A COVID-19 Silver Lining—Decline in Antibiotic Resistance in Ischemic Leg Ulcers during the Pandemic: A 6-Year Retrospective Study from a Regional Tertiary Hospital (2017–2022)
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Infection Types and Prescribed Antibiotics
2.3. Differences in AR Rates
2.4. Gram-Positive Bacteria
2.5. Gram-Negative Bacteria
2.6. AR Risk Factors
3. Discussion
4. Conclusions
5. Material and Methods
5.1. Ethics Approval
5.2. Study Design
- ▪
- ankle-brachial index (ABI)
- ▪
- toe pressure measurements
- ▪
- transcutaneous oxygen measurement (TCOM)
- ▪
- color Doppler ultrasound
- ▪
- computed tomographic angiography (CTA)
- ▪
- 0—asymptomatic
- ▪
- 1—mild claudication
- ▪
- 2—moderate claudication
- ▪
- 3—severe claudication
- ▪
- 4—ischemic rest pain
- ▪
- 5—minor tissue loss
- ▪
- 6—major tissue loss
- ▪
- resting ankle systolic pressure < 50–70 mmHg
- ▪
- toe pressure < 40 mmHg in non-diabetic or <50 mmHg in diabetic patients
- ▪
- TCOM < 30 mmHg
- ▪
- local swelling or induration
- ▪
- erythema (redness) >0.5 cm around the wound
- ▪
- local tenderness or pain
- ▪
- local hyperthermia
- ▪
- purulent discharge not attributable to other conditions (e.g., trauma, gout, or venous stasis
5.3. Specimens and Microbiology
5.4. Outcomes
5.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Björck, M.; Brodmann, M.; Cohnert, T.; Collet, J.P.; Czerny, M.; De Carlo, M.; Debus, S.; et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries. Endorsed by: The European Stroke Organization (ESO), The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart. J. 2018, 39, 763–816. [Google Scholar] [CrossRef] [PubMed]
- Conte, M.S.; Bradbury, A.W.; Kolh, P.; White, J.V.; Dick, F.; Fitridge, R.; Mills, J.L.; Ricco, J.B.; Suresh, K.R.; Murad, M.H. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 2019, 69, 3S–125S.e40. [Google Scholar] [CrossRef]
- Sidawy, A.N.; Perler, B.A. Rutherford’s Vascular Surgery and Endovascular Therapy; Elsevier Health Sciences: Philadephia, PA, USA, 2022. [Google Scholar]
- Azuma, N. The diagnostic classification of critical limb ischemia. Ann. Vasc. Dis. 2018, 11, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Ventoruzzo, G.; Mazzitelli, G.; Ruzzi, U.; Liistro, F.; Scatena, A.; Martelli, E. Limb salvage and survival in chronic limb-threatening ischemia: The need for a fast-track team-based approach. J. Clin. Med. 2023, 12, 6081. [Google Scholar] [CrossRef]
- Izumi, Y. Countermeasures against infection in critical limb ischemia treatments. Ann. Vasc. Dis. 2018, 11, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Tautenhahn, J.; Lobmann, R.; Koenig, B.; Halloul, Z.; Lippert, H.; Buerger, T. The influence of polymorbidity, revascularization, and wound therapy on the healing of arterial ulceration. Vasc. Health Risk Manag. 2008, 4, 683–689. [Google Scholar] [CrossRef]
- Matta-Gutiérrez, G.; García-Morales, E.; García-Álvarez, Y.; Álvaro-Afonso, F.J.; Molines-Barroso, R.J.; Lázaro-Martínez, J.L. The influence of multidrug-resistant bacteria on clinical outcomes of diabetic foot ulcers: A systematic review. J. Clin. Med. 2021, 10, 1948. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; He, W.; Luo, T.; Tang, N. Risk factors for multidrug-resistant bacterial infections in patients with diabetic foot ulcers: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 12618–12630. [Google Scholar] [CrossRef]
