.; Boelens, J.; Leroux-Roels, I. Multidrug-Resistant Bacteria in ICU: Fact or Myth. Curr. Opin. Anaesthesiol. 2020, 33, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Timsit, J.-F.; Bassetti, M.; Cremer, O.; Daikos, G.; de Waele, J.; Kallil, A.; Kipnis, E.; Kollef, M.; Laupland, K.; Paiva, J.-A.; et al. Rationalizing Antimicrobial Therapy in the ICU: A Narrative Review. Intensive Care Med. 2019, 45, 172–189. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A.; Infectious Diseases Society of America Antimicrobial-Resistant Treatment Guidance: Gram-Negative Bacterial Infections. Infectious Diseases Society of America 2024; Version 4.0. Available online: https://www.idsociety.org/practice-guideline/amr-guidance/ (accessed on 3 September 2024).
- Giannella, M.; Verardi, S.; Karas, A.; Abdel Hadi, H.; Dupont, H.; Soriano, A.; Santerre Henriksen, A.; Cooper, A.; Falcone, M. ARES Study Group Carbapenem-Resistant Acinetobacter Spp Infection in Critically Ill Patients With Limited Treatment Options: A Descriptive Study of Cefiderocol Therapy During the COVID-19 Pandemic. Open Forum Infect. Dis. 2023, 10, ofad329. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, I.; Oliva, A.; Pages, R.; Sivori, F.; Truglio, M.; Fabrizio, G.; Pasqua, M.; Pimpinelli, F.; Di Domenico, E.G. Acinetobacter Baumannii in the Critically Ill: Complex Infections Get Complicated. Front. Microbiol. 2023, 14, 1196774. [Google Scholar] [CrossRef] [PubMed]
- Iovleva, A.; Mustapha, M.M.; Griffith, M.P.; Komarow, L.; Luterbach, C.; Evans, D.R.; Cober, E.; Richter, S.S.; Rydell, K.; Arias, C.A.; et al. Carbapenem-Resistant Acinetobacter Baumannii in U.S. Hospitals: Diversification of Circulating Lineages and Antimicrobial Resistance. mBio 2022, 13, e0275921. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Chen, C.-L.; Wu, S.-R.; Huang, C.-W.; Chiu, C.-H. Risk Factors and Outcome Analysis of Acinetobacter Baumannii Complex Bacteremia in Critical Patients. Crit. Care Med. 2014, 42, 1081–1088. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Oliva, A.; Ceccarelli, G.; De Angelis, M.; Sacco, F.; Miele, M.C.; Mastroianni, C.M.; Venditti, M. Cefiderocol for Compassionate Use in the Treatment of Complicated Infections Caused by Extensively and Pan-Resistant Acinetobacter Baumannii. J. Glob. Antimicrob. Resist. 2020, 23, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol Treatment for Carbapenem-Resistant Acinetobacter Baumannii Infection in the ICU during the COVID-19 Pandemic: A Multicentre Cohort Study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Giordano, C.; Leonildi, A.; Menichini, M.; Vecchione, A.; Pistello, M.; Guarracino, F.; Ghiadoni, L.; Forfori, F.; et al. Predictors of Hospital-Acquired Bacterial and Fungal Superinfections in COVID-19: A Prospective Observational Study. J. Antimicrob. Chemother. 2021, 76, 1078–1084. [Google Scholar] [CrossRef]
