Enhancing the Efficacy of Chloramphenicol Therapy for Escherichia coli by Targeting the Secondary Resistome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Antimicrobial Susceptibility Testing
2.2. TraDIS Library, CHL Exposure, and Sequencing
2.3. Bioinformatic Analysis of TraDIS Data
2.4. Construction of E. coli MG1655/pTF2 Mutant Strains
2.5. Construction of Plasmid pACYC184_Backbone Lacking TETR
2.6. Growth Experiments
2.7. Homology to Human Proteins
3. Results
3.1. MIC Testing of MG1655/pTF2
3.2. Uncovering the SR Genes to CHL in MG1655/pTF2
3.3. Validation of SR Genes to CHL
3.4. Improved Efficacy to CHL
3.5. Homology of Proteins Encoded by the Selected Genes to Human Proteins
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CHL | Chloramphenicol |
SR | Secondary resistome |
MIC | Minimum inhibitory concentration |
AMR | Antimicrobial resistance |
ExPEC | Extra-intestinal pathogenic E. coli |
ESBL | Extended-spectrum β-Lactamase |
UTIs | Urinary tract infections |
CTX-M | Cefotaximase from Munich |
WT | Wild-type |
LB | Lysogeny broth |
CTX | Cefotaxime |
KAN | Kanamycin |
GEN | Gentamicin |
AMP | Ampicillin |
TET | Tetracycline |
MHB-II | Mueller–Hinton Broth-II |
TraDIS | Transposon-directed insertion site sequencing |
PCR/qPCR | Polymerase Chain Reaction/Quantitative Polymerase Chain Reaction |
UIS | Unique insertion sites |
ENA | European Nucleotide Archive |
STRING | Search Tool for the Retrieval of Interacting Genes/Proteins |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
GO | Gene Ontology |
CAT | Chloramphenicol acetyltransferase |
CFU | Colony forming unit |
NCBI | National Center for Biotechnology Information |
BLAST | Basic Local Alignment Search Tool |
CLSI | Clinical and Laboratory Standards Institute |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
CAMP | Cation Antimicrobial Peptide |
WHO | World Health Organization |
MDR | Multidrug resistance |
GNB | Gram-negative bacilli |
OMV | Outer membrane vesicles |
ROS | Reactive oxygen species |
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, J.; Bartz, Q.R.; Smith, R.M.; Joslyn, D.A.; Burkholder, P.R. Chloromycetin, a New Antibiotic from a Soil Actinomycete. Science 1947, 106, 417. [Google Scholar] [CrossRef] [PubMed]
- Schlünzen, F.; Zarivach, R.; Harms, J.; Bashan, A.; Tocilj, A.; Albrecht, R.; Yonath, A.; Franceschi, F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 2001, 413, 814–821. [Google Scholar] [CrossRef]
- Settepani, J.A. The hazard of using chloramphenicol in food animals. J. Am. Vet. Med. Assoc. 1984, 184, 930–931. [Google Scholar]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef] [PubMed]
- Martelo, O.J.; Manyan, D.R.; Smith, U.S.; Yunis, A.A. Chloramphenicol and bone marrow mitochondria. J. Lab. Clin. Med. 1969, 74, 927–940. [Google Scholar]
- Shaw, W.V. Chloramphenicol acetyltransferase: Enzymology and molecular biology. CRC Crit. Rev. Biochem. 1983, 14, 1–46. [Google Scholar] [CrossRef] [PubMed]
- Mascaretti, O.A. Bacteria versus Antibacterial Agents: An Integrated Approach; American Society for Microbiology (ASM): Washington, DC, USA, 2003. [Google Scholar]
- Falagas, M.E.; Kopterides, P. Old antibiotics for infections in critically ill patients. Curr. Opin. Crit. Care 2007, 13, 592–597. [Google Scholar] [CrossRef] [PubMed]
