Streptomyces rugosispiralis sp. nov., a Novel Actinobacterium Isolated from Peat Swamp Forest Soil That Produces Ansamycin Derivatives and Nocardamines
Abstract
:1. Introduction
2. Results
2.1. Genomic Feature and Phylogeny
2.2. Chemotaxonomy and Phenotypic Properties of Strain RCU-064T
2.3. Description of Streptomyces rugosispiralis sp. nov.
2.4. Isolation and Structure Elucidation of Metabolites
- Geldanamycin (1): Yellow solid; 1H-NMR (500 MHz, CDCl3) δ: 0.99 (3H, d J = 6.55), 1.00 (3H, d J = 6.40), 1.75 (1H, m), 1.76 (2H, m), 1.79 (3H, s), 2.02 (3H, s), 2.47 (2H, m), 2.77 (1H, m), 3.29 (3H, s), 3.35 (3H, s), 3.39 (1H, m), 4.12 (3H, s), 3.50 (1H, m), 4.31 (1H, d J = 9.22), 5.18 (1H, d J = 4.24), 5.81 (1H, d J = 9.30), 5.86 (1H, m), 6.57 (1H, m), 6.94 (1H, m), 7.41 (1H, s), and 8.7 (1H, s); 13C-NMR (125 MHz, CDCl3) δ: 12.4, 12.5, 12.3, 22.9, 28.0, 32.2, 32.7, 34.7, 56.7, 57.3, 61.7, 72.7, 81.0, 81.3, 81.4, 108.2, 111.8, 126.2, 127.6, 133.1, 133.3, 134.8, 138.1, 140.5, 153.1, 156.0, 157.0, 184.1, and 185.0. HRESIMS m/z 559.2673 [M−H]− (calcd. for C29H39N2O9, 559.2661). The 1H-NMR, 13C-NMR and mass spectra of compound (1) are shown in Figures S1, S2 and Figure S13, respectively.
- 17-O-Demethylgeldanamycin (2): Yellow solid; 1H-NMR (400 MHz, CDCl3) δ: 0.94 (3H, d J = 6.93), 1.00 (3H, d J = 5.36), 1.79 (3H, s), 1.76 (2H, m), 1.7–1.8 (1H, m), 2.03 (3H, s), 2.44 (2H, m), 2.79 (1H, m), 3.30 (3H, s), 3.36 (3H, s), 3.37 (1H, m), 3.54 (1H. m), 4.32 (1H, d J = 9.24), 5.17 (1H, s), 5.80 (1H, d J = 9.21), 5.90 (1H, dd J = 10.10), 6.57 (1H, dd J = 11.7), 6.97 (1H, d J = 11.29), 7.41 (1H, s), and 8.96 (1H, s); 13C-NMR (100 MHz, CDCl3) δ: 12.3, 12.4, 12.8, 23.2, 28.1, 32.3, 32.6, 34.5, 56.7, 57.3, 72.9, 81.1, 81.6, 81.8, 108.2, 117.4, 126.1, 127.8, 133.1, 133.4, 134.6, 137.1, 140.6, 153.2, 156.0, 168.1, 183.1, and 184.3; HRESIMS m/z 545.2514 [M−H]− (calcd. for C28H37N2O9, 545.2505). The 1H-NMR, 13C-NMR and mass spectra of compound (2) are shown in Figures S3, S4 and Figure S14, respectively.
- Reblastatin (3): White solid; Partial spectroscopic data from the 1H-NMR (400 MHz, DMSO-d6) δ: 0.79 (3H, d J = 6.28), 0.90 (3H, d J = 6.53), 1.43 (3H, s), 1.53 (1H, m), 1.67 (3H, s), 1.75 (1H, m), 2.11–2.20 (2H, m), 2.34 (1H, m), 2.36 (2H, m), 2.56 (2H, m), 3.21 (3H, s), 3.33 (3H, s), 3.62 (3H, s), 3.32 (1H, m), 3.28 (1H, m), 3.01 (1H, m), 4.86 (1H, d J = 7.35), 4.29 (1H, d J = 4.99), 6.29 (1H, s), 5.29 (1H, d J = 9.92), 5.85 (1H, b), 6.86 (1H, s), 9.20 (1H, s), and 9.21 (1H, s); 13C-NMR (100 MHz, DMSO-d6) δ: 11.6, 12.8, 15.7, 19.9, 23.5, 29.7, 31.0, 33.5, 34.6, 35.7, 56.3, 58.0, 59.7, 73.9, 79.7, 80.5, 81.1, 107.2, 114.5, 129.7, 132.2, 133.3, 133.5, 134.4, 134.5, 142.4, 149.5, 156.0, and 169.9. HRESIMS m/z 571.2987 [M+Na]+ (calcd. for C29H44N2NaO8, 571.2990). The 1H-NMR, 13C-NMR and mass spectra of compound (3) are shown in Figures S5, S6 and Figure S15, respectively.