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter Baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- Gatti, M.; Bartoletti, M.; Cojutti, P.G.; Gaibani, P.; Conti, M.; Giannella, M.; Viale, P.; Pea, F. A Descriptive Case Series of Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill Patients with Documented Severe Extensively Drug-Resistant Acinetobacter Baumannii Bloodstream Infection and/or Ventilator-Associated Pneumonia Treated with Cefiderocol. J. Glob. Antimicrob. Resist. 2021, 27, 294–298. [Google Scholar] [CrossRef]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Analyses of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia, Bloodstream Infection/Sepsis, or Complicated Urinary Tract Infection. Antimicrob. Agents Chemother. 2021, 65, e01437-20. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, M.; Denny, K.J.; Lipman, J.; Conway Morris, A. Differentiating Infection, Colonisation, and Sterile Inflammation in Critical Illness: The Emerging Role of Host-Response Profiling. Intensive Care Med. 2023, 49, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Monneret, G.; Payen, D. Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nat. Rev. Immunol. 2013, 13, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Venet, F.; Monneret, G. Advances in the Understanding and Treatment of Sepsis-Induced Immunosuppression. Nat. Rev. Nephrol. 2018, 14, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Venet, F.; Textoris, J.; Blein, S.; Rol, M.-L.; Bodinier, M.; Canard, B.; Cortez, P.; Meunier, B.; Tan, L.K.; Tipple, C.; et al. Immune Profiling Demonstrates a Common Immune Signature of Delayed Acquired Immunodeficiency in Patients with Various Etiologies of Severe Injury. Crit. Care Med. 2022, 50, 565–575. [Google Scholar] [CrossRef]
- Dobson, G.P.; Morris, J.L.; Letson, H.L. Immune Dysfunction Following Severe Trauma: A Systems Failure from the Central Nervous System to Mitochondria. Front. Med. 2022, 9, 968453. [Google Scholar] [CrossRef]
- Duggal, N.A.; Snelson, C.; Shaheen, U.; Pearce, V.; Lord, J.M. Innate and Adaptive Immune Dysregulation in Critically Ill ICU Patients. Sci. Rep. 2018, 8, 10186. [Google Scholar] [CrossRef]
- Girardis, M.; David, S.; Ferrer, R.; Helms, J.; Juffermans, N.P.; Martin-Loeches, I.; Povoa, P.; Russell, L.; Shankar-Hari, M.; Iba, T.; et al. Understanding, Assessing and Treating Immune, Endothelial and Haemostasis Dysfunctions in Bacterial Sepsis. Intensive Care Med. 2024, 50, 1580–1592. [Google Scholar] [CrossRef]
- Monneret, G.; Venet, F. Immune Functional Testing in Clinics: Feasibility and Prediction of Deleterious Outcomes. Crit. Care Med. 2013, 41, 367–368. [Google Scholar] [CrossRef]
- Kreitmann, L.; Helms, J.; Martin-Loeches, I.; Salluh, J.; Poulakou, G.; Pène, F.; Nseir, S. ICU-Acquired Infections in Immunocompromised Patients. Intensive Care Med. 2024, 50, 332–349. [Google Scholar] [CrossRef]
- Serrano, M.A.; Gomes, A.M.C.; Fernandes, S.M. Monitoring of the Forgotten Immune System during Critical Illness-A Narrative Review. Medicina 2022, 59, 61. [Google Scholar] [CrossRef] [PubMed]
- Azoulay, E.; Mokart, D.; Kouatchet, A.; Demoule, A.; Lemiale, V. Acute Respiratory Failure in Immunocompromised Adults. Lancet Respir. Med. 2019, 7, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Russell, L.; Pène, F.; Martin-Loeches, I. Multidrug-Resistant Bacteria in the Grey Shades of Immunosuppression. Intensive Care Med. 2023, 49, 216–218. [Google Scholar] [CrossRef] [PubMed]
