Antibiotic Resistance Pattern of Pathogens Isolated from Pediatric Patients during and after the COVID-19 Pandemic
Abstract
:1. Introduction
2. Results
2.1. Distribution of the Main Isolates
2.2. Antimicrobial Resistance in Main Baterial Species
2.2.1. Gram-Positive Pathogens
2.2.2. Gram-Negative Pathogens
2.2.3. Multidrug Resistance (MDR)
2.2.4. Carbapenem Resistance
3. Discussion
Study Limitations
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Council of the European Union. Document 32023H0622(01): COUNCIL RECOMMENDATION on Stepping up EU Actions to Combat Antimicrobial Resistance in a One Health Approach (2023/C 220/01). 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023H0622%2801%29 (accessed on 2 September 2024).
- Rehman, S. A parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. J. Infect. Public Health 2023, 16, 611–617. [Google Scholar] [CrossRef] [PubMed]
- ECDC. 35 000 Annual Deaths from Antimicrobial Resistance in the EU/EEA. Available online: https://www.ecdc.europa.eu/en/news-events/eaad-2022-launch (accessed on 7 September 2024).
- ECDC. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2022; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- Tsouklidis, N.; Kumar, R.; Heindl, S.E.; Soni, R.; Khan, S. Understanding the Fight Against Resistance: Hospital-Acquired Methicillin-Resistant Staphylococcus Aureus vs. Community-Acquired Methicillin-Resistant Staphylococcus Aureus. Cureus 2020, 12, e8867. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, M.; Nitu, M.; Golli, A. Tuberculosis mesenteric adenopathy and polyserositis. Rom. J. Morphol. Embryol. 2012, 53, 835–840. [Google Scholar] [PubMed]
- WHO. Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Romandini, A.; Pani, A.; Schenardi, P.A.; Pattarino, G.A.C.; De Giacomo, C.; Scaglione, F. Antibiotic Resistance in Pediatric Infections: Global Emerging Threats, Predicting the Near Future. Antibiotics 2021, 10, 393. [Google Scholar] [CrossRef]
- Pana, Z.D.; El-Shabrawi, M.; Sultan, M.A.; Murray, T.; Alam, A.; Yewale, V.; Dharmapalan, D.; Klein, J.D.; Haddad, J.; Thacker, N.; et al. Fighting the hidden pandemic of antimicrobial resistance in paediatrics: Recommendations from the International Pediatric Association. BMJ Paediatr. Open 2023, 7, e002084. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. AMR: The Urgent Threat of Drug-Resistant Infections: Protecting Children Worldwide—A UNICEF Guidance Note on Antimicrobial Resistance. 2023. Available online: https://www.unicef.org/documents/amr-urgent-threat-drug-resistant-infections (accessed on 30 August 2024).
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- INSP. CARMIAAM-ROM 2020 (Consumul de Antibiotice, Rezistența Microbiană și Infecții Asociate Asistenței Medicale în România—2020; INSP: Bucuresti, Romania, 2020. [Google Scholar]
- Prajescu, B.; Gavriliu, L.; Iesanu, M.I.; Ioan, A.; Boboc, A.A.; Boboc, C.; Galos, F. Bacterial Species and Antibiotic Resistance-A Retrospective Analysis of Bacterial Cultures in a Pediatric Hospital. Antibiotics 2023, 12, 966. [Google Scholar] [CrossRef]
- Saeedi, F.A.; Hegazi, M.A.; Alsaedi, H.; Alganmi, A.H.; Mokhtar, J.A.; Metwalli, E.M.; Hamadallah, H.; Siam, G.S.; Alaqla, A.; Alsharabi, A.; et al. Multidrug-Resistant Bacterial Infections in Pediatric Patients Hospitalized at King Abdulaziz University Hospital, Jeddah, Western Saudi Arabia. Children 2024, 11, 444. [Google Scholar] [CrossRef]