- 17-Demethoxyreblastatin (4): White solid; 1H-NMR (500 MHz, DMSO-d6) δ: 0.79 (3H, d J = 6.30), 0.89 (3H, d J = 6.43), 1.35 (3H, s), 1.70 (3H, s), 1.78 (1H, b), 2.03–2.15 (2H, m), 2.95 (2H, m), 3.14 (3H, s), 3.28 (3H, s), 4.35 (1H, d J = 4.92), 4.83 (1H, d J = 7.44), 5.20 (1H, d J = 9.44), 5.66 (1H, s), 6.18 (1H, s), 6.24 (1H, s), 6.57 (b), 9.27 (1H, s), and 9.34 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ: 12.1, 13.7, 17.3, 19.0, 23.6, 30.0, 30.8, 33.0, 34.5, 43.1, 56.7, 58.8, 73.5, 79.7, 80.9, 81.2, 106.3, 113.2, 128.4, 130.3, 131.0, 132.1, 133.5, 134.4, 140.5, 141.4, 156.6, and 157.8; HRESIMS m/z 541.2900 [M+Na]+ (calcd. for C28H42N2NaO7, 541.2884). The 1H-NMR, 13C-NMR and mass spectra of compound (4) are shown in Figures S7, S8 and Figure S16, respectively.
- Nocardamine (5): White solid; 1H-NMR (500 MHz, DMSO-d6) δ: 1.21 (2H, m), 1.36 (2H, m), 1.46 (2H, m), 2.27 (2H, m), 2.57 (2H, m), 3.00 (2H, m), 3.44 (2H, t), 7.75 (1H, s), and 9.62 (1H, s); 13C-NMR (125 MHz, DMSO-d6) δ: 23.6, 26.3 27.9, 29.1, 30.4, 38.8, 47.3, 172.0, and 172.5. The 1H-NMR, 13C-NMR and mass spectra of compound (5) are shown in Figures S9, S10 and Figure S17, respectively.
- Dehydroxynocardamine (6): White solid. 1H-NMR (400 MHz, DMSO-d6) δ: 1.21 (2H, m), 1.35 (2H, bs), 1.48 (2H, bs), 2.28 (2H, s), 2.58 (1H, bs), 2.30 (2H, bs), 7.75 (1H, s), and 9.64 (1H, s); 13C-NMR (100 MHz, DMSO-d6) δ: 23.8, 24.1, 26.5, 28.1, 28.2, 29.2, 29.3, 29.4, 30.7, 31.8, 38.9, 39.0, 47.6, 171.9, 172.0, and 172.2; HRESIMS m/z 607.3429 [M+Na]+ (calcd for C27H48N6NaO8, 607.3426); HRESIMS at m/z 623.3379 [M+Na]+ (calcd for C27H48N6NaO9, 623.3375). The 1H-NMR, 13C-NMR and mass spectra of compound (5) are shown in Figures S11, S12 and Figure S18, respectively.
