Optimization of Screening Media to Improve Antimicrobial Biodiscovery from Soils in Undergraduate/Citizen Science Research-Engaged Initiatives
Abstract
:1. Introduction
2. Results
2.1. Initial Isolation and Screening of Soil Bacteria for Antibacterial Activity
2.2. Comparative Evaluation of TSA and SEA for the Induction of Antimicrobial Activity
2.3. Impact of N-Acetyl Glucosamine on Antibiosis Profiles of Isolates
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Soil Samples
4.2. Cultivation Media Preparation
4.3. Isolation of Bacteria from Soil Samples
4.4. Antibiotic Profiling against ESKAPE Pathogens
4.5. 16S rRNA Gene Sequencing
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kwon, J.H.; Powderly, W.G. The Post-Antibiotic Era Is Here. Science (1979) 2021, 373, 72–80. [Google Scholar] [CrossRef]
- Hutchings, M.; Truman, A.; Wilkinson, B. Antibiotics: Past, Present and Future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Hurley, A.; Chevrette, M.G.; Acharya, D.D.; Lozano, G.L.; Garavito, M.; Heinritz, J.; Balderrama, L.; Beebe, M.; Denhartog, M.L.; Corinaldi, K.; et al. Tiny Earth: A Big Idea for Stem Education and Antibiotic Discovery. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef]
- Davis, E.; Sloan, T.; Aurelius, K.; Barbour, A.; Bodey, E.; Clark, B.; Dennis, C.; Drown, R.; Fleming, M.; Humbert, A.; et al. Antibiotic Discovery throughout the Small World Initiative: A Molecular Strategy to Identify Biosynthetic Gene Clusters Involved in Antagonistic Activity. Microbiologyopen 2017, 6, e00435. [Google Scholar] [CrossRef]
- Valderrama, M.J.; González-Zorn, B.; De Pablo, P.C.; Díez-Orejas, R.; Fernández-Acero, T.; Gil-Serna, J.; De Juan, L.; Martín, H.; Molina, M.; Navarro-García, F.; et al. Educating in Antimicrobial Resistance Awareness: Adaptation of the Small World Initiative Program to Service-Learning. FEMS Microbiol. Lett. 2018, 365, fny161. [Google Scholar] [CrossRef] [PubMed]
- Caruso, J.P.; Israel, N.; Rowland, K.; Lovelace, M.J.; Saunders, M.J. Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University. J. Microbiol. Biol. Educ. 2016, 17, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Redfern, J.; Bowater, L.; Coulthwaite, L.; Verran, J. Raising Awareness of Antimicrobial Resistance among the General Public in the UK: The Role of Public Engagement Activities. JAC Antimicrob. Resist. 2020, 2, dlaa012. [Google Scholar] [CrossRef]
- Cornwell, R.M.; Ross, K.; Gibeily, C.; Guthrie, I.; Li, P.H.; Seeley, L.T.; Kong, Y.; True, A.; Barnes, A.; Nimmo, E.; et al. Unearthing New Learning Opportunities: Adapting and Innovating through the ‘Antibiotics under Our Feet’ Citizen Science Project in Scotland during COVID-19. Access Microbiol. 2024, 6, 000710-v3. [Google Scholar] [CrossRef]
- Fernández-Fernández, R.; Robredo, B.; Navajas, E.; Torres, C. Citizen Contribution for Searching for Alternative Antimicrobial Activity Substances in Soil. Antibiotics 2023, 12, 57. [Google Scholar] [CrossRef]
- Miller, W.R.; Arias, C.A. ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef]
- Tommasi, R.; Brown, D.G.; Walkup, G.K.; Manchester, J.I.; Miller, A.A. ESKAPEing the Labyrinth of Antibacterial Discovery. Nat. Rev. Drug. Discov. 2015, 14, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Pino-Hurtado, M.S.; Fernández-Fernández, R.; Torres, C.; Robredo, B. Searching for Antimicrobial-Producing Bacteria from Soils through an Educational Project and Their Evaluation as Potential Biocontrol Agents. Antibiotics 2023, 13, 29. [Google Scholar] [CrossRef]