- Salm, J.; Bohme, T.; Noory, E.; Beschorner, U.; Kramer, T.S.; Westermann, D.; Zeller, T. Arterial leg ulcers—Bacterial patterns, antimicrobial resistance and clinical characteristics, a retrospective single-centre cohort, 2012–2021. PLoS ONE 2023, 18, e0290103. [Google Scholar] [CrossRef]
- Bansal, E.; Garg, A.; Bhatia, S.; Attri, A.K.; Chander, J. Spectrum of microbial flora in diabetic foot ulcers. Indian J. Pathol. Microbiol. 2008, 51, 204–208. [Google Scholar] [CrossRef]
- Boyanova, L.; Mitov, I. Antibiotic resistance rates in causative agents of infections in diabetic patients: Rising concerns. Expert Rev. Anti-Infect. Ther. 2013, 11, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Simeonova, M.; Leung, V.; Lo, J.; Kan, T.; Raybardhan, S.; Sapin, M.E.; Mponponsuo, K.; Farrell, A.; et al. Antimicrobial resistance in patients with COVID-19: A systematic review and meta-analysis. Lancet Microbe 2023, 4, e179–e191. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; Soucy, J.R.; Leung, V.; So, M.; Kwan, A.T.H.; Portnoff, J.S.; Bertagnolio, S.; Raybardhan, S.; MacFadden, D.R.; Daneman, N. Antibiotic resistance associated with the COVID-19 pandemic: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Caruso, P.; Maiorino, M.I.; Macera, M.; Signoriello, G.; Castellano, L.; Scappaticcio, L.; Longo, M.; Gicchino, M.; Campitiello, F.; Bellastella, G.; et al. Antibiotic resistance in diabetic foot infection: How it changed with COVID-19 pandemic in a tertiary care center. Diabetes Res. Clin. Pract. 2021, 175, 108797. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, V.; Panopoulou, M.; Rafailidis, P.; Lemonakis, N.; Lazaridis, G.; Terzi, I.; Papazoglou, D.; Panagopoulos, P. The impact of the COVID-19 pandemic on antimicrobial resistance and management of bloodstream infections. Pathogens 2023, 12, 780. [Google Scholar] [CrossRef] [PubMed]
- Micozzi, A.; Assanto, G.M.; Cesini, L.; Minotti, C.; Cartoni, C.; Capria, S.; Ciotti, G.; Alunni Fegatelli, D.; Donzelli, L.; Martelli, M.; et al. Reduced transmission of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP) in patients with haematological malignancies hospitalized in an Italian hospital during the COVID-19 pandemic. JAC Antimicrob. Resist. 2021, 3, dlab167. [Google Scholar] [CrossRef]
- Guven, D.C.; Eroglu, I.; Ismayilov, R.; Ulusoydan, E.; Aktepe, O.H.; Telli Dizman, G.; Arik, Z.; Dizdar, O.; Unal, S.; Metan, G.; et al. Lesson learned from the pandemic: Isolation and hygiene measures for COVID-19 could reduce the nosocomial infection rates in oncology wards. J. Oncol. Pharm. Pract. 2022, 28, 1807–1811. [Google Scholar] [CrossRef]
- Bentivegna, E.; Luciani, M.; Arcari, L.; Santino, I.; Simmaco, M.; Martelletti, P. Reduction of multidrug-resistant (MDR) bacterial infections during the COVID-19 pandemic: A retrospective study. Int. J. Environ. Res. Public Health 2021, 18, 1003. [Google Scholar] [CrossRef]
- Tao, F.; Tang, X.; Tao, H.; Luo, Y.; Cao, H.; Xiang, W.; Zhao, Y.; Jin, L. Surgical treatment of diabetic foot ulcers during the COVID-19 pandemic in China. J. Diabetes Complicat. 2020, 34, 107622. [Google Scholar] [CrossRef]