- Poolman, J.T.; Wacker, M. Extraintestinal Pathogenic Escherichia coli, a Common Human Pathogen: Challenges for Vaccine Development and Progress in the Field. J. Infect. Dis. 2016, 213, 6–13. [Google Scholar] [CrossRef]
- Russo, T.A.; Johnson, J.R. Medical and economic impact of extraintestinal infections due to Escherichia coli: Focus on an increasingly important endemic problem. Microbes Infect. 2003, 5, 449–456. [Google Scholar] [CrossRef]
- Perdigão Neto, L.V.; Machado, A.S.; da Silva, R.G.; de Souza, R.B.C.; Coutinho, S.M.; Comello, F.; Porto, A.P.M.; Lima, D.S.; di Gioia, T.S.R.; Castro Lima, V.A.C.; et al. Case Report: Successful Treatment of Recurrent Urinary Tract Infection Due to Extensively Drug-Resistant Klebsiella Pneumoniae in a Kidney Transplant Recipient Using Chloramphenicol. Transplant. Proc. 2023, 55, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Jana, B.; Cain, A.K.; Doerrler, W.T.; Boinett, C.J.; Fookes, M.C.; Parkhill, J.; Guardabassi, L. The secondary resistome of multidrug-resistant Klebsiella pneumoniae. Sci. Rep. 2017, 7, 42483. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.B.; Cockerill, F.; Bradford, P.A. Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Fifth Informational Supplement; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2015. [Google Scholar]
- Kjeldsen, T.S.; Overgaard, M.; Nielsen, S.S.; Bortolaia, V.; Jelsbak, L.; Sommer, M.; Guardabassi, L.; Olsen, J.E. CTX-M-1 β-lactamase expression in Escherichia coli is dependent on cefotaxime concentration, growth phase and gene location. J. Antimicrob. Chemother. 2015, 70, 62–70. [Google Scholar] [CrossRef]
- Ceri, H.; Olson, M.E.; Stremick, C.; Read, R.R.; Morck, D.; Buret, A. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999, 37, 1771–1776. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [PubMed]
- Doublet, B.; Douard, G.; Targant, H.; Meunier, D.; Madec, J.Y.; Cloeckaert, A. Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains. J. Microbiol. Methods 2008, 75, 359–361. [Google Scholar] [CrossRef]
- Alobaidallah, M.S.A.; García, V.; De Mets, R.; Wellner, S.M.; Thomsen, L.E.; Herrero-Fresno, A.; Olsen, J.E. Uncovering the Important Genetic Factors for Growth during Cefotaxime-Gentamicin Combination Treatment in bla(CTX-M-1) Encoding Escherichia coli. Antibiotics 2023, 12, 993. [Google Scholar] [CrossRef] [PubMed]
- García, V.; Grønnemose, R.B.; Torres-Puig, S.; Kudirkiene, E.; Piantelli, M.; Ahmed, S.; Andersen, T.E.; Møller-Jensen, J.; Olsen, J.E.; Herrero-Fresno, A. Genome-wide analysis of fitness-factors in uropathogenic Escherichia coli during growth in laboratory media and during urinary tract infections. Microb. Genom. 2021, 7, 000719. [Google Scholar] [CrossRef]
- Barquist, L.; Mayho, M.; Cummins, C.; Cain, A.K.; Boinett, C.J.; Page, A.J.; Langridge, G.C.; Quail, M.A.; Keane, J.A.; Parkhill, J. The TraDIS toolkit: Sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016, 32, 1109–1111. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Mondal, S.I.; Ferdous, S.; Jewel, N.A.; Akter, A.; Mahmud, Z.; Islam, M.M.; Afrin, T.; Karim, N. Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: An in silico approach. Adv. Appl. Bioinform. Chem. 2015, 8, 49–63. [Google Scholar] [CrossRef]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.1. 2023. Available online: http://www.eucast.org (accessed on 29 October 2023).