- Basalla, J.; Harris, R.; Burgess, E.; Zeedyk, N.; Wildschutte, H. Expanding Tiny Earth to Genomics: A Bioinformatics Approach for an Undergraduate Class to Characterize Antagonistic Strains. FEMS Microbiol. Lett. 2020, 367, fnaa018. [Google Scholar] [CrossRef] [PubMed]
- De Groot, P.W.J.; Fernández-Pereira, J.; Sabariegos, R.; Clemente-Casares, P.; Parra-Martínez, J.; Cid, V.J.; Moreno, D.A. Optimizing Small World Initiative Service Learning by Focusing on Antibiotics-Producing Actinomycetes from Soil. FEMS Microbiol. Lett. 2020, 366, fnaa019. [Google Scholar] [CrossRef]
- Volynkina, I.A.; Zakalyukina, Y.V.; Alferova, V.A.; Belik, A.R.; Yagoda, D.K.; Nikandrova, A.A.; Buyuklyan, Y.A.; Udalov, A.V.; Golovin, E.V.; Kryakvin, M.A.; et al. Mechanism-Based Approach to New Antibiotic Producers Screening among Actinomycetes in the Course of the Citizen Science Project. Antibiotics 2022, 11, 1198. [Google Scholar] [CrossRef]
- Hamaki, T.; Suzuki, M.; Fudou, R.; Jojima, Y.; Kajiura, T.; Tabuchi, A.; Sen, K.; Shibai, H. Isolation of Novel Bacteria and Actinomycetes Using Soil-Extract Agar Medium. J. Biosci. Bioeng. 2005, 99, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Urem, M.; Świątek-Połatyńska, M.A.; Rigali, S.; van Wezel, G.P. Intertwining Nutrient-sensory Networks and the Control of Antibiotic Production in Streptomyces. Mol. Microbiol. 2016, 102, 183–195. [Google Scholar] [CrossRef]
- Rigali, S.; Titgemeyer, F.; Barends, S.; Mulder, S.; Thomae, A.W.; Hopwood, D.A.; van Wezel, G.P. Feast or Famine: The Global Regulator DasR Links Nutrient Stress to Antibiotic Production by Streptomyces. EMBO Rep. 2008, 9, 670–675. [Google Scholar] [CrossRef]
- Robredo, B.; Fernández-Fernández, R.; Torres, C.; Ladrera, R. MicroMundo: Experimental Project Fostering Contribution to Knowledge on Antimicrobial Resistance in Secondary School. FEMS Microbiol. Lett. 2023, 370, fnad010. [Google Scholar] [CrossRef]
- Korgaonkar, A.K.; Whiteley, M. Pseudomonas Aeruginosa Enhances Production of an Antimicrobial in Response to N-Acetylglucosamine and Peptidoglycan. J. Bacteriol. 2011, 193, 909–917. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, S.; Sysoeva, T.A.; You, L. Universal Antibiotic Tolerance Arising from Antibiotic-Triggered Accumulation of Pyocyanin in Pseudomonas Aeruginosa. PLoS Biol. 2019, 17, e3000573. [Google Scholar] [CrossRef] [PubMed]
- MacNair, C.R.; Rutherford, S.T.; Tan, M.W. Alternative Therapeutic Strategies to Treat Antibiotic-Resistant Pathogens. Nat. Rev. Microbiol. 2024, 22, 262–275. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; An, F.; Zhang, T.; Lou, M.; Guo, J.; Liu, K.; Zhu, Y.; Wu, J.; Wu, R. Antimicrobial Peptides: An Alternative to Traditional Antibiotics. Eur. J. Med. Chem. 2024, 265, 116072. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Xue, Y.; Gao, W.; Li, J.; Zu, X.; Fu, D.; Feng, S.; Bai, X.; Zuo, Y.; Li, P. Actinobacteria–Derived Peptide Antibiotics since 2000. Peptides 2018, 103, 48–59. [Google Scholar] [CrossRef]
- Baranova, A.A.; Alferova, V.A.; Korshun, V.A.; Tyurin, A.P. Modern Trends in Natural Antibiotic Discovery. Life 2023, 13, 1073. [Google Scholar] [CrossRef]