- Saleem, Z.; Haseeb, A.; Godman, B.; Batool, N.; Altaf, U.; Ahsan, U.; Khan, F.U.; Mustafa, Z.U.; Nadeem, M.U.; Farrukh, M.J.; et al. Point prevalence survey of antimicrobial use during the COVID-19 pandemic among different hospitals in Pakistan: Findings and implications. Antibiotics 2023, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.; Vaughan Sarrazin, M.; Wang, X.; Nordby, P.; Yu, M.; DeLonay, A.J.; Jaffery, J. Risk from delayed or missed care and non-COVID-19 outcomes for older patients with chronic conditions during the pandemic. J. Am. Geriatr. Soc. 2022, 70, 1314–1324. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.; Beggs, J.J. CON: COVID-19 will not result in increased antimicrobial resistance prevalence. JAC Antimicrob. Resist. 2020, 2, dlaa051. [Google Scholar] [CrossRef] [PubMed]
- Wee, L.E.I.; Conceicao, E.P.; Tan, J.Y.; Magesparan, K.D.; Amin, I.B.M.; Ismail, B.B.S.; Toh, H.X.; Jin, P.; Zhang, J.; Wee, E.G.L.; et al. Unintended consequences of infection prevention and control measures during COVID-19 pandemic. Am. J. Infect. Control 2021, 49, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Luu, L.; Muhsin, A. A retrospective study of the overuse of extended-spectrum antibiotics in patients with community-acquired pneumonia with risk for methicillin-resistant Staphylococcus aureus and/or Pseudomonas aeruginosa. Cureus 2022, 14, e31126. [Google Scholar] [CrossRef]
- Goossens, H.; Sprenger, M.J. Community acquired infections and bacterial resistance. BMJ 1998, 317, 654–657. [Google Scholar] [CrossRef]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef]
- Huang, Q.S.; Wood, T.; Jelley, L.; Jennings, T.; Jefferies, S.; Daniells, K.; Nesdale, A.; Dowell, T.; Turner, N.; Campbell-Stokes, P.; et al. Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand. Nat. Commun. 2021, 12, 1001. [Google Scholar] [CrossRef]
- Plipat, T. Lessons from Thailand’s response to the COVID-19 pandemic. Thai J Public Health 2020, 50, 268–277. [Google Scholar]
- Wilasang, C.; Jitsuk, N.C.; Sararat, C.; Modchang, C. Reconstruction of the transmission dynamics of the first COVID-19 epidemic wave in Thailand. Sci. Rep. 2022, 12, 2002. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Senneville, É.; Abbas, Z.G.; Aragón-Sánchez, J.; Diggle, M.; Embil, J.M.; Kono, S.; Lavery, L.A.; Malone, M.; van Asten, S.A.; et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3280. [Google Scholar] [CrossRef] [PubMed]
- IluȚ, P.A. Antibiotic susceptibility and resistance of bacterial pathogens in chronic leg ulcers: A retrospective cohort study. Farmacia 2023, 71, 38–43. [Google Scholar] [CrossRef]
- Chiller, K.; Selkin, B.A.; Murakawa, G.J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc. 2001, 6, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Nahid, M.A.; Griffin, J.M.; Lustik, M.B.; Hayes, J.J.; Fong, K.S.K.; Horseman, T.S.; Menguito, M.; Snesrud, E.C.; Barnhill, J.C.; Washington, M.A. A longitudinal evaluation of the bacterial pathogens colonizing chronic non-healing wound sites at a United States military treatment facility in the Pacific Region. Infect. Drug. Resist. 