2.5. Biological Activity of the Isolated Compounds
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Phenotypic Study
4.3. 16S rRNA Gene and Phylogeny
4.4. Genome and Bioinformatics
4.5. Fermentation and Isolation of Secondary Metabolites
4.6. Characterization and Identification of Secondary Metabolites
4.7. Biological Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bérdy, J. Bioactive Microbial Metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef] [PubMed]
- Harunari, E.; Hamada, M.; Shibata, C.; Tamura, T.; Komaki, H.; Imada, C.; Igarashi, Y. Streptomyces hyaluromycini sp. nov., isolated from a tunicate (Molgula manhattensis). J. Antibiot. 2016, 69, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Thawai, C. Pseudonocardia soli sp. nov., isolated from mountain soil. Int. J. Syst. Evol. Microbiol. 2018, 68, 1307–1312. [Google Scholar] [CrossRef]
- Buangrab, K.; Sutthacheep, M.; Yeemin, T.; Harunari, E.; Igarashi, Y.; Sripreechasak, P.; Kanchanasin, P.; Tanasupawat, S.; Phongsopitanun, W. Streptomyces corallincola and Kineosporia corallincola sp. nov., two new coral-derived marine actinobacteria. Int. J. Syst. Evol. Microbiol. 2022, 72, 005249. [Google Scholar] [CrossRef]
- Niemhom, N.; Chutrakul, C.; Suriyachadkun, C.; Thawai, C. Nonomuraea stahlianthi sp. nov., an endophytic actinomycete isolated from the stem of Stahlianthus campanulatus. Int. J. Syst. Evol. Microbiol. 2017, 67, 2879–2884. [Google Scholar] [CrossRef]
- Somphong, A.; Poengsungnoen, V.; Buaruang, K.; Suriyachadkun, C.; Sripreechasak, P.; Tanasupawat, S.; Phongsopitanun, W. Diversity of the culturable lichen-derived actinobacteria and the taxonomy of Streptomyces parmotrematis sp. nov. Antonie Leeuwenhoek 2022, 115, 911–920. [Google Scholar] [CrossRef]
- Bai, L.; Liu, C.; Guo, L.; Piao, C.; Li, Z.; Li, J.; Jia, F.; Wang, X.; Xiang, W. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr. Antonie Leeuwenhoek 2016, 109, 253–261. [Google Scholar] [CrossRef]
- Belknap, K.C.; Park, C.J.; Barth, B.M.; Andam, C.P. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci. Rep. 2020, 10, 2003. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Law, J.W.-F.; Law, L.N.-S.; Letchumanan, V.; Tan, L.T.-H.; Wong, S.H.; Chan, K.-G.; Ab Mutalib, N.-S.; Lee, L.-H. Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes. Molecules 2020, 25, 5365. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.; Giesen, W.; Page, S. A common-sense approach to tropical peat swamp forest restoration in Southeast Asia: Common-sense approach to peat forest restoration. Restor. Ecol. 2016, 25, 312–321. [Google Scholar] [CrossRef]
- Tanasupawat, S.; Phongsopitanun, W.; Suwanborirux, K.; Ohkuma, M.; Kudo, T. Streptomyces actinomycinicus sp. nov., isolated from soil of a peat swamp forest. Int. J. Syst. Evol. Microbiol. 2016, 66, 290–295. [Google Scholar] [CrossRef]
- Phongsopitanun, W.; Kudo, T.; Ohkuma, M.; Suwanborirux, K.; Tanasupawat, S. Dactylosporangium sucinum sp. nov., isolated from Thai peat swamp forest soil. J. Antibiot. 2015, 68, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Tanasupawat, S.; Phongsopitanun, W.; Suwanborirux, K.; Ohkuma, M.; Kudo, T. Nocardia rayongensis sp. nov., isolated from Thai peat swamp forest soil. Int. J. Syst. Evol. Microbiol. 2016, 66, 1950–1955. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Oren, A.; Ventosa, A.; Christensen, H.; Arahal, D.R.; da Costa, M.S.; Rooney, A.P.; Yi, H.; Xu, X.-W.; De Meyer, S.; et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 2018, 68, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Sazak, A.; Şahin, N.; Güven, K.; Işık, K.; Goodfellow, M. Streptomyces samsunensis sp. nov., a member of the Streptomyces violaceusniger clade isolated from the rhizosphere of Robinia pseudoacacia. Int. J. Syst. Evol. Microbiol. 2011, 61 Pt 6, 1309–1314. [Google Scholar] [CrossRef]