- van Vught, L.A.; Klein Klouwenberg, P.M.C.; Spitoni, C.; Scicluna, B.P.; Wiewel, M.A.; Horn, J.; Schultz, M.J.; Nürnberg, P.; Bonten, M.J.M.; Cremer, O.L.; et al. Incidence, Risk Factors, and Attributable Mortality of Secondary Infections in the Intensive Care Unit After Admission for Sepsis. JAMA 2016, 315, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Frattari, A.; Polilli, E.; Rapacchiale, G.; Coladonato, S.; Ianniruberto, S.; Mazzotta, E.; Patarchi, A.; Battilana, M.; Ciulli, R.; Moretta, A.; et al. Predictors of Bacteremia and Death, Including Immune Status, in a Large Single-Center Cohort of Unvaccinated ICU Patients with COVID-19 Pneumonia. Eur. J. Med. Res. 2023, 28, 219. [Google Scholar] [CrossRef]
- Tremblay, J.-A.; Peron, F.; Kreitmann, L.; Textoris, J.; Brengel-Pesce, K.; Lukaszewicz, A.-C.; Quemeneur, L.; Vedrine, C.; Tan, L.K.; Venet, F.; et al. A Stratification Strategy to Predict Secondary Infection in Critical Illness-Induced Immune Dysfunction: The REALIST Score. Ann. Intensive Care 2022, 12, 76. [Google Scholar] [CrossRef]
- Ceccato, A.; Panagiotarakou, M.; Ranzani, O.T.; Martin-Fernandez, M.; Almansa-Mora, R.; Gabarrus, A.; Bueno, L.; Cilloniz, C.; Liapikou, A.; Ferrer, M.; et al. Lymphocytopenia as a Predictor of Mortality in Patients with ICU-Acquired Pneumonia. J. Clin. Med. 2019, 8, 843. [Google Scholar] [CrossRef]
- Finfer, S.; Venkatesh, B.; Hotchkiss, R.S.; Sasson, S.C. Lymphopenia in Sepsis-an Acquired Immunodeficiency? Immunol. Cell Biol. 2023, 101, 535–544. [Google Scholar] [CrossRef]
- Pei, F.; Song, W.; Wang, L.; Liang, L.; Gu, B.; Chen, M.; Nie, Y.; Liu, Y.; Zhou, Y.; Guan, X.; et al. Lymphocyte Trajectories Are Associated with Prognosis in Critically Ill Patients: A Convenient Way to Monitor Immune Status. Front. Med. 2022, 9, 953103. [Google Scholar] [CrossRef]
- Frattari, A.; Polilli, E.; Primiterra, V.; Savini, V.; Ursini, T.; Di Iorio, G.; Parruti, G. Analysis of Peripheral Blood Lymphocyte Subsets in Critical Patients at ICU Admission: A Preliminary Investigation of Their Role in the Prediction of Sepsis during ICU Stay. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418792310. [Google Scholar] [CrossRef]
- Polilli, E.; Esposito, J.E.; Frattari, A.; Trave, F.; Sozio, F.; Ferrandu, G.; Di Iorio, G.; Parruti, G. Circulating Lymphocyte Subsets as Promising Biomarkers to Identify Septic Patients at Higher Risk of Unfavorable Outcome. BMC Infect. Dis. 2021, 21, 780. [Google Scholar] [CrossRef]
- Fujii, T.; Mashimo, M.; Moriwaki, Y.; Misawa, H.; Ono, S.; Horiguchi, K.; Kawashima, K. Expression and Function of the Cholinergic System in Immune Cells. Front. Immunol. 2017, 8, 1085. [Google Scholar] [CrossRef] [PubMed]
- Schupp, T.; Weidner, K.; Rusnak, J.; Jawhar, S.; Forner, J.; Dulatahu, F.; Brück, L.M.; Hoffmann, U.; Kittel, M.; Bertsch, T.; et al. Diagnostic and Prognostic Role of Platelets in Patients with Sepsis and Septic Shock. Platelets 2023, 34, 2131753. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Decker, S.O.; Zirnstein, A.C.; Sigl, A.; Schmidt, K.; Weigand, M.A.; Hofer, S.; Brenner, T. A Sustained Reduction in Serum Cholinesterase Enzyme Activity Predicts Patient Outcome Following Sepsis. Mediat. Inflamm. 2018, 2018, 1942193. [Google Scholar] [CrossRef]
- Limaye, A.P.; Boeckh, M. CMV in Critically Ill Patients: Pathogen or Bystander? Rev. Med. Virol. 2010, 20, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Schinas, G.; Moustaka, V.; Polyzou, E.; Almyroudi, M.P.; Dimopoulos, G.; Akinosoglou, K. Targeting CMV Reactivation to Optimize Care for Critically Ill COVID-19 Patients: A Review on the Therapeutic Potential of Antiviral Treatment. Viruses 2023, 15, 1165. [Google Scholar] [CrossRef] [PubMed]