- Sibi, D.; Sethi, D.C.; Jibin, V.G.; Silvanose, C.D. Emerging Antibiotic Resistance in Post-COVID-19 Co-infections. J. Clin. Med. Case Rep. 2023, 8, 8. [Google Scholar]
- Kishk, R.M.; Abu Bakr, N.M.; Anani, M.; Nemr, N.; Salama, B.M.; Samahy, M.; Kishk, S.M.; Salem, N.E.; Mohamed, H.A. Pattern of antimicrobial resistance in the pre and during COVID-19 era: An observational study. Microbes Infect. Dis. 2023, 4, 1100–1113. [Google Scholar] [CrossRef]
- Rezk, A.R.; Bawady, S.A.; Omar, N.N. Incidence of emerging multidrug-resistant organisms and its impact on the outcome in the pediatric intensive care. Egypt. Pediatr. Assoc. Gaz. 2021, 69, 25. [Google Scholar] [CrossRef]
- Tehrani, N.A.; Alebouyeh, M.; Azimi, L.; Jabbari, S.; Bayekolaei, R.M.; Azimi, T.; Ghandchi, G.; Maham, S.; Fallah, F. Bacteremia with Multi-drug Resistant Gram-negative Bacteria in Pediatrics and Its Correlation with COVID-19. Arch. Clin. Infect. Dis. 2023, 18, e136159. [Google Scholar] [CrossRef]
- Logan, L.K. Carbapenem-resistant enterobacteriaceae: An emerging problem in children. Clin. Infect. Dis. 2012, 55, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Perez Jorge, G.; Rodrigues Dos Santos Goes, I.C.; Gontijo, M.T.P. Les miserables: A Parallel Between Antimicrobial Resistance and COVID-19 in Underdeveloped and Developing Countries. Curr. Infect. Dis. Rep. 2022, 24, 175–186. [Google Scholar] [CrossRef] [PubMed]
- ECDC; WHO. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- Golli, A.L.; Zlatian, O.M.; Cara, M.L.; Olteanu, M. Pre- and Post-COVID-19 Antimicrobial Resistance Pattern of Pathogens in an Intensive Care Unit. Pharmaceuticals 2024, 17, 407. [Google Scholar] [CrossRef] [PubMed]
- Golli, A.L.; Nitu, F.M.; Balasoiu, M.; Nemes, R.M.; Tudorache, S.I.; Mahler Boca, B.; Olteanu, M. Bacterial Isolates from Endotracheal Aspirates and their Antimicrobial Resistance Pattern in Patients from Intensive Care Unit. Rev. Chim. 2019, 70, 3299–3304. [Google Scholar] [CrossRef]
- Golli, A.L.; Nitu, F.M.; Balasoiu, M.; Lungu, M.A.; Dragomirescu, C.C.; Olteanu, M.; Nemes, R.M.; Tantu, M.M.; Olteanu, M. The Characterization of Antibiotic Resistance of Bacterial Isolates from Intensive Care Unit Patient Samples in a University Affiliated Hospital in Romania. Rev. Chim. 2019, 70, 1778–1783. [Google Scholar] [CrossRef]
- Golli, A.L.N.; Nițu, F.M.; Balasoiu, M.; Rascu, S.; Lungu, M.A.; Dinescu, S.N.; Ciobanu Mitrache, L.; Glodeanu, A.; Vacaru, M.; Olteanu, M. Microbiological profile and antibiotic resistance pattern of bacterial uropathogens among hospitalized patients. Farmacia 2019, 67, 167–173. [Google Scholar] [CrossRef]
- Ghenea, A.E.; Cioboata, R.; Drocas, A.I.; Tieranu, E.N.; Vasile, C.M.; Morosanu, A.; Tieranu, C.G.; Salan, A.I.; Popescu, M.; Turculeanu, A.; et al. Prevalence and Antimicrobial Resistance of Klebsiella Strains Isolated from a County Hospital in Romania. Antibiotics 2021, 10, 868. [Google Scholar] [CrossRef]
- Balkhy, H.H.; El-Saed, A.; Alshamrani, M.M.; Alsaedi, A.; Nasser, W.A.; Gammal, A.E.; Aljohany, S.M.; Arabi, Y.; Alqahtani, S.; Bonnie, H.B.; et al. High Burden of Resistant Gram Negative Pathogens Causing Device-associated Healthcare Infections in a Tertiary Care Setting in Saudi Arabia, 2008–2016. J. Glob. Antimicrob. Resist. 2020, 23, 26–32. [Google Scholar] [CrossRef]