- Singh, S.K.; Parveen, S.; SaiSree, L.; Reddy, M. Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis. Proc. Natl. Acad. Sci. USA 2015, 112, 10956–10961. [Google Scholar] [CrossRef]
- Hobbs, E.C.; Yin, X.; Paul, B.J.; Astarita, J.L.; Storz, G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 16696–16701. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, I.T.; Brown, M.H.; Skurray, R.A. Proton-dependent multidrug efflux systems. Microbiol. Rev. 1996, 60, 575–608. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, S.; Asami, Y.; Uetake, N.; Yamagoe, S.; Ohta, A.; Shibuya, I. Disruption of the Escherichia coli cls gene responsible for cardiolipin synthesis. J. Bacteriol. 1988, 170, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Iuchi, S.; Lin, E.C. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl. Acad. Sci. USA 1988, 85, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Møller, T.; Franch, T.; Højrup, P.; Keene, D.R.; Bächinger, H.P.; Brennan, R.G.; Valentin-Hansen, P. Hfq: A bacterial Sm-like protein that mediates RNA-RNA interaction. Mol. Cell 2002, 9, 23–30. [Google Scholar] [CrossRef]
- Ohara, M.; Wu, H.C.; Sankaran, K.; Rick, P.D. Identification and characterization of a new lipoprotein, NlpI, in Escherichia coli K-12. J. Bacteriol. 1999, 181, 4318–4325. [Google Scholar] [CrossRef]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef]
- Sood, S. Chloramphenicol—A Potent Armament Against Multi-Drug Resistant (MDR) Gram Negative Bacilli? J. Clin. Diagn. Res. 2016, 10, Dc01–Dc03. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Flavin, M.T.; Flavin, J. Combating multidrug-resistant Gram-negative bacterial infections. Expert. Opin. Investig. Drugs 2014, 23, 163–182. [Google Scholar] [CrossRef]
- Best, W.R. Chloramphenicol-associated blood dyscrasias: A review of cases submitted to the American Medical Association Registry. JAMA 1967, 201, 181–188. [Google Scholar] [CrossRef]
- Wiest, D.B.; Cochran, J.B.; Tecklenburg, F.W. Chloramphenicol toxicity revisited: A 12-year-old patient with a brain abscess. J. Pediatr. Pharmacol. Ther. 2012, 17, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.; Cardoso, C.; Monteiro, R.; Vidal, S. Readdressing Chloramphenicol: Data from a Pediatric Tertiary Care Center. Lus. Sci. J. 2022, 3. [Google Scholar] [CrossRef]
- WHO. Recommendations for Management of Common Childhood Conditions: Evidence for Technical Update of Pocket Book Recommendations: Newborn Conditions, Dysentery, Pneumonia, Oxygen Use and Delivery, Common Causes of Fever, Severe Acute Malnutrition and Supportive Care. 2012. Available online: https://iris.who.int/bitstream/handle/10665/44774/9789241502825_eng.pdf?sequence=1 (accessed on 1 November 2023).
- Fuller, D.G.; Duke, T.; Shann, F.; Curtis, N. Antibiotic treatment for bacterial meningitis in children in developing countries. Ann. Trop. Paediatr. 2003, 23, 233–253. [Google Scholar] [CrossRef]
- Ma, D.; Cook, D.N.; Alberti, M.; Pon, N.G.; Nikaido, H.; Hearst, J.E. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol. Microbiol. 1995, 16, 45–55. [Google Scholar] [CrossRef]
- Yadavalli, S.S.; Carey, J.N.; Leibman, R.S.; Chen, A.I.; Stern, A.M.; Roggiani, M.; Lippa, A.M.; Goulian, M. Antimicrobial peptides trigger a division block in Escherichia coli through stimulation of a signalling system. Nat. Commun. 2016, 7, 12340. [Google Scholar] [CrossRef]