- al-Tai, A.; Kim, B.; Kim, S.B.; Manfio, G.P.; Goodfellow, M. Streptomyces malaysiensis sp. nov., a new streptomycete species with rugose, ornamented spores. Int. J. Syst. Bacteriol. 1999, 49 Pt 4, 1395–1402. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, S.H.; Palaniyandi, S.A.; Han, J.S.; Yoon, T.-M.; Kim, T.-J.; Suh, J.-W. Azalomycin F Complex Is an Antifungal Substance Produced by Streptomyces malaysiensis MJM1968 Isolated from Agricultural Soil. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 545–5522. [Google Scholar] [CrossRef]
- Bontemps, C.; Toussaint, M.; Revol, P.-V.; Hotel, L.; Jeanbille, M.; Uroz, S.; Turpault, M.-P.; Blaudez, D.; Leblond, P. Taxonomic and functional diversity of Streptomyces in a forest soil. FEMS Microbiol. Lett. 2013, 342, 157–167. [Google Scholar] [CrossRef]
- Quinn, G.A.; Abdelhameed, A.M.; Alharbi, N.K.; Cobice, D.; Adu, S.A.; Swain, M.T.; Castro, H.C.; Facey, P.D.; Bakshi, H.A.; Tambuwala, M.M.; et al. The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts. Appl. Sci. 2020, 11, 173. [Google Scholar] [CrossRef]
- Teo, W.F.A.; Srisuk, N.; Duangmal, K. Amycolatopsis acidicola sp. nov., isolated from peat swamp forest soil. Int. J. Syst. Evol. Microbiol. 2020, 70, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Sripreechasak, P.; Phongsopitanun, W.; Supong, K.; Pittayakhajonwut, P.; Kudo, T.; Ohkuma, M.; Tanasupawat, S. Nonomuraea rhodomycinica sp. nov., isolated from peat swamp forest soil in Thailand. Int. J. Syst. Evol. Microbiol. 2017, 67, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Chantavorakit, T.; Klaysubun, C.; Duangmal, K. Streptomyces acididurans sp. nov., isolated from peat swamp forest soil. Int. J. Syst. Evol. Microbiol. 2021, 71, 004849. [Google Scholar] [CrossRef]
- Klaysubun, C.; Srisuk, N.; Duangmal, K. Streptomyces humicola sp. nov., a novel actinobacterium isolated from peat swamp forest soil in Thailand. Int. J. Syst. Evol. Microbiol. 2022, 72, 005665. [Google Scholar] [CrossRef]
- Heller, C.; Ellerbrock, R.H.; Roßkopf, N.; Klingenfuß, C.; Zeitz, J. Soil organic matter characterization of temperate peatland soil with FTIR-spectroscopy: Effects of mire type and drainage intensity. Eur. J. Soil Sci. 2015, 66, 847–858. [Google Scholar] [CrossRef]
- Goodfellow, M. Selective Isolation of Actinobacteria. In Manual of Industrial Microbiology and Biotechnology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 13–27. [Google Scholar] [CrossRef]
- Kang, Q.; Shen, Y.; Bai, L. Biosynthesis of 3,5-AHBA-derived natural products. Nat. Prod. Rep. 2012, 29, 243–263. [Google Scholar] [CrossRef]
- Hill, A.M.; Staunton, J. 1.10—Type I Modular PKS. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 385–452. [Google Scholar]
- Song, Y.-N.; Zhang, W.-J.; Bi, S.-F.; Jiao, R.-H.; Tan, R.-X.; Ge, H.-M. New ansamycin analogues from the mutant strain of Streptomyces seoulensis. J. Antibiot. 2015, 68, 757–759. [Google Scholar] [CrossRef]
- DeBoer, C.; Meulman, P.A.; Wnuk, R.J.; Peterson, D.H. Geldanamycin, a new antibiotic. J. Antibiot. (Tokyo) 1970, 23, 442–447. [Google Scholar] [CrossRef]
- Martín, J.F.; Ramos, A.; Liras, P. Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics 2019, 8, 87. [Google Scholar] [CrossRef]
- Fukuyo, Y.; Hunt, C.R.; Horikoshi, N. Geldanamycin and its anti-cancer activities. Cancer Lett. 2010, 290, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Ochel, H.-J.; Eichhorn, K.; Gademann, G. Geldanamycin: The prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones 2001, 6, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Karkoulis, P.K.; Stravopodis, D.J.; Konstantakou, E.G.; E Voutsinas, G. Targeted inhibition of heat shock protein 90 disrupts multiple oncogenic signaling pathways, thus inducing cell cycle arrest and programmed cell death in human urinary bladder cancer cell lines. Cancer Cell Int. 2013, 13, 11. [Google Scholar] [CrossRef]
- Lin, H.-N.; Wang, K.-L.; Wu, Z.-H.; Tian, R.-M.; Liu, G.-Z.; Xu, Y. Biological and Chemical Diversity of Bacteria Associated with a Marine Flatworm. Mar. Drugs 2017, 15, 281. [Google Scholar] [CrossRef] [PubMed]