- Barbu, I.C.; Gheorghe-Barbu, I.; Grigore, G.A.; Vrancianu, C.O.; Chifiriuc, M.C. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int. J. Mol. Sci. 2023, 24, 7892. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.J.; Tamma, P.D. Treatment of multidrug-resistant Gram-negative infections in children. Clin. Infect. Dis. 2014, 58, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Wang, C.; Yu, H.; Wu, X.; Xu, H.; Jing, C.; Deng, J.; Wang, H.; Hua, C.; Chen, Y.; et al. Antimicrobial resistance profile of clinical strains isolated from children in China: A report from the ISPED program in 2021. Chin. J. Evid.-Based Pediatr. 2022, 17, 355–362. [Google Scholar]
- Sajedi Moghaddam, S.; Mamishi, S.; Pourakbari, B.; Mahmoudi, S. Bacterial etiology and antimicrobial resistance pattern of pediatric bloodstream infections: A 5-year experience in an Iranian referral hospital. BMC Infect. Dis. 2024, 24, 373. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Schiavone, F.; Pipitone, G.; Taglietti, F.; Petrosillo, N. Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. J. Clin. Med. 2022, 11, 7207. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Hussain, S.S. Impact of COVID-19 Pandemic on Antimicrobial Resistance Pattern; Transition from Resistivity to Susceptibility. Glob. J. Med. Pharm. Biomed. Update 2022, 17, 6. [Google Scholar] [CrossRef]
- Taleb, M.H.; Elmanama, A.A.; Taleb, A.H.; Tawfick, M.M. Pre- and post-COVID-19 antimicrobial resistance profile of bacterial pathogens, a comparative study in a tertiary hospital. J. Infect. Dev. Ctries. 2023, 17, 597–609. [Google Scholar] [CrossRef]
- Parisini, A.; Boni, S.; Vacca, E.B.; Bobbio, N.; Puente, F.D.; Feasi, M.; Prinapori, R.; Lattuada, M.; Sartini, M.; Cristina, M.L.; et al. Impact of the COVID-19 Pandemic on Epidemiology of Antibiotic Resistance in an Intensive Care Unit (ICU): The Experience of a North-West Italian Center. Antibiotics 2023, 12, 1278. [Google Scholar] [CrossRef]
- Raoofi, R.; Namavari, N.; Rahmanian, V.; Dousthaghi, M.H. Evaluation of antibiotics resistance in Southern Iran in light of COVID-19 pandemic: A retrospective observational study. Health Sci. Rep. 2023, 6, e1153. [Google Scholar] [CrossRef]
- Wu, X.; Wang, C.; He, L.; Xu, H.; Jing, C.; Chen, Y.; Lin, A.; Deng, J.; Cao, Q.; Deng, H.; et al. Antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus isolates in children reported from the ISPED surveillance of bacterial resistance, 2016–2021. Front. Cell. Infect. Microbiol. 2023, 13, 1102779. [Google Scholar] [CrossRef]
- Boccabella, L.; Palma, E.G.; Abenavoli, L.; Scarlata, G.G.M.; Boni, M.; Ianiro, G.; Santori, P.; Tack, J.F.; Scarpellini, E. Post-Coronavirus Disease 2019 Pandemic Antimicrobial Resistance. Antibiotics 2024, 13, 233. [Google Scholar] [CrossRef] [PubMed]
- Mares, C.; Petca, R.C.; Petca, A.; Popescu, R.I.; Jinga, V. Does the COVID Pandemic Modify the Antibiotic Resistance of Uropathogens in Female Patients? A New Storm? Antibiotics 2022, 11, 376. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Nirwan, P.K.; Srivastava, S.; Rati, R.; Sharma, L.; Sharma, P.; Dwivedi, P.; Jaggi, N. Trends in carbapenem resistance in Pre-COVID and COVID times in a tertiary care hospital in North India. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, A.G.; Glodeanu, A.D.; Ionescu, M.; Zaharie, S.I.; Ciurea, A.M.; Golli, A.L.; Mavritsakis, N.; Popa, D.L.; Vere, C.C. Clinical impact of wireless capsule endoscopy for small bowel investigation (Review). Exp. Ther. Med. 2022, 23, 262. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- INSP-CNSCBT. Sentinel Surveillance Methodology for Healthcare Associated Infections and Antimicrobial Resistance. 2018. Available online: https://www.cnscbt.ro (accessed on 15 December 2018).