- Ruiz, C.; Levy, S.B. Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli. Antimicrob. Agents Chemother. 2010, 54, 2125–2134. [Google Scholar] [CrossRef]
- Fralick, J.A. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J. Bacteriol. 1996, 178, 5803–5805. [Google Scholar] [CrossRef]
- Edgar, R.; Bibi, E. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol. 1997, 179, 2274–2280. [Google Scholar] [CrossRef]
- Ivanisevic, R.; Milić, M.; Ajdić, D.; Rakonjac, J.; Savić, D.J. Nucleotide sequence, mutational analysis, transcriptional start site, and product analysis of nov, the gene which affects Escherichia coli K-12 resistance to the gyrase inhibitor novobiocin. J. Bacteriol. 1995, 177, 1766–1771. [Google Scholar] [CrossRef] [PubMed]
- Tropp, B.E.; Ragolia, L.; Xia, W.; Dowhan, W.; Milkman, R.; Rudd, K.E.; Ivanisević, R.; Savić, D.J. Identity of the Escherichia coli cls and nov genes. J. Bacteriol. 1995, 177, 5155–5157. [Google Scholar] [CrossRef] [PubMed]
- McBroom, A.J.; Johnson, A.P.; Vemulapalli, S.; Kuehn, M.J. Outer membrane vesicle production by Escherichia coli is independent of membrane instability. J. Bacteriol. 2006, 188, 5385–5392. [Google Scholar] [CrossRef] [PubMed]
- McBroom, A.J.; Kuehn, M.J. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 2007, 63, 545–558. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, S.B.; Im, S.P.; Lee, J.S.; Jung, J.W.; Gong, T.W.; Lazarte, J.M.S.; Kim, J.; Seo, J.S.; Kim, J.H.; et al. Outer membrane vesicles from β-lactam-resistant Escherichia coli enable the survival of β-lactam-susceptible E. coli in the presence of β-lactam antibiotics. Sci. Rep. 2018, 8, 5402. [Google Scholar] [CrossRef] [PubMed]
- Schwechheimer, C.; Rodriguez, D.L.; Kuehn, M.J. NlpI-mediated modulation of outer membrane vesicle production through peptidoglycan dynamics in Escherichia coli. Microbiologyopen 2015, 4, 375–389. [Google Scholar] [CrossRef]
- Salmon, K.A.; Hung, S.P.; Steffen, N.R.; Krupp, R.; Baldi, P.; Hatfield, G.W.; Gunsalus, R.P. Global gene expression profiling in Escherichia coli K12: Effects of oxygen availability and ArcA. J. Biol. Chem. 2005, 280, 15084–15096. [Google Scholar] [CrossRef] [PubMed]
- Partridge, J.D.; Sanguinetti, G.; Dibden, D.P.; Roberts, R.E.; Poole, R.K.; Green, J. Transition of Escherichia coli from aerobic to micro-aerobic conditions involves fast and slow reacting regulatory components. J. Biol. Chem. 2007, 282, 11230–11237. [Google Scholar] [CrossRef]
- Nizam, S.A.; Zhu, J.; Ho, P.Y.; Shimizu, K. Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition. Biochem. Eng. J. 2009, 44, 240–250. [Google Scholar] [CrossRef]
- Horinouchi, T.; Maeda, T.; Kotani, H.; Furusawa, C. Suppression of antibiotic resistance evolution by single-gene deletion. Sci. Rep. 2020, 10, 4178. [Google Scholar] [CrossRef]
- Suzuki, S.; Horinouchi, T.; Furusawa, C. Prediction of antibiotic resistance by gene expression profiles. Nat. Commun. 2014, 5, 5792. [Google Scholar] [CrossRef]
- Miyake, Y.; Yamamoto, K. Epistatic Effect of Regulators to the Adaptive Growth of Escherichia coli. Sci. Rep. 2020, 10, 3661. [Google Scholar] [CrossRef] [PubMed]