2021, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jaccard, Y.; Walther, S.; Anderson, S.; Tauber, M.; Kummer, O.; Baumgartner, R.; Diehm, N.; Dörffler-Melly, J.; Baumgartner, I. Influence of secondary infection on amputation in chronic critical limb ischemia. Eur. J. Vasc. Endovasc. Surg. 2007, 33, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Kummer, O.; Widmer, M.K.; Pluss, S.; Willenberg, T.; Vogele, J.; Mahler, F.; Baumgartner, I. Does infection affect amputation rate in chronic critical leg ischemia? Vasa 2003, 32, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.M.R.M.; Mitra, S.; Emran, T.B.; Dhama, K.; Ripon, M.K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Pagès, J.-M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front. Microbiol. 2015, 6, 392. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Aboyans, V.; Criqui, M.H.; Abraham, P.; Allison, M.A.; Creager, M.A.; Diehm, C.; Fowkes, F.G.; Hiatt, W.R.; Jönsson, B.; Lacroix, P.; et al. Measurement and interpretation of the ankle-brachial index: A scientific statement from the American Heart Association. Circulation 2012, 126, 2890–2909. [Google Scholar] [CrossRef] [PubMed]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Vasc. Surg. 2007, 45 (Suppl. S), S5–S67. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, R.B.; Baker, J.D.; Ernst, C.; Johnston, K.W.; Porter, J.M.; Ahn, S.; Jones, D.N. Recommended standards for reports dealing with lower extremity ischemia: Revised version. J. Vasc. Surg. 1997, 26, 517–538. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.J.; Harding, K. 2015 International Working Group on the Diabetic Foot Guidance on the prevention and management of foot problems in diabetes. Int. Wound J. 2015, 12, 373–374. [Google Scholar] [CrossRef] [PubMed]
- Singhal, N.; Kumar, M.; Kanaujia, P.K.; Virdi, J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015, 6, 791. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.B.; Bhattacharyya, S.; Kehl, S.C.; Matukas, L.M.; Pentella, M.A.; Salfinger, M.; Schuetz, A.N. Practical guidance for clinical microbiology laboratories: Implementing a quality management system in the medical microbiology laboratory. Clin. Microbiol. Rev. 2018, 31, e00062-17. [Google Scholar] [CrossRef]
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef]
- Sibbald, R.G.; Orsted, H.; Schultz, G.S.; Coutts, P.; Keast, D. Preparing the wound bed 2003: Focus on infection and inflammation. Ostomy Wound Manag. 2003, 49, 24–51. [Google Scholar]
Parameters | Overall | Pre-COVID-19 | COVID-19 | p A | |
---|---|---|---|---|---|
n | 128 | 69 | 59 | ||
Age (years) | 69 [61, 77] | 67 [60, 76] | 70 [61, 78] | 0.45 | |
Male | 79 (62%) | 37 (54%) | 42 (71%) | 0.88 | |
Major atherosclerotic risk factors | |||||
Diabetes mellitus | 83 (65%) | 41 (59%) | 42 (71%) | 0.17 | |
Hypertension | 93 (73%) | 49 (71%) | 44 (75%) | 0.65 | |
Dyslipidemia | 47 (37%) | 22 (32%) | 25 (42%) | 0.22 | |
Current smoking | 6 (5%) | 3 (4%) | 3 (5%) | >0.99 | |
Chronic kidney disease (stages III, IV, V) B | 68 (53%) | 39 (57%) | 29 (49%) | 0.41 | |
Receiving RRT | 33 (26%) | 20 (29%) | 13 (22%) | 0.37 | |
Manifestation of SIRS C | |||||
Temperature >38 °C | 25 (20%) | 13 (19%) | 12 (20%) | 0.83 | |
Tachycardia >90 bpm | 46 (36%) | 27 (39%) | 19 (32%) | 0.42 | |
Tachypnea >20 bpm | 14 (11%) | 10 (14%) | 4 (7%) | 0.26 | |
Abnormal leukocytes D | 52 (41%) | 25 (36%) | 27 (46%) | 0.27 | |
Positive SIRS score | 48 (38%) | 25 (36%) | 23 (39%) | 0.75 | |
CLTI leg ulcer parameters | |||||
History of previous ulcers (recurrent ulcer) | 40 (31%) | 22 (32%) | 18 (31%) | 0.87 | |
