Comparative Pharmacokinetics and Bioequivalence of Pour-On Ivermectin Formulations in Korean Hanwoo Cattle
Abstract
:1. Introduction
2. Results
2.1. Validation of Ivermectin Quantification Methods
2.2. Pharmacokinetic Analysis and Bioequivalence
3. Discussion
4. Materials and Methods
4.1. Chemicals, Reagents, and Media
- Ivermectin standard was provided by Sigma Aldrich (St. Louis, MO, USA). Acetonirile was purchased from Merck (Darmstadt, Germany). Formic acid was supplied by Fisher Scientific (Pittsburgh, PA, USA). All solvents used in the analysis were LC–MS grade. Purified water was obtained using a Milli-Q system (Millipore, Bedford, MA, USA).
- Innovator (Formulation A, Group A): SY Himecin (Samyang Anipharm): Ingredients and amounts (out of 1 L of the main preparation): Ivermectin (5 g), isopropanol (794.9 mL), propylene glycol (8 g), isopropyl myristate (160 g), oleyl alcohol (32 mL), butylated hydroxytoluene (0.1 g), food blue no. 1 (appropriate amount). Usage and capacity: Apply 0.1 mL of the main product (0.5 mg as ivermectin) per kg of body weight as a single dermal application along the midline of the back.
- Generic A (Formulation B, Group B): Gmectin-Pour On (GREEN CROSS Veterinary Products): Ingredients and amounts (out of 1 mL of the main preparation): Ivermectin (5 mg), triethanolamine (0.5 mg), food blue no. 1(0.01 mg), diethylene glycol monoethyl ether, isopropyl myristate, isopropanol (appropriate amount). Usage and capacity: Dermal application of 1 mL of the product per 10 kg of body weight.
- Generic B (Formulation C, Group C): IMEC-Pouron (SF company): Ingredients and amounts (out of 1 L of the main preparation): Ivermectin (5 g), propylene glycol (8 g), isopropanol, isopropyl myristate, food blue no. 1 (appropriate amount). Usage and capacity: Apply 0.1 mL of vehicle (0.5 mg as ivermectin) per kg of body weight as a single dermal application along the midline of the back.
4.2. Animal Experimental Procedure and Treatments
4.3. Collection and Processing of Blood Samples
4.4. Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS) Analysis
4.5. Standard Solution Preparation
4.6. Validation of Ivermectin Quantification Methods
4.7. Pharmacokinetic Analysis and Bioequivalence
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Blue Book Marketing Authorization of Pharmaceutical Products with Special Reference to Multisource (Generic) Products; Manual for Natinal Medicines Regulatory Authorities (NMRAs); WHO: Geneva, Switzerland, 2011; pp. 1–148.
- Sarli, M.; Miró, M.V.; Rossner, M.V.; Nava, S.; Lifschitz, A. Successive Treatments with Ivermectin (3.15%) to Control the Tick Rhipicephalus (Boophilus) Microplus in Cattle: Pharmacokinetic and Efficacy Assessment. Ticks Tick-Borne Dis. 2022, 13, 101848. [Google Scholar] [CrossRef] [PubMed]
- Barrows, N.J.; Campos, R.K.; Powell, S.T.; Prasanth, K.R.; Schott-Lerner, G.; Soto-Acosta, R.; Galarza-Muñoz, G.; McGrath, E.L.; Urrabaz-Garza, R.; Gao, J. A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection. Cell Host Microbe 2016, 20, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Kircik, L.H.; Del Rosso, J.Q.; Layton, A.M.; Schauber, J. Over 25 Years of Clinical Experience with Ivermectin: An Overview of Safety for an Increasing Number of Indications. J. Drugs Dermatol. 2016, 15, 326–332. [Google Scholar]
- Banerjee, K.; Nandy, M.; Dalai, C.K.; Ahmed, S.N.; Res, D.; West, T.; Bengal, W.; Kolkata, H.; Kolkata, H.; Bengal, W.; et al. The Battle against COVID 19 Pandemic: What We Need to Know Before We “Test Fir” Ivermectin. Drug Res. 2020, 70, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Chae, J.B.; Kim, S.; Yu, D.H.; Kim, H.C.; Park, B.K.; Chae, J.S.; Choi, K.S. Evaluation of the Efficacy of Ivermectin against Theileria Orientalis Infection in Grazing Cattle. BMC Vet. Res. 2019, 15, 297. [Google Scholar] [CrossRef]
- Ali, D.N.; Hennessy, D.R. The Effect of Level of Feed Intake on the Pharmacokinetic Disposition of Oxfendazole in Sheep. Int. J. Parasitol. 1995, 25, 63–70. [Google Scholar] [CrossRef]
- Echeverrı´a, J.; Mestorino, N.; Giorgieri, S.; Turic, E.; Alt, M.; Errecalde, J. Pharmacokinetics of Ivermectin after Its Intravenous and Subcutaneous Administration to Cattle. J. Vet. Pharmacol. Ther. 1997, 20, 77–78. [Google Scholar]