- Lobritz, M.A.; Belenky, P.; Porter, C.B.; Gutierrez, A.; Yang, J.H.; Schwarz, E.G.; Dwyer, D.J.; Khalil, A.S.; Collins, J.J. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl. Acad. Sci. USA 2015, 112, 8173–8180. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.J.; Collins, J.J.; Walker, G.C. Unraveling the physiological complexities of antibiotic lethality. Annu. Rev. Pharmacol. Toxicol. 2015, 55, 313–332. [Google Scholar] [CrossRef]
- Gill, E.E.; Franco, O.L.; Hancock, R.E. Antibiotic adjuvants: Diverse strategies for controlling drug-resistant pathogens. Chem. Biol. Drug Des. 2015, 85, 56–78. [Google Scholar] [CrossRef]
- Jiang, F.; An, C.; Bao, Y.; Zhao, X.; Jernigan, R.L.; Lithio, A.; Nettleton, D.; Li, L.; Wurtele, E.S.; Nolan, L.K.; et al. ArcA Controls Metabolism, Chemotaxis, and Motility Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Infect. Immun. 2015, 83, 3545–3554. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.M.; Yum, L.; Agaisse, H.; Payne, S.M. Cardiolipin Synthesis and Outer Membrane Localization Are Required for Shigella flexneri Virulence. mBio 2017, 8, e-01199-17. [Google Scholar] [CrossRef]
- Hoekzema, M.; Romilly, C.; Holmqvist, E.; Wagner, E.G.H. Hfq-dependent mRNA unfolding promotes sRNA-based inhibition of translation. Embo J. 2019, 38, e101199. [Google Scholar] [CrossRef]
- Gaffke, L.; Kubiak, K.; Cyske, Z.; Węgrzyn, G. Differential Chromosome- and Plasmid-Borne Resistance of Escherichia coli hfq Mutants to High Concentrations of Various Antibiotics. Int. J. Mol. Sci. 2021, 22, 8886. [Google Scholar] [CrossRef]
- De Gaetano, G.V.; Lentini, G.; Famà, A.; Coppolino, F.; Beninati, C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics 2023, 12, 965. [Google Scholar] [CrossRef]
Strain | Genotype | Reference |
---|---|---|
MG1655/pTF2 | E. coli MG1655 + blaCTX-M-1 on IncI1 plasmid pTF2 | [15] |
ATCC® 25922 | E. coli Reference strain | [16] |
JEO-6259 | MG1655 ΔacrZ (KANR)/pTF2 (CTXR) | This study |
JEO-6260 | MG1655 Δcls (KANR)/pTF2 (CTXR) | This study |
JEO-6261 | MG1655 ΔmdfA (KANR)/pTF2 (CTXR) | This study |
JEO-6262 | MG1655 ΔarcA (KANR)/pTF2 (CTXR) | This study |
JEO-6263 | MG1655 Δhfq (KANR)/pTF2 (CTXR) | This study |
JEO-6264 | MG1655 ΔnlpI (KANR)/pTF2 (CTXR) | This study |
MSA-001 | MG1655/pTF2 (CTXR)/pACYC184_ΔTETR (CHLR) | This study |
JEO-6265 | MG1655 ΔacrZ (KANR)/pTF2 (CTXR)/pACYC184_ΔTETR (CHLR) | This study |
JEO-6266 | MG1655 Δcls (KANR)/pTF2 (CTXR)/pACYC184_ΔTETR (CHLR) | This study |
JEO-6267 | MG1655 ΔmdfA (KANR)/pTF2 (CTXR)/pACYC184_ΔTETR (CHLR) | This study |
JEO-6268 | MG1655 ΔarcA (KANR)/pTF2 (CTXR)/pACYC184_ΔTETR (CHLR) | This study |
JEO-6269 | MG1655 Δhfq (KANR)/pTF2 (CTXR)/pACYC184_ΔTETR (CHLR) | This study |
JEO-6270 | MG1655 ΔnlpI (KANR)/pTF2 (CTXR)/pACYC184_ΔTETR (CHLR) | This study |
Plasmids | ||
pKD4 | repR6K γAMPR FRT KANR FRT | [17] |
pKD46 | reppSC101ts GENR ParaBADγβ exo | [18] |
pACYC184_ΔTetR | pACYC184 lacking TETR | This study |
Library | Total Reads | Reads Mapped (%) 1 | Total UIS 2 | Total Seq Length/Total UIS |
---|---|---|---|---|
Input | ||||
MG1655_pTF2_input_1 3 | 10,795,077 | 90.79 | 234,898 | 19.69 |
MG1655_pTF2_input_2 3 | 11,001,585 | 85.73 | 279,308 | 16.56 |
Input 1 + Input 2 (combined)3 | 21,796,662 | 88.23 | 315,925 | 14.64 |