Duration of active ischemic ulcer/gangrene (days) | 30 [14, 68] | 30 [14, 90] | 20 [14, 60] | 0.052 | |
Severity of ulcer and infection E | |||||
Wound grade | 1 | 9 (7%) | 8 (11%) | 1 (2%) | 0.058 |
2 | 77 (60%) | 37 (54%) | 40 (68%) | ||
3 | 42 (33%) | 24 (35%) | 18 (30%) | ||
Ischemic grade | 1 | 46 (36%) | 28 (41%) | 18 (30%) | 0.10 |
2 | 36 (28%) | 22 (32%) | 14 (24%) | ||
3 | 46 (36%) | 19 (27%) | 27 (46%) | ||
Infection grade | 1 | 15 (12%) | 8 (12%) | 7 (12%) | 0.99 |
2 | 71 (55%) | 38 (55%) | 33 (56%) | ||
3 | 42 (33%) | 23 (33%) | 19 (32%) | ||
Clinical stage | 2 | 3 (2%) | 3 (4%) | – | 0.41 |
3 | 6 (4%) | 3 (4%) | 3 (5%) | ||
4 | 119 (93%) | 63 (92%) | 56 (95%) | ||
Presence of osteomyelitis | 41 (32%) | 25 (36%) | 16 (27%) | 0.27 | |
Presence of wound gangrene | 121 (95%) | 64 (93%) | 57 (97%) | 0.45 | |
Hospitalization and treatments | |||||
Any hospitalizations within 6 months | 62 (48%) | 38 (55%) | 24 (41%) | 0.10 | |
Referral from health services for CLTI | 40 (31%) | 25 (36%) | 15 (25%) | 0.19 | |
Surgical treatments at this admission | |||||
Debridement | 50 (39%) | 23 (33%) | 27 (46%) | 0.15 | |
Revascularization | 52 (41%) | 22 (32%) | 30 (51%) | 0.029 | |
Underwent amputation | 122 (95%) | 66 (96%) | 56 (95%) | >0.99 | |
Amputation levels | Minor | 102 (84%) | 56 (85%) | 46 (82%) | 0.69 |
Major | 20 (16%) | 10 (15%) | 10 (18%) |
Parameters | N | Pre-COVID-19 | COVID-19 | p A | |
---|---|---|---|---|---|
n | 128 | 69 | 59 | ||
Infection type | |||||
Monomicrobial | 63 (49%) | 27 (39%) | 36 (61%) | 0.014 | |
Polymicrobial | 65 (51%) | 42 (61%) | 23 (39%) | ||
Gram staining | |||||
Only gram-positive | 19 (15%) | 7 (10%) | 12 (20%) | 0.067 | |
Only gram-negative | 87 (68%) | 46 (67%) | 41 (70%) | ||
Mixed infection | 22 (17%) | 16 (23%) | 6 (10%) | 0.043 D | |
Empirical antibiotics | |||||
Previous treatment B | 121 (95%) | 66 (96%) | 55 (93%) | 0.70 | |
Prescription by | General practitioner | 103 (85%) | 55 (83%) | 48 (87%) | 0.54 |
Specialist | 18 (15%) | 11 (17%) | 7 (13%) | ||
Treatment during this study C | Any | 127 (99%) | 68 (99%) | 59 (100%) | >0.99 |
Clindamycin | 96 (75%) | 49 (71%) | 47 (80%) | 0.26 | |
Ciprofloxacin | 83 (69%) | 44 (64%) | 39 (66%) | 0.78 | |
Penicillin | 10 (8%) | 6 (9%) | 4 (7%) | 0.75 | |
Cephalosporin | 15 (12%) | 6 (9%) | 6 (15%) | 0.43 |
Antibiotic | Overall | Pre-COVID-19 | COVID-19 | Difference | p |
---|---|---|---|---|---|
Oxacillin | 3/22 (14%) | 1/9 (11%) | 2/13 (15%) | −4% (−33, 24%) | >0.99 |
Ampicillin | 13/116 (11%) | 12/73 (16%) | 1/43 (2%) | 14% (5, 24%) | 0.017 |
Clindamycin | 5/30 (17%) | 3/14 (21%) | 2/16 (13%) | 8% (−19, 35%) | 0.64 |
Erythromycin | 5/30 (17%) | 3/14 (21%) | 2/16 (13%) | 8% (−19, 35%) | 0.64 |
Carbapenems | 11/169 (7%) | 6/107 (6%) | 5/62 (8%) | −2% (−10, 6%) | 0.53 |
Cephalosporins | 32/178 (18%) | 25/114 (22%) | 7/64 (11%) | 11% (0, 22%) | 0.12 |
Piperacillin/tazobactam A | 8/169 (5%) | 6/107 (6%) | 2/62 (3%) | 3% (−2, 9%) | 0.49 |
Fluoroquinolones | 54/224 (24%) | 35/137 (26%) | 19/87 (23%) | 3% (−8, 15%) | 0.62 |
Aminoglycoside | 19/215 (9%) | 9/130 (6%) | 10/85 (13%) | −7% (−15, 1%) | 0.28 |
Amoxicillin/clavulanate A | 39/134 (29%) | 37/89 (42%) | 2/45 (4%) | 38% (27, 51%) | <0.0001 |
Trimethoprim/sulfamethoxazole A | 41/173 (24%) | 25/110 (23%) | 16/63 (25%) | −2% (−15, 11%) | >0.99 |