- González, A.; Sahagun, A.M.; Diez, M.J.; Fernandez, N.; Sierra, M.; Garcia, J.J. Pharmacokinetics of a Novel Formulation of Ivermectin after Administration to Goats. Am. J. Vet. Res. 2006, 67, 323–328. [Google Scholar] [CrossRef]
- Craven, J.; Bjørn, H.; Hennessy, D.; Friis, C.; Nansen, P. Pharmacokinetics of Moxidectin and Ivermectin Following Intravenous Injection in Pigs with Different Body Compositions. J. Vet. Pharmacol. Ther. 2001, 24, 99–104. [Google Scholar] [CrossRef]
- Gokbulut, C.; Nolan, A.M.; Mckellar, Q.A. Plasma Pharmacokinetics and Faecal Excretion of Ivermectin, Doramectin and Moxidectin Following Oral Administration in Horses. Equine Vet. J. 2001, 33, 494–498. [Google Scholar] [CrossRef]
- Lifschitz, A.; Sallovitz, J.; Imperiale, F.; Pis, A.; Jauregui Lorda, J.; Lanusse, C. Pharmacokinetic Evaluation of Four Ivermectin Generic Formulations in Calves. Vet. Parasitol. 2004, 119, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Song, C.-W. The Korean Hanwoo Beef Cattle. Anim. Genet. Resour. Inf. 1994, 14, 61–71. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, J.; Park, B.Y.; Seong, P.N.; Kang, G.H.; Kim, J.H.; Jung, S.G.; Im, S.K.; Kim, D. Assessment of Meat Quality Properties and Development of a Palatability Prediction Model for Korean Hanwoo Steer Beef. Meat Sci. 2010, 86, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Lifschitz, A.; Pis, A.; Alvarez, L.; Virkel, G.; Sanchez, S.; Sallovitz, J.; Kujanek, R.; Lanusse, C. Bioequivalence of Ivermectin Formulations in Pigs and Cattle. J. Vet. Pharmacol. Ther. 1999, 22, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Robaina, D.M.; Alvariza, S.; Suárez, G. Bioequivalence of Two Novel Formulations of Ivermectin 1% Combined with Fluazuron 12.5% for Subcutaneous Administration in Cattle. J. Pharm. Pharmacogn. Res. 2021, 9, 88–97. [Google Scholar] [CrossRef]
- Breed Data Sheet: Hanwoo/Republic of Korea; Domestic Animal Diversity Information System of the Food and Agriculture Organization of the United Nations, Anyang, Republic of Korea. Available online: https://www.fao.org/dad-is/browse-by-country-and-species/en/ (accessed on 1 October 2023).
- Albert Lo, P.K.; Fink, D.W.; Williams, J.B.; Blodinger, J. Pharmacokinetic Studies of Ivermectin: Effects of Formulation. Vet. Res. Commun. 1985, 9, 251–268. [Google Scholar] [CrossRef]
- Standard on Pharmaceutical Equivalence Study, The Ministry of Foodand Drug Safety Notice No.2021-91, 22 September 2020 Partially Amended on 11 November 2021 and Enforced on 12 November 2021. Available online: https://www.mfds.go.kr/eng/brd/m_18/view.do?seq=71525 (accessed on 1 October 2023).
- Piras, C.; Gugliandolo, E.; Castagna, F.; Palma, E.; Britti, D. Ivermectin (IVM) Possible Side Activities and Implications in Antimicrobial Resistance and Animal Welfare: The Authors’ Perspective. Vet. Sci. 2022, 9, 24. [Google Scholar] [CrossRef]
- Li, G.; Cao, X.; Liao, J.; Wei, Y. Pharmacokinetics of Tenvermectin in Swine, a Novel Antiparasitic Drug Candidate—Comparison with Ivermectin. Vet. Med. Sci. 2023, 1011, 1211–1216. [Google Scholar] [CrossRef]
- Kitzman, D.; Wei, S.Y.; Fleckenstein, L. Liquid Chromatographic Assay of Ivermectin in Human Plasma for Application to Clinical Pharmacokinetic Studies. J. Pharm. Biomed. Anal. 2006, 40, 1013–1020. [Google Scholar] [CrossRef]
- Markowska, P.; Procajło, Z.; Wolska, J.; Jaroszewski, J.J.; Ziółkowski, H. Development, Validation, and Application of the LC-MS/MS Method for Determination of 4-Acetamidobenzoic Acid in Pharmacokinetic Pilot Studies in Pigs. Molecules 2021, 26, 4437. [Google Scholar] [CrossRef]
- Ashraf, S.; Chaudhry, U.; Raza, A.; Ghosh, D.; Zhao, X. In Vitro Activity of Ivermectin against Staphylococcus Aureus Clinical Isolates. Antimicrob. Resist. Infect. Control 2018, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Committee for Veterinary Medicinal Products Guidelines for the Conduct of Bioequivalence Studies for Veterinary Medicinal Products Approval by Efficacy Working Party; European Medicines Agency: Amsterdam, The Netherlands, 2021.