- Anansiriwattana, W.; Tanasupawat, S.; Amnuoypol, S.; Suwanborirux, K. Identification and antimicrobial activities of actinomycetes from soils in Samed island, and gedanamycin from strain PC4-3. Thai. J. Pharm. Sci. 2006, 30, 49–56. [Google Scholar]
- Supong, K.; Sripreechasak, P.; Tanasupawat, S.; Danwisetkanjana, K.; Rachtawee, P.; Pittayakhajonwut, P. Investigation on antimicrobial agents of the terrestrial Streptomyces sp. BCC71188. Appl. Microbiol. Biotechnol. 2017, 101, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Franke, J.; Eichner, S.; Zeilinger, C.; Kirschning, A. Targeting heat-shock-protein 90 (Hsp90) by natural products: Geldanamycin, a show case in cancer therapy. Nat. Prod. Rep. 2013, 30, 1299–1323. [Google Scholar] [CrossRef]
- Kitson, R.R.A.; Moody, C.J. Learning from Nature: Advances in Geldanamycin- and Radicicol-Based Inhibitors of Hsp90. J. Org. Chem. 2013, 78, 5117–5141. [Google Scholar] [CrossRef]
- Baksh, A.; Kepplinger, B.; Isah, H.A.; Probert, M.R.; Clegg, W.; Wills, C.; Goodfellow, M.; Errington, J.; Allenby, N.; Hall, M.J. Production of 17-O-demethyl-geldanamycin, a cytotoxic ansamycin polyketide, by Streptomyces hygroscopicus DEM20745. Nat. Prod. Res. 2017, 31, 1895–1900. [Google Scholar] [CrossRef]
- Le Brazidec, J.-Y.; Kamal, A.; Busch, D.; Thao, L.; Zhang, L.; Timony, G.; Grecko, R.; Trent, K.; Lough, R.; Salazar, T.; et al. Synthesis and biological evaluation of a new class of geldanamycin derivatives as potent inhibitors of Hsp90. J. Med. Chem. 2004, 47, 3865–3873. [Google Scholar] [CrossRef]
- Tadtong, S.; Meksuriyen, D.; Tanasupawat, S.; Isobe, M.; Suwanborirux, K. Geldanamycin derivatives and neuroprotective effect on cultured P19-derived neurons. Bioorganic Med. Chem. Lett. 2007, 17, 2939–2943. [Google Scholar] [CrossRef] [PubMed]
- Takatsu, T.; Ohtsuki, M.; Muramatsu, A.; Enokita, R.; Kurakata, S.-I. Reblastatin, a novel benzenoid ansamycin-type cell cycle inhibitor. J. Antibiot. 2000, 53, 1310–1312. [Google Scholar] [CrossRef] [PubMed]
- Wrona, I.E.; Gabarda, A.E.; Evano, G.; Panek, J.S. Total synthesis of reblastatin. J. Am. Chem. Soc. 2005, 127, 15026–15027. [Google Scholar] [CrossRef] [PubMed]
- Stead, P.; Latif, S.; Blackaby, A.P.; Sidebottom, P.J.; Deakin, A.; Taylor, N.L.; Life, P.; Spaull, J.; Burrell, F.; Jones, R.; et al. Discovery of Novel Ansamycins Possessing Potent Inhibitory Activity in a Cell-based Oncostatin M Signalling Assay. J. Antibiot. 2000, 53, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, B.-Y.; Son, Y.; Lee, D.; Hong, Y.-S.; Kim, M.S.; Kim, K. Reblastatins Inhibit Phenotypic Changes of Monocytes/Macrophages in a Milieu Rich in 27-Hydroxycholesterol. Immune Netw. 2020, 20, e17. [Google Scholar] [CrossRef]
- Wu, C.Z.; Jang, J.H.; Ahn, J.S.; Hong, Y.S. New geldanamycin analogs from Streptomyces hygroscopicus. J. Microbiol. Biotechnol. 2012, 22, 1478–1481. [Google Scholar] [CrossRef]
- Lee, H.-S.; Shin, H.J.; Jang, K.H.; Kim, T.S.; Oh, K.-B.; Shin, J. Cyclic Peptides of the Nocardamine Class from a Marine-Derived Bacterium of the Genus Streptomyces. J. Nat. Prod. 2005, 68, 623–625. [Google Scholar] [CrossRef]
- Saha, R.; Saha, N.; Donofrio, R.S.; Bestervelt, L.L. Microbial siderophores: A mini review. J. Basic Microbiol. 2013, 53, 303–317. [Google Scholar] [CrossRef]
- Wang, W.; Qiu, Z.; Tan, H.; Cao, L. Siderophore production by actinobacteria. BioMetals 2014, 27, 623–631. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Liu, C.; Ju, J.; Ma, J. Genome Sequencing of Streptomyces atratus SCSIOZH16 and Activation Production of Nocardamine via Metabolic Engineering. Front. Microbiol. 2018, 9, 1269. [Google Scholar] [CrossRef]
- Information NCfB. PubChem Compound Summary for CID 11606728, Dehydroxynocardamine 2023. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dehydroxynocardamine (accessed on 25 June 2023).