Penicillin | 2/24 (8%) | 1/14 (7%) | 1/10 (10%) | −3% (−26, 20%) | >0.99 |
Bacteria with Antibiotic Resistance | Overall | Pre-COVID-19 | COVID-19 |
---|---|---|---|
n | 225 | 138 | 87 |
MRSA | 1 (0.4%) | 1 (0.7%) | – |
MRSE | 2 (0.9%) | – | 2 (2.3%) |
VRE | 1 (0.4%) | 1 (0.7%) | – |
ESBL Escherichia coli | 11 (4.9%) | 9 (6.5%) | 2 (2.3%) |
ESBL Klebsiella spp. | 7 (3.1%) | 5 (3.6%) | 2 (2.3%) |
ESBL Pseudomonas spp. | 1 (0.4%) | – | 1 (1.1%) |
ESBL Proteus spp. | 8 (3.6%) | 7 (5.1%) | 1 (1.1%) |
Carbapenem-resistant Escherichia coli | 1 (0.4%) | – | 1 (1.1%) |
Carbapenem resistant Klebsiella spp. | 1 (0.4%) | – | 1 (1.1%) |
Carbapenem resistant Pseudomonas spp. | 2 (0.9%) | 1 (0.7%) | 1 (1.1%) |
Carbapenem resistant Proteus spp. | 3 (1.3%) | 1 (0.7%) | 2 (2.3%) |
Carbapenem resistant Acinetobacter spp. | 1 (0.4%) | 2 (1.4%) | – |
Multidrug resistant (MDR) | 33 (14.7%) | 26 (18.8%) | 7 (8.0%) * |
Pathogens n (%) | Overall | Oxacillin | Ampicillin | Fusidic Acid | Clindamycin | Erythromycin | Trimethoprim/ Sulfamethoxazole A | Penicillin | Aminoglycoside | Fluoroquinolones | Vancomycin | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | |
Staphylococcus aureus (n = 19; 40%) | 3/9 (33%) | 0/10 * (nil) | 1/9 (11%) | 0/10 (nil) | ND | 1/9 (11%) | 0/10 (nil) | 2/9 (22%) | 0/10 (nil) | 2/9 (22%) | 0/10 (nil) | 1/9 (11%) | 0/10 (nil) | ND | 0/9 (nil) | 0/10 (nil) | 0/9 (nil) | 0/10 (nil) | 0/9 (nil) | 0/10 (nil) | ||
Enterococcus spp. (E. faecalis, E. faecium, E. avium) (n = 17; 36%) | 3/10 (30%) | 3/7 (43%) | ND | 1/10 (10%) | 1/7 (14%) | ND | ND | ND | ND | 1/10 (10%) | 1/7 (14%) | 2/10 (20%) | 2/7 (29%) | 0/10 (nil) | 0/7 (nil) | 1/10 (10%) | 0/7 (0%) | |||||
β-hemolytic Streptococci (n = 7; 15%) | 0/4 (nil) | 0/3 (nil) | ND | 0/4 (nil) | 0/3 (nil) | ND | 0/4 (nil) | 0/3 (nil) | 0/4 (nil) | 0/3 (nil) | ND | 0/4 (nil) | 0/3 (nil) | 0/4 (nil) | 0/3 (nil) | 0/4 (nil) | 0/3 (0%) | 0/4 (0%) | 0/3 (0%) | |||
Staphylococcus epidermidis (n = 2; 4%) | – | 2/2 (100%) | – | 2/2 (100%) | ND | ND | – | 2/2 (100%) | – | 2/2 (100%) | – | 2/2 (100%) | ND | – | 1/2 (50%) | – | 1/2 (50%) | 0/2 (0%) | – | |||
α-hemolytic Streptococci (n = 1; 2%) | 1/1 (100%) | – | ND | ND | ND | 1/1 (100%) | – | 1/1 (100%) | – | ND | ND | ND | ND | 0/1 (nil) | – | |||||||
Staphylococcus haemolyticus (n = 1; 2%) | – | 0/1 (nil) | – | 0/1 (nil) | ND | ND | – | 0/1 (nil) | – | 0/1 (nil) | – | 0/1 (nil) | ND | – | 0/1 (nil) | – | 0/1 (0%) | – | 0/1 (0%) | |||
Total (n = 47) | 7/24 (29%) | 5/23 (22%) | 1/9 (11%) | 2/13 (15%) | 1/14 (7%) | 1/10 (10%) | 1/9 (11%) | 0/10 (0%) | 3/14 (21%) | 2/16 (13%) | 3/14 (21%) | 2/16 (13%) | 1/9 (11%) | 2/13 (15%) | 1/14 (7%) | 1/10 (10%) | 2/23 (9%) | 3/23 (13%) | 0/23 (0%) | 1/23 (4%) | 1/26 (4%) | 0/21 (0%) |
Bacterial Taxa | Overall | Carbapenems | Cephalosporins | Piperacillin/ Tazobactam A | Fluoroquinolones | Aminoglycosides | Ampicillin | Amoxicillin/ Clavulanate A | Trimethoprim/ Sulfamethoxazole A | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | Pre | During | |
Escherichia coli (n = 27; 15%) | 15/18 (83%) | 8/9 (89%) | 0/18 (nil) | 1/9 (11%) | 9/18 (50%) | 2/9 (22%) | 0/18 (nil) | 1/9 (11%) | 12/18 (67%) | 7/9 (78%) | 1/18 (6%) | 3/9 (33%) | 3/18 (17%) | 0/9 (nil) | 1/18 (6%) | 1/9 (11%) | 8/18 (44%) | 4/9 (44%) |