- González Canga, A.; Sahagún Prieto, A.M.; José Diez Liébana, M.; Martínez, N.F.; Vega, M.S.; Vieitez, J.J.G. The Pharmacokinetics and Metabolism of Ivermectin in Domestic Animal Species. Vet. J. 2009, 179, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Juarez, M.; Schcolnik-Cabrera, A.; Dueñas-Gonzalez, A. The Multitargeted Drug Ivermectin: From an Antiparasitic Agent to a Repositioned Cancer Drug. Am. J. Cancer Res. 2018, 8, 317–331. [Google Scholar] [PubMed]
- Bousquet-Mélou, A.; Mercadier, S.; Alvinerie, M.; Toutain, P.-L. Endectocide Exchanges between Grazing Cattle after Pour-on Administration of Doramectin, Ivermectin and Moxidectin. Int. J. Parasitol. 2004, 34, 1299–1307. [Google Scholar] [CrossRef]
- Lifschitz, A.; Virkel, G.; Pis, A.; Imperiale, F.; Sanchez, S.; Alvarez, L.; Kujanek, R.; Lanusse, C. Ivermectin Disposition Kinetics after Subcutaneous and Intramuscular Administration of an Oil-Based Formulation to Cattle. Vet. Parasitol. 1999, 86, 203–215. [Google Scholar] [CrossRef]
- Lanusse, C.; Lifschitz, A.; Virkel, G.; Alvarez, L.; Sánchez, S.; Sutra, J.F.; Galtier, P.; Alvinerie, M. Comparative Plasma Disposition Kinetics of Ivermectin, Moxidectin and Doramectin in Cattle. J. Vet. Pharmacol. Ther. 1997, 20, 91–99. [Google Scholar] [CrossRef]
- Gayrard, V.; Alvinerie, M.; Toutain, P.L. Comparison of Pharmacokinetic Profiles of Doramectin and Ivermectin Pour-on Formulations in Cattle. Vet. Parasitol. 1999, 81, 47–55. [Google Scholar] [CrossRef]
- Lawrence, X.Y.; Li, B.V. FDA Bioequivalence Standards; Springer: New York, NY, USA, 2014; Volume 13, ISBN 978-1-4939-1251-3. [Google Scholar]
Substance | RT (min) | Linearity (R²) | Average Recovery (%), (n = 5) | Coefficient of Variation (CV, %) | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|---|
Ivermectin | 6.3 | 0.99 | 98 | 4.8 | 3 | 10 |
Parameters | Innovator | Generic A | Generic B |
---|---|---|---|
T1/2 (h) | 65.45 | 51.64 | 62.55 |
Tmax (h) | 40.00 | 40.00 | 40.00 |
Cmax (μg/mL) | 0.11 | 0.10 | 0.10 |
AUClast (hr*μg/mL) | 9.75 | 9.33 | 9.41 |
Vz/F (mL/kg) | 9156.71 | 7692.57 | 9221.14 |
Cl/F (mL/h/kg) | 96.98 | 103.25 | 102.18 |
MRT (h) | 100.14 | 96.72 | 98.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Chae, H.; Lee, E.-B.; Lee, G.; Park, S.-C.; Kang, J. Comparative Pharmacokinetics and Bioequivalence of Pour-On Ivermectin Formulations in Korean Hanwoo Cattle. Antibiotics 2024, 13, 3. https://doi.org/10.3390/antibiotics13010003
Kim S, Chae H, Lee E-B, Lee G, Park S-C, Kang J. Comparative Pharmacokinetics and Bioequivalence of Pour-On Ivermectin Formulations in Korean Hanwoo Cattle. Antibiotics. 2024; 13(1):3. https://doi.org/10.3390/antibiotics13010003
Chicago/Turabian StyleKim, Suyoung, HyunYoung Chae, Eon-Bee Lee, Gayeong Lee, Seung-Chun Park, and Jeongwoo Kang. 2024. "Comparative Pharmacokinetics and Bioequivalence of Pour-On Ivermectin Formulations in Korean Hanwoo Cattle" Antibiotics 13, no. 1: 3. https://doi.org/10.3390/antibiotics13010003
APA StyleKim, S., Chae, H., Lee, E. -B., Lee, G., Park, S. -C., & Kang, J. (2024). Comparative Pharmacokinetics and Bioequivalence of Pour-On Ivermectin Formulations in Korean Hanwoo Cattle. Antibiotics, 13(1), 3. https://doi.org/10.3390/antibiotics13010003