- Gubbens, J.; Janus, M.; Florea, B.I.; Overkleeft, H.S.; Van Wezel, G.P. Identification of Glucose Kinase-Dependent and -Independent Pathways for Carbon Control of Primary Metabolism, Development and Antibiotic Production in Streptomyces Coelicolor by Quantitative Proteomics. Mol. Microbiol. 2012, 86, 1490–1507. [Google Scholar] [CrossRef] [PubMed]
- Hanauer, D.I.; Graham, M.J.; Betancur, L.; Bobrownicki, A.; Cresawn, S.G.; Garlena, R.A.; Jacobs-Sera, D.; Kaufmann, N.; Pope, W.H.; Russell, D.A.; et al. An Inclusive Research Education Community (IREC): Impact of the SEA-PHAGES Program on Research Outcomes and Student Learning. Proc. Natl. Acad. Sci. USA 2017, 114, 13531–13536. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
Species | Isolation and Screening Media 1 | ESKAPE2 Inhibition 2 |
---|---|---|
Streptomyces atratus | SCN Agar | S |
Streptomyces atratus | SCN Agar | S |
Paenibcillus sp. Strain Y2 | SCN Agar | S |
Pseudomonas azotoformans | SEA | S, K, A |
Pseudomonas jessenii | SEA + cycloheximide | S |
Streptomyces avidinii | SEA | A |
Streptomyces goshikiensis | SEA | K |
Paenibacillus polymyxa | SEA | E, S, K, P |
Paenibacillus polymyxa | SEA | E, S, K, P |
Streptomyces sporovareus | SEA | E, S, K, A, P |
Paenibacillus peoriae | SEA | E, S, K, A, P, E2 |
Paenibacillus peoriae | SEA | E, S, K, A, P, E2 |
Paenibacillus peoriae | SEA | E, S, K, A, P, E2 |
Streptomyces sp. | SEA | E |
Streptomyces/Kitosatospora sp. | SEA | S, E |
Isolate | E. faecium NCIMB 11508 | S. aureus N 670949 | K. pneumoniae NCIMB 13218 | A. johnsonii DSM 6963 | P. aeruginosa PA01 | E. aerogenes NCIMB 101P2 |
---|---|---|---|---|---|---|
Streptomyces atratus | - | - | - | - | - | - |
Streptomyces atratus | - | - | - | - | - | - |
Paenibacillus sp. Strain Y2 | - | 1.2 ± 0 cm | 1.7 ± 0 cm | 2.1 ± 1 cm | - | - |
Pseudomonas azotoformans | - | - | - | - | - | - |
Pseudomonas jensenii | 2.9 ± 0.2 cm | 1.55 ± 0.7 cm | - | - | - | 1.5 ± 0.4 cm |
Streptomyces avidnii | - | - | - | - | - | - |
Streptomyces goshikiensis | - | - | - | - | - | - |
Paenibacillus polymyxa | - | 0.95 ± 0.1 cm | 1.5 ± 0.6 cm | - | 1.45 ± 0.9 cm | 1.75 ± 0.1 cm |
Paenibacillus polymyxa | - | 0.65 ± 0.1 cm | 1.25 ± 1.7 cm | - | 1.3 ± 0.2 cm | 1.35 ± 0.3 cm |
Streptomyces spororaveus | - | - | - | - | - | - |
Paenibacillus peoriae | 1 cm | 1.35 ± 0.7 cm | 1.45 ± 0.3 cm | 1.35 ± 0.7 cm | 1.8 ± 0.2 cm | 3 ± 0.7 cm |
Paenibacillus peoriae | - | 1 ± 0.2 cm | 1.8 cm | 0.9 ± 0.2 cm | - | 2.05 ± 0.5 cm |
Paenibacillus peoriae | - | 1.0 ± 0.4 cm | 1.6 ± 0.2 cm | 1.3 ± 0.2 cm | 1.3 ± 0.4 cm | 2.3 ± 3.0 cm |
Streptomyces sp. | 0.5 ± 0.4 cm | 0.85 ± 0.3 cm | - | - | - | 2.25 ± 2.5 cm |
Streptomyces/Kitosatospora sp. | - | - | - | - | - | - |
Isolate | E. faecium NCIMB 11508 | S. aureus N 670949 | K. pneumoniae NCIMB 13218 | A. johnsonii DSM 6963 | P. aeruginosa PA01 | E. aerogenes NCIMB 101P2 |
---|---|---|---|---|---|---|
Streptomyces atratus | - | 0.8 ± 0.3 cm a | - | - | - | - |
Streptomyces atratus | - | 0.6 ± 0.6 cm a | - | - | - | - |
Paenibacillus sp. Strain Y2 | - | - b | - b | - b | - | - |
Pseudomonas azotoformans | - | 1.35 ± 0.3 cm a | - | - | ||
Pseudomonas jensenii | - b | - b | - | - | - | 1.7 ± 0.4 cm |
Streptomyces avidnii | - | - | - | 0.55 ± 0.1 cm a | - | - |
Streptomyces goshikiensis | - | - | 0.5 cm a | - | - | - |