Pseudomonas aeruginosa (n = 26; 15%) | 1/12 (8%) | 1/14 (7%) | 1/12 (8%) | 1/14 (7%) | 0/12 (nil) | 1/14 (7%) | 0/12 (nil) | 0/14 (nil) | 0/12 (nil) | 1/14 (7%) | 0/12 (nil) | 1/14 (7%) | ND | ND | ND | |||
Proteus mirabilis (n = 17; 10%) | 7/12 (58%) | 2/5 (40%) | 0/12 (nil) | 0/5 (nil) | 5/12 (42%) | 1/5 (20%) | 0/12 (nil) | 0/5 (nil) | 5/12 (42%) | 2/5 (40%) | 1/12 (8%) | 1/5 (20%) | 2/12 (17%) | 0/5 (nil) | 2/12 (17%) | 0/5 (nil) | 7/12 (58%) | 2/5 (40%) |
Citrobacter freundii (n = 16; 9%) | 6/9 (67%) | 2/7 (29%) | 1/9 (11%) | 0/7 (nil) | 2/9 (22%) | 0/7 (nil) | 2/9 (22%) | 1/7 (14%) | 1/9 (11%) | 1/7 (14%) | 0/9 (nil) | 1/7 (14%) | ND | 0/7 (nil) | 0/7 (nil) | 2/9 (22%) | 2/7 (28%) | |
Klebsiella pneumoniae (n = 15; 8%) | 6/9 (67%) | 4/6 (67%) | 0/9 (nil) | 1/6 (17%) | 4/9 (44%) | 2/6 (33%) | 2/9 (22%) | 0/6 (nil) | 5/9 (55%) | 4/6 (67%) | 0/9 (nil) | 0/6 (nil) | 1/9 (11%) | 0/6 (nil) | 4/9 (44%) | 0/6 (nil) | 5/9 (55%) | 4/6 (67%) |
Morganella morganii (n = 13; 7%) | 10/10 (100%) | 1/3 * (33%) | 0/10 (nil) | 0/3 (nil) | 2/10 (20%) | 0/3 (nil) | 0/10 (nil) | 0/3 (nil) | 1/10 (10%) | 1/3 (33%) | 0/10 (nil) | 0/3 (nil) | 2/10 (20%) | 0/3 (nil) | 10/10 (100%) | 0/3 (nil) | 0/10 (nil) | 1/3 (33%) |
Stenotrophomonas maltophila (e = 9; 5%) | 2/7 (29%) | 1/2 (50%) | ND | 0/7 (nil) | 1/2 (50%) | ND | 2/7 (29%) | 0/2 (nil) | ND | ND | ND | 0/7 (nil) | 0/2 (nil) | |||||
Serratia marcescens (n = 8; 4%) | 6/6 (100%) | 0/2 (nil) | 0/6 (nil) | 0/2 (nil) | 0/6 (nil) | 0/2 (nil) | 0/6 (nil) | 0/2 (nil) | 0/6 (nil) | 0/2 (nil) | 0/6 (nil) | 0/2 (nil) | ND | 6/6 (100%) | 0/2 (nil) | 0/6 (nil) | 0/2 (nil) | |
Proteus vulgaris (n = 7; 4%) | 1/3 (33%) | 2/4 (50%) | 0/3 (nil) | 2/4 (50%) | 1/3 (33%) | 0/4 (nil) | 0/3 (nil) | 0/4 (nil) | 1/3 (33%) | 0/4 (nil) | 1/3 (33%) | 0/4 (nil) | 1/3 (33%) | 0/3 (nil) | 0/3 (nil) | 0/4 (nil) | 1/3 (33%) | 0/4 (nil) |
Enterobacter cloacae (n = 6; 3%) | 2/2 (100%) | 1/4 (25%) | 0/2 (nil) | 0/4 (nil) | 0/2 (nil) | 0/4 (nil) | 0/2 (nil) | 0/4 (nil) | 0/2 (nil) | 1/4 (25%) | 0/2 (nil) | 0/4 (nil) | ND | 2/2 (100%) | 0/4 (nil) | 0/2 (nil) | 1/4 (25%) | |
Klebsiella oxytoca (n = 6; 3%) | 2/5 (40%) | 0/1 (nil) | 0/5 (nil) | 0/1 (nil) | 1/5 (20%) | 0/1 (nil) | 0/5 (nil) | 0/1 (nil) | 2/5 (40%) | 0/1 (nil) | 0/5 (nil) | 0/1 (nil) | ND | 0/5 (nil) | 0/1 (nil) | 1/5 (20%) | 0/1 (nil) | |
Acinetobacter baumannii (n = 4; 2%) | 2/2 (100%) | 0/2 (nil) | 2/2 (100%) | 0/2 (nil) | 0/2 (nil) | 0/2 (nil) | 2/2 (100%) | 0/2 (nil) | 2/2 (100%) | 0/2 (nil) | 2/2 (100%) | 0/2 (nil) | 1/2 (50%) | 0/2 (nil) | ND | 0/2 (nil) | 0/2 (nil) | |
Nonfermenting gram-negative bacilli (n = 4; 2%) | 0/3 (nil) | 1/1 (100%) | 0/3 (nil) | 0/1 (nil) | 0/3 (nil) | 0/1 (nil) | 0/3 (nil) | 0/1 (nil) | 0/3 (nil) | 1/1 (100%) | 0/3 (nil) | 1/1 (100%) | ND | ND | 0/3 (nil) | 0/1 (nil) | ||
Others (n = 20; 11%) B | 9/16 (56%) | 2/4 (50%) | 2/16 (13%) | 0/4 (nil) | 1/15 (7%) | 0/4 (nil) | 0/16 (nil) | 0/4 (nil) | 4/16 (25%) | 0/4 (nil) | 2/16 (13%) | 0/4 (nil) | 1/5 (20%) | 0/4 (nil) | 6/15 (40%) | 1/4 (25%) | 0/15 (nil) | 0/4 (nil) |
Total (n = 178) | 69/114 (61%) | 25/64 ** (39%) | 6/107 (6%) | 5/62 (8%) | 25/114 (22%) | 7/64 (11%) | 6/107 (6%) | 2/62 (3%) | 35/114 (31%) | 18/64 (28%) | 7/107 (6%) | 7/62 (13%) | 11/59 (19%) | 0/33 ** (nil) | 37/89 (42%) | 2/45 **** (4%) | 24/101 (24%) | 14/50 (28%) |