- Walton, A.H.; Muenzer, J.T.; Rasche, D.; Boomer, J.S.; Sato, B.; Brownstein, B.H.; Pachot, A.; Brooks, T.L.; Deych, E.; Shannon, W.D.; et al. Reactivation of Multiple Viruses in Patients with Sepsis. PLoS ONE 2014, 9, e98819. [Google Scholar] [CrossRef]
- Adrie, C.; Lugosi, M.; Sonneville, R.; Souweine, B.; Ruckly, S.; Cartier, J.-C.; Garrouste-Orgeas, M.; Schwebel, C.; Timsit, J.-F.; OUTCOMEREA study group. Persistent Lymphopenia Is a Risk Factor for ICU-Acquired Infections and for Death in ICU Patients with Sustained Hypotension at Admission. Ann. Intensive Care 2017, 7, 30. [Google Scholar] [CrossRef]
- Landelle, C.; Lepape, A.; Voirin, N.; Tognet, E.; Venet, F.; Bohé, J.; Vanhems, P.; Monneret, G. Low Monocyte Human Leukocyte Antigen-DR Is Independently Associated with Nosocomial Infections after Septic Shock. Intensive Care Med. 2010, 36, 1859–1866. [Google Scholar] [CrossRef]
- Le, C.; Pimentel, C.; Pasteran, F.; Tuttobene, M.R.; Subils, T.; Escalante, J.; Nishimura, B.; Arriaga, S.; Carranza, A.; Mezcord, V.; et al. Human Serum Proteins and Susceptibility of Acinetobacter baumannii to Cefiderocol: Role of Iron Transport. Biomedicines 2022, 10, 600. [Google Scholar] [CrossRef]
- de Roquetaillade, C.; Dupuis, C.; Faivre, V.; Lukaszewicz, A.C.; Brumpt, C.; Payen, D. Monitoring of Circulating Monocyte HLA-DR Expression in a Large Cohort of Intensive Care Patients: Relation with Secondary Infections. Ann. Intensive Care 2022, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Bhargava, P.; McCloskey, D.; Mao, N.; Palsson, B.O.; Collins, J.J. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function. Cell Host Microbe 2017, 22, 757–765.e3. [Google Scholar] [CrossRef] [PubMed]
- Arulkumaran, N.; Routledge, M.; Schlebusch, S.; Lipman, J.; Conway Morris, A. Antimicrobial-Associated Harm in Critical Care: A Narrative Review. Intensive Care Med. 2020, 46, 225–235. [Google Scholar] [CrossRef]
- Rohde, J.M.; Dimcheff, D.E.; Blumberg, N.; Saint, S.; Langa, K.M.; Kuhn, L.; Hickner, A.; Rogers, M.A.M. Health Care-Associated Infection after Red Blood Cell Transfusion: A Systematic Review and Meta-Analysis. JAMA 2014, 311, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Péju, E.; Llitjos, J.-F.; Charpentier, J.; François, A.; Marin, N.; Cariou, A.; Chiche, J.-D.; Mira, J.-P.; Lambert, J.; Jamme, M.; et al. Impact of Blood Product Transfusions on the Risk of ICU-Acquired Infections in Septic Shock. Crit. Care Med. 2021, 49, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, D.; Böhringer, J.; Körner, E.; Chiriac, U.; Förmer, S.; Sähr, A.; Hoppe-Tichy, T.; Heeg, K.; Nurjadi, D. Cefiderocol Protects against Cytokine- and Endotoxin-Induced Disruption of Vascular Endothelial Cell Integrity in an In Vitro Experimental Model. Antibiotics 2022, 11, 581. [Google Scholar] [CrossRef]
- Girardis, M.; Coloretti, I.; Antonelli, M.; Berlot, G.; Busani, S.; Cortegiani, A.; De Pascale, G.; De Rosa, F.G.; De Rosa, S.; Donadello, K.; et al. Adjunctive immunotherapeutic agents in patients with sepsis and septic shock: A multidisciplinary consensus of 23. J. Anesth. Analg. Crit. Care 2024, 4, 28. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