- Zlatian, O.; Balasoiu, A.T.; Balasoiu, M.; Cristea, O.; Docea, A.O.; Mitrut, R.; Spandidos, D.A.; Tsatsakis, A.M.; Bancescu, G.; Calina, D. Antimicrobial resistance in bacterial pathogens among hospitalised patients with severe invasive infections. Exp. Ther. Med. 2018, 16, 4499–4510. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement, M100; CLSI: Berwyn, PA, USA, 2020. [Google Scholar]
Year | |||||
---|---|---|---|---|---|
Specimen Type | 2020 | 2021 | 2022 | 2023 | Total |
Central venous catheter | 4 (1.50%) | 3 (1.27%) | 1 (0.65%) | - | 8 (0.95%) |
Nose/pharynx | 20 (7.52%) | 20 (8.48%) | 9 (5.85%) | 16 (8.47%) | 65 (7.69%) |
Blood | 13 (4.89%) | 9 (3.81%) | 11 (7.14%) | 8 (4.23%) | 41 (4.85%) |
Pus/wound swabs | 87 (32.71%) | 61 (25.85%) | 22 (14.28%) | 67 (35.45%) | 237 (28.05%) |
Urine | 64 (24.06%) | 64 (27.12%) | 40 (25.98%) | 37 (19.57%) | 205 (24.26%) |
Cerebrospinal fluid | 1 (0.37%) | - | - | 1 (0.53%) | 2 (0.23%) |
Respiratory tract | 54 (20.30%) | 63 (26.69%) | 61 (39.61%) | 53 (28.04%) | 231 (27.34%) |
Other | 23 (8.65%) | 16 (6.78%) | 10 (6.49%) | 7 (3.71%) | 56 (6.63%) |
TOTAL | 266 | 236 | 154 | 189 | 845 |
Species | During COVID-19 (2020–2021) | Post-COVID-19 (2022–2023) | Total | ||
---|---|---|---|---|---|
No. | % | No. | % | No | |
Klebsiella spp. | 57 | 42.22 | 78 | 57.78 | 135 |
Escherichia coli | 67 | 36.41 | 117 | 63.59 | 184 |
Pseudomonas spp. | 38 | 43.68 | 49 | 56.32 | 87 |
Enterococcus spp. | 28 | 43.75 | 36 | 56.25 | 64 |
Staphylococcus aureus | 88 | 36.82 | 151 | 63.18 | 239 |
Acinetobacter spp. | 14 | 36.84 | 24 | 63.16 | 38 |
Other NFB * | 6 | 54.54 | 5 | 45.46 | 11 |
Enterobacter spp. | 9 | 45 | 11 | 55 | 20 |
Proteus spp. | 9 | 36.42 | 17 | 65.38 | 26 |
Coagulase-negative Staphylococci | 7 | 16.67 | 35 | 83.33 | 42 |
Streptococcus pneumoniae | 28 | 50.91 | 27 | 49.09 | 55 |
Other Streptococcus spp. | 5 | 45.46 | 6 | 54.54 | 11 |
Citrobacter spp. | 3 | 75 | 1 | 25 | 4 |
Serratia marcescens | 0 | 0 | 4 | 100 | 4 |
Other | 8 | 47.06 | 9 | 52.94 | 17 |
Total | 367 | 39.17 | 570 | 60.83 | 937 |
Antimicrobial Agent | Staphylococcus aureus (n = 239) | Streptococcus pneumoniae (n = 55) | Enterococcus spp. (n = 64) |
---|---|---|---|
Ciprofloxacin | 59/219 (26.94%) | - | 32/61 (52.46%) |
Clindamycin | 161/235 (68.51%) | 7/50 (14%) | - |
Clarithromycin | 153/233 (65.66%) | 14/49 (28.57%) | - |
Doxycycline | 57/225 (25.33%) | 10/51 (19.61%) | 23/52 (44.23%) |
Erythromycin | 179/237 (5.53%) | 16/49 (32.65%) | - |
Linezolid | 0/219 (0%) | 0/39 (0%) | 2/54 (3.70%) |
Penicillin | 190/237 (80.17%) | 32/42 (76.19%) | 25/46 (54.34%) |
Rifampicin | 252/174 (53.16%) | 0/40 (0%) | - |