Output | ||||
MG1655_pTF2_without_antibiotic_1 3 | 11,238,753 | 89.03 | 229,617 | 20.14 |
MG1655_pTF2_without_antibiotic_2 3 | 12,879,322 | 89.20 | 233,968 | 19.77 |
MG1655_pTF2_2mg_CHL_1 | 13,521,046 | 93.21 | 126,609 | 36.53 |
MG1655_pTF2_2mg_CHL_2 | 9,064,880 | 85.44 | 240,182 | 19.26 |
Gene | Function | 2 mg/L CHL | |
---|---|---|---|
Log2FC | q. Value | ||
nlpI 1 | lipoprotein NlpI | −6.24 | 2.10 × 10−13 |
acrZ 1 | multidrug efflux pump accessory protein AcrZ | −5.41 | 1.03 × 10−11 |
pbgA | cardiolipin transport protein PbgA | −5.40 | 1.54 × 10−10 |
tolC | outer membrane channel protein TolC | −5.39 | 1.00 × 10−11 |
lptC | LPS export ABC transporter periplasmic protein LptC | −5.33 | 1.30 × 10−5 |
prc | carboxy terminal-processing peptidase | −5.10 | 6.93 × 10−8 |
acrA | multidrug efflux RND transporter periplasmic adaptor subunit AcrA | −5.01 | 1.56 × 10−10 |
acrB | multidrug efflux RND transporter permease subunit | −4.97 | 3.87 × 10−7 |
lptA | lipopolysaccharide ABC transporter substrate-binding protein LptA | −4.75 | 3.87 × 10−5 |
mdfA 1 | multidrug efflux MFS transporter MdfA | −4.58 | 1.23 × 10−20 |
cls 1 | cardiolipin synthase | −4.23 | 5.42 × 10−9 |
lpp | murein lipoprotein Lpp | −4.15 | 0.0002 |
phoQ | two-component system sensor histidine kinase PhoQ | −4.08 | 5.14 × 10−6 |
Hfq 1 | RNA chaperone Hfq | −4.08 | 1.00 × 10−8 |
arcA 1 | two-component system response regulator ArcA | −4.07 | 5.14 × 10−6 |
qseC | two-component system sensor histidine kinase QseC | −3.98 | 5.84 × 10−8 |
prmB | 50S ribosomal protein L3 N(5)-glutamine methyltransferase | −3.96 | 0.0001 |
hrpA | ATP-dependent RNA helicase HrpA | −3.92 | 8.75 × 10−5 |
ihfA | integration host factor subunit alpha | −3.88 | 0.0049 |
rpoS | RNA polymerase sigma factor RpoS | −3.73 | 2.24 × 10−9 |
Strain | CHL (mg/L) |
---|---|
MG1655/pTF2 (WT) | 4 |
ΔacrZ | 2 |
Δcls | 2 |
ΔmdfA | 2 |
ΔarcA | 1 |
Δhfq | 1 |
ΔnlpI | 2 |
MG1655/pTF2/pACYC184-CHL/ΔTetR | 1024 |
ΔacrZ | 512 |
Δcls | 512 |
ΔmdfA | 512 |
ΔarcA | 256 |
Δhfq | 256 |
ΔnlpI | 512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alobaidallah, M.S.A.; García, V.; Wellner, S.M.; Thomsen, L.E.; Herrero-Fresno, A.; Olsen, J.E. Enhancing the Efficacy of Chloramphenicol Therapy for Escherichia coli by Targeting the Secondary Resistome. Antibiotics 2024, 13, 73. https://doi.org/10.3390/antibiotics13010073
Alobaidallah MSA, García V, Wellner SM, Thomsen LE, Herrero-Fresno A, Olsen JE. Enhancing the Efficacy of Chloramphenicol Therapy for Escherichia coli by Targeting the Secondary Resistome. Antibiotics. 2024; 13(1):73. https://doi.org/10.3390/antibiotics13010073
Chicago/Turabian StyleAlobaidallah, Mosaed Saleh A., Vanesa García, Sandra M. Wellner, Line E. Thomsen, Ana Herrero-Fresno, and John Elmerdahl Olsen. 2024. "Enhancing the Efficacy of Chloramphenicol Therapy for Escherichia coli by Targeting the Secondary Resistome" Antibiotics 13, no. 1: 73. https://doi.org/10.3390/antibiotics13010073
APA StyleAlobaidallah, M. S. A., García, V., Wellner, S. M., Thomsen, L. E., Herrero-Fresno, A., & Olsen, J. E. (2024). Enhancing the Efficacy of Chloramphenicol Therapy for Escherichia coli by Targeting the Secondary Resistome. Antibiotics, 13(1), 73. https://doi.org/10.3390/antibiotics13010073