Parameter | OR (95% CI) | p | aOR (95% CI) | p |
---|---|---|---|---|
Study period (COVID-19 vs. prior) | 0.21 (0.10, 0.46) | <0.001 | 0.21 (0.08, 0.51) | 0.001 |
Age ≥ 60 years | 0.98 (0.42, 2.30) | 0.97 | ||
Male | 1.80 (0.87, 3.74) | 0.11 | ||
Diabetes mellitus | 1.12 (0.53, 2.35) | 0.77 | ||
Renal replacement therapy | 1.60 (0.69, 3.73) | 0.28 | ||
High fever (body temperature > 38 °C) | 1.40 (0.56, 3.56) | 0.47 | ||
Heart rate (beats per minute) | 1.09 (0.52, 2.30) | 0.82 | ||
Respiratory rate > 20 (breaths per min) | 2.48 (0.66, 9.38) | 0.18 | 6.17 (1.02, 37.3) | 0.047 |
Leukocytosis (WBC > 12,000/mm3) | 0.75 (0.36, 1.55) | 0.44 | ||
Recurrent ulcer on the same limb | 1.05 (0.48, 2.27) | 0.90 | ||
Duration ulcer ≥ 3 months | 1.51 (0.62, 3.64) | 0.36 | ||
Limb infection grade 3 A | 1.05 (0.50, 2.20) | 0.89 | ||
Wound grade 3 A | 1.01 (0.47, 2.16) | 0.98 | ||
Ischemic grade 3 A | 0.71 (0.34, 1.49) | 0.37 | ||
Presence of osteomyelitis | 0.95 (0.44, 2.05) | 0.91 | ||
Any hospitalization within 6 months before admission | 2.10 (1.01, 4.36) | 0.038 | ||
Referral from health services for CLTI | 1.69 (0.76, 3.76) | 0.20 | ||
Polymicrobial infection | 3.37 (1.59, 7.13) | 0.002 | 5.58 (2.08, 15.0) | 0.001 |
Gram-negative infection alone | 2.57 (1.20, 5.52) | 0.015 | 6.98 (2.38, 20.5) | <0.001 |
Mixed infection with gram-negative and gram-positive | 1.41 (0.53, 3.74) | 0.494 | ||
Previous empirical antibiotic treatment | 1.79 (0.79, 4.06) | 0.16 | 11.9 (1.11, 128) | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rerkasem, A.; Thaichana, P.; Bunsermvicha, N.; Nopparatkailas, R.; Arwon, S.; Orrapin, S.; Reanpang, T.; Apichartpiyakul, P.; Orrapin, S.; Siribumrungwong, B.; et al. A COVID-19 Silver Lining—Decline in Antibiotic Resistance in Ischemic Leg Ulcers during the Pandemic: A 6-Year Retrospective Study from a Regional Tertiary Hospital (2017–2022). Antibiotics 2024, 13, 35. https://doi.org/10.3390/antibiotics13010035
Rerkasem A, Thaichana P, Bunsermvicha N, Nopparatkailas R, Arwon S, Orrapin S, Reanpang T, Apichartpiyakul P, Orrapin S, Siribumrungwong B, et al. A COVID-19 Silver Lining—Decline in Antibiotic Resistance in Ischemic Leg Ulcers during the Pandemic: A 6-Year Retrospective Study from a Regional Tertiary Hospital (2017–2022). Antibiotics. 2024; 13(1):35. https://doi.org/10.3390/antibiotics13010035
Chicago/Turabian StyleRerkasem, Amaraporn, Pak Thaichana, Nuttida Bunsermvicha, Rawee Nopparatkailas, Supapong Arwon, Saranat Orrapin, Termpong Reanpang, Poon Apichartpiyakul, Saritphat Orrapin, Boonying Siribumrungwong, and et al. 2024. "A COVID-19 Silver Lining—Decline in Antibiotic Resistance in Ischemic Leg Ulcers during the Pandemic: A 6-Year Retrospective Study from a Regional Tertiary Hospital (2017–2022)" Antibiotics 13, no. 1: 35. https://doi.org/10.3390/antibiotics13010035
APA StyleRerkasem, A., Thaichana, P., Bunsermvicha, N., Nopparatkailas, R., Arwon, S., Orrapin, S., Reanpang, T., Apichartpiyakul, P., Orrapin, S., Siribumrungwong, B., Lumjuan, N., Rerkasem, K., & Derraik, J. G. B. (2024). A COVID-19 Silver Lining—Decline in Antibiotic Resistance in Ischemic Leg Ulcers during the Pandemic: A 6-Year Retrospective Study from a Regional Tertiary Hospital (2017–2022). Antibiotics, 13(1), 35. https://doi.org/10.3390/antibiotics13010035