Tetracycline | 63/186 (33.87%) | 14/33 (42.42%) | - |
Oxacillin | 114/175 (46.34%) | - | - |
Vancomycin | 2/22 (9.09%) | 0/48 (0%) | 4/48 (8.33%) |
Teicoplanin | 16/66 (24.24%) | - | 8/30 (26.67%) |
Gentamicin | 69/206 (33.49%) | - | - |
Levofloxacin | 24/162 (14.28%) | 8/37 (21.62%) | 7/24 (29.17%) |
Moxifloxacin | 35/200 (17.5%) | 3/48 (6.25%) | - |
Antimicrobial Agent | Escherichia coli (n = 184) | Klebsiella spp. (n = 135) | Pseudomonas spp. (n = 87) |
---|---|---|---|
Amoxicillin/ clavulanic acid | 100/161 (62.11%) | 80/115 (69.56%) | - |
Ceftazidime | 68/161 (42.33%) | 73/120 (60.83%) | 35/81 (43.21%) |
Ceftriaxone | 47/146 (35.58%) | 68/114 (59.65%) | 10/14 (71.43%) |
Cefazolin | 52/122 (42.63%) | 56/79 (70.88%) | - |
Cefuroxime | 63/102 (61.76%) | 49/67 (73.13%) | - |
Cefepime | 37/116 (31.89%) | 39/74 (52.70%) | 23/59 (38.98%) |
Imipenem | 7/139 (5.03%) | 21/105 (20%) | 23/70 (32.85%) |
Meropenem | 4/91 (4.39%) | 14/67 (20.89%) | 17/62 (27.42%) |
Ciprofloxacin | 51/158 (32.27%) | 44/118 (37.28%) | 13/79 (14.46%) |
Levofloxacin | 18/95 (18.94%) | 12/65 (18.46%) | 14/52 (26.93%) |
Piperacillin/ tazobactam | 42/89 (47.19%) | 43/74 (58.11%) | 18/64 (28.12%) |
Colistin | 34/129 (26.36%) | 26 (24.76%) | 6/74 (8.10%) |
Gentamicin | 50/147 (34.01%) | 53/97 (54.64%) | 18/75 (24%) |
Amikacin | 31/111 (27.93%) | 28/71 (39.43%) | 10/49 (20.41%) |
Aztreonam | 33/139 (23.74%) | 42/105 (40%) | 14/56 (25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golli, A.-L.; Popa, S.G.; Cara, M.L.; Stoica, G.-A.; Fortofoiu, D.; Stoica, M. Antibiotic Resistance Pattern of Pathogens Isolated from Pediatric Patients during and after the COVID-19 Pandemic. Antibiotics 2024, 13, 966. https://doi.org/10.3390/antibiotics13100966
Golli A-L, Popa SG, Cara ML, Stoica G-A, Fortofoiu D, Stoica M. Antibiotic Resistance Pattern of Pathogens Isolated from Pediatric Patients during and after the COVID-19 Pandemic. Antibiotics. 2024; 13(10):966. https://doi.org/10.3390/antibiotics13100966
Chicago/Turabian StyleGolli, Andreea-Loredana, Simona Georgiana Popa, Monica Laura Cara, George-Alin Stoica, Dragos Fortofoiu, and Maria Stoica. 2024. "Antibiotic Resistance Pattern of Pathogens Isolated from Pediatric Patients during and after the COVID-19 Pandemic" Antibiotics 13, no. 10: 966. https://doi.org/10.3390/antibiotics13100966
APA StyleGolli, A. -L., Popa, S. G., Cara, M. L., Stoica, G. -A., Fortofoiu, D., & Stoica, M. (2024). Antibiotic Resistance Pattern of Pathogens Isolated from Pediatric Patients during and after the COVID-19 Pandemic. Antibiotics, 13(10), 966. https://doi.org/10.3390/antibiotics13100966