Survival (n = 20) | Death (n = 16) | Overall (n = 36) | p Value * | ||||
---|---|---|---|---|---|---|---|
Age, years | 52 | 40.5–68.5 | 73 | 64.5; 78 | 64.5 | 46.5–75.5 | 0.003 |
Sex (n. %) | |||||||
Male | 15 | 75 | 11 | 69 | 26 | 72 | |
Female | 5 | 25 | 5 | 31 | 10 | 28 | 0.677 |
Length of stay, days | 31 | 20–47 | 26 | 12; 35 | 30 | 18–38 | 0.149 |
Diagnosis (n. %) | |||||||
Septic shock | 3 | 15 | 7 | 43.8 | 10 | 27.8 | |
Polytrauma | 7 | 35 | 2 | 12.5 | 9 | 25 | |
Subarachnoid hemorrhage/ thromboembolism | 8 | 40 | 1 | 6.3 | 9 | 25 | |
Hemorrhagic shock | 1 | 5 | 4 | 25 | 5 | 13.9 | |
Respiratory failure | 1 | 5 | 2 | 12.5 | 3 | 8.3 | 0.02 |
Sepsis (n. %) | 17 | 85 | 16 | 100 | 33 | 91.7 | 0.106 |
Treatment (n. %) | |||||||
Monotherapy (n. %) | 10 | 50 | 9 | 56.3 | 19 | 52.8 | |
Combination (n. %) | 10 | 50 | 7 | 43.7 | 17 | 47.2 | 0.709 |
SAPS II, median (IQR) | 38.5 | 28–46.5 | 51 | 35–64 | 42 | 32–55 | 0.048 |
SOFA, median (IQR) | 5.5 | 4–7.5 | 8 | 6–11.5 | 6 | 4–9 | 0.018 |
Lymphocytopenia (n. %) | |||||||
Absent | 13 | 68.4 | 1 | 6.3 | 14 | 40 | |
Temporary | 6 | 31.6 | 2 | 12.5 | 8 | 22.9 | |
Persistent | 0 | 0 | 13 | 81.2 | 13 | 37.1 | <0.01 |
CD4-T, <400 c/µL | 10 | 62.5 | 12 | 80 | 22 | 71 | 0.283 |
CD8/CD19 | 3 | 18.8 | 3 | 20 | 6 | 19.4 | 0.93 |
Cholinesterase, <1600 U/L | 3 | 15 | 14 | 87.5 | 17 | 47.2 | <0.01 |
Reactivation (n. %) | 2 | 14.3 | 13 | 61.9 | 15 | 42.7 | 0.005 |
Non-Adjusted | Adjusted * | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age (per 5-year increase) | 1.50 (1.11–2.02) | 0.008 | 1.42 (0.98–2.05) | 0.063 |
Sex: female vs. male | 1.36 (0.32–5.89) | 0.678 | ||
Treatment: monotherapy vs. combination | 1.29 (0.34–4.82) | 0.709 | ||
SAPS II (per 1 point increase) | 1.05 (1.01–1.10) | 0.042 | ||
SOFA (per 1 point increase) | 1.37 (1.06–1.76) | 0.017 | ||
Lymphocytopenia (persistent or temporary vs. absent) | 32.5 (3.45–306.35) | 0.002 | 18.16 (0.87–381.38) | 0.062 |
Reactivation | 9.75 (1.72–55.37) | 0.01 | ||
CD4 < 400 c/µL | 2.4 (0.47–12.13 | 0.29 | ||
CD8/CD19 ratio > 2.2 | 1.08 (0.18–6.44) | 0.93 | ||
Cholinesterase < 1600 U/L | 9.67 (5.79–271.63) | <0.01 | 9.77 (0.77–123.70) | 0.078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frattari, A.; Polilli, E.; Timelli, L.; Spagnuolo, F.; Fazii, P.; Parruti, G. Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis. Antibiotics 2024, 13, 1001. https://doi.org/10.3390/antibiotics13111001
Frattari A, Polilli E, Timelli L, Spagnuolo F, Fazii P, Parruti G. Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis. Antibiotics. 2024; 13(11):1001. https://doi.org/10.3390/antibiotics13111001
Chicago/Turabian StyleFrattari, Antonella, Ennio Polilli, Laura Timelli, Francesca Spagnuolo, Paolo Fazii, and Giustino Parruti. 2024. "Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis" Antibiotics 13, no. 11: 1001. https://doi.org/10.3390/antibiotics13111001
APA StyleFrattari, A., Polilli, E., Timelli, L., Spagnuolo, F., Fazii, P., & Parruti, G. (2024). Monitoring Immune Dysfunction in Critically Ill Patients with Carbapenem-Resistant Acinetobacter baumannii Sepsis Treated with Regimens Including Cefiderocol: A Pilot Study to Identify Accessible Biomarkers to Stratify Patients’ Prognosis. Antibiotics, 13(11), 1001. https://doi.org/10.3390/antibiotics13111001