Paenibacillus polymyxa | - | 0.85 ± 0.7 cm c | 0.75 ± 0.1 cm c | 0.65 ± 0.1 cm a | 0.7 ± 0 cm c | 1.6 ± 0.4 cm |
Paenibacillus polymyxa | - | - b | 0.9 ± 0.8 cm | 0.7 ± 0.2 cm a | - b | - b |
Streptomyces spororaveus | - | 0.8 ± 0.3 cm a | - | - | - | - |
Paenibacillus peoria | 0.8 ± 0.4 cm | 1.45 ± 0.3 cm | 0.65 ± 0.1 cm c | 0.9 ± 0.2 cm | 0.55 ± 0.1 cm c | 0.75 ± 0.1 cm c |
Paenibacillus peoria | - | 1.55 ± 0.1 cm | 0.7 ± 0.2 cm c | 0.6 ± 0.6 cm c | - | 0.95 ± 0.3 cm c |
Paenibacillus peoria | - | 1.65 ± 1.7 cm | 0.7 ± 0.2 cm | 0.85 ± 0.1 cm | 0.45 ± 0.3 cm | 1.25 ± 1.1 cm |
Streptomyces sp. | - | - | - | - | - | - |
Streptomyces/Kitosatospora sp. | 3.3 ± 2.2 cm | 4.35 ± 0.7 cm | - | - | - | - |
Isolate | E. faecium NCIMB 11508 | S. aureus N 670949 | K. pneumoniae NCIMB 13218 | A. johnsonii DSM 6963 | P. aeruginosa PA01 | E. aerogenes NCIMB 101P2 |
---|---|---|---|---|---|---|
Streptomyces atratus | 0.83 ± 0.2 cm a | - b | - | - | - | - |
Streptomyces atratus | 0.55 ± 0.3 cm a | - b | - | - | - | - |
Paenibacillus sp. Strain Y2 | - | - | - | - | - | - |
Pseudomonas azotoformans | - | - b | - | - | - | - |
Pseudomonas jensenii | 1.30 ± 0.2 cm | 1.33 ± 0.1 cm | - | - | - | 1.90 ± 0.2 cm |
Streptomyces avidnii | 0.73 ± 0.1 cm a | 0.83 ± 0.1 cm a | 0.77 ± 0.3 cm a | 0.67 ± 0.1 cm | - | 1.03 ± 0.3 cm a |
Streptomyces goshikiensis | - | - | - b | - | - | 0.50 ± 0 cm a |
Paenibacillus polymyxa | - | 0.63 ± 0.1 cm | 0.87 ± 0.8 cm | 0.75 ± 0.5 cm | - b | 2.30 ± 0.1 cm d |
Paenibacillus polymyxa | 0.90 ± 0.6 cm a | 0.83 ± 0.1 cm | 0.50 ± 0.3 cm | - | 0.90 ± 0.2 cm a | |
Streptomyces spororaveus | 1.07 ± 0.5 cm a | 1.23 ± 0.3 cm | - | - | - | - |
Paenibacillus peoria | - b | 0.83 ± 0.2 cm c | 0.40 ± 0.2 cm | 0.60 ± 0.2 cm | - b | 0.77 ± 0.1 cm |
Paenibacillus peoria | - | 0.77 ± 0.1 cm | 0.73 ± 0.1 cm | 0.57 ± 0.3 cm | - | 0.80 ± 0.3 cm |
Paenibacillus peoria | - | 0.70 ± 0.2 cm | 0.50 ± 0.2 cm | 0.77 ± 1.0 cm | - b | 0.80 ± 0.2 cm |
Streptomyces sp. | 0.80 ± 0.2 cm a | - | - | - | - | - |
Streptomyces/Kitosatospora sp. | 1.23 ± 0.5 cm | - b | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McPhillips, L.; O’Callaghan, J.; Shortiss, C.; Jackson, S.A.; O’Leary, N.D. Optimization of Screening Media to Improve Antimicrobial Biodiscovery from Soils in Undergraduate/Citizen Science Research-Engaged Initiatives. Antibiotics 2024, 13, 956. https://doi.org/10.3390/antibiotics13100956
McPhillips L, O’Callaghan J, Shortiss C, Jackson SA, O’Leary ND. Optimization of Screening Media to Improve Antimicrobial Biodiscovery from Soils in Undergraduate/Citizen Science Research-Engaged Initiatives. Antibiotics. 2024; 13(10):956. https://doi.org/10.3390/antibiotics13100956
Chicago/Turabian StyleMcPhillips, Leah, John O’Callaghan, Carmel Shortiss, Stephen A. Jackson, and Niall D. O’Leary. 2024. "Optimization of Screening Media to Improve Antimicrobial Biodiscovery from Soils in Undergraduate/Citizen Science Research-Engaged Initiatives" Antibiotics 13, no. 10: 956. https://doi.org/10.3390/antibiotics13100956
APA StyleMcPhillips, L., O’Callaghan, J., Shortiss, C., Jackson, S. A., & O’Leary, N. D. (2024). Optimization of Screening Media to Improve Antimicrobial Biodiscovery from Soils in Undergraduate/Citizen Science Research-Engaged Initiatives. Antibiotics, 13(10), 956. https://doi.org/10.3390/antibiotics13100956