- A Shaaban, K.; Singh, S.; I Elshahawi, S.; Wang, X.; Ponomareva, L.V.; Sunkara, M.; Copley, G.C.; Hower, J.C.; Morris, A.J.; Kharel, M.K.; et al. Venturicidin C, a new 20-membered macrolide produced by Streptomyces sp. TS-2-2. J. Antibiot. 2014, 67, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Kalinovskaya, N.I.; Romanenko, L.A.; Irisawa, T.; Ermakova, S.P.; Kalinovsky, A.I. Marine isolate Citricoccus sp. KMM 3890 as a source of a cyclic siderophore nocardamine with antitumor activity. Microbiol. Res. 2011, 166, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Shirling, E.B.; Gottlieb, D. Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol. 1966, 16, 313–340. [Google Scholar] [CrossRef]
- Kelly, K.L.; Judd, D.B.; Inter-Society Color Council; United States National Bureau of Standards. ISCC-NBS Color-Name Charts Illustrated with Centroid Colors; U.S. National Bureau of Standards: Washington, DC, USA, 1965. [Google Scholar]
- Arai, T. Culture Media for Actinomycetes; The Society for Actinomycetes Japan: Tokyo, Japan, 1975. [Google Scholar]
- Williams, S.T.; Cross, T. Chapter XI Actinomycetes. In Methods in Microbiology; Booth, C., Ed.; Academic Press: Cambridge, MA, USA, 1971; pp. 295–334. [Google Scholar]
- Staneck, J.L.; Roberts, G.D. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl. Microbiol. 1974, 28, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Tomiyasu, I. Mycolic Acid Composition and Thermally Adaptative Changes in Nocardia asteroides. J. Bacteriol. 1982, 151, 828–837. [Google Scholar] [CrossRef]
- Collins, M.D.; Pirouz, T.; Goodfellow, M.; Minnikin, D.E. Distribution of Menaquinones in Actinomycetes and Corynebacteria. J. Gen. Microbiol. 1977, 100, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Aida, K. An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J. Gen. Appl. Microbiol. 1984, 30, 131–134. [Google Scholar] [CrossRef]
- Sasser, M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl. 1990, 20, 1–6. [Google Scholar]
- Minnikin, D.; O’Donnell, A.; Goodfellow, M.; Alderson, G.; Athalye, M.; Schaal, A.; Parlett, J. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 1984, 2, 233–241. [Google Scholar] [CrossRef]
- Raeder, U.; Broda, P. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1985, 1, 17–20. [Google Scholar] [CrossRef]
- Phuengjayaem, S.; Phinkian, N.; Tanasupawat, S.; Teeradakorn, S. Diversity and succinic acid production of lactic acid bacteria isolated from animals, soils and tree barks. Res. J. Microbiol. 2017, 12, 177–186. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematic; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Kim, O.-S.; Cho, Y.-J.; Lee, K.; Yoon, S.-H.; Kim, M.; Na, H.; Park, S.-C.; Jeon, Y.S.; Lee, J.-H.; Yi, H.; et al. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62 Pt 3, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2019, 48, D606–D612. [Google Scholar] [CrossRef] [PubMed]
- Blin, K.; Shaw, S.; E Augustijn, H.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef]
- Alanjary, M.; Steinke, K.; Ziemert, N. AutoMLST: An automated web server for generating multi-locus species trees highlighting natural product potential. Nucleic Acids Res. 2019, 47, W276–W282. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
- Changsen, C.; Franzblau, S.G.; Palittapongarnpim, P. Improved Green Fluorescent Protein Reporter Gene-Based Microplate Screening for Antituberculosis Compounds by Utilizing an Acetamidase Promoter. Antimicrob. Agents Chemother. 2003, 47, 3682–3687. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, R.E.; Canfield, C.J.; Haynes, J.D.; Chulay, J.D. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob. Agents Chemother. 1979, 16, 710–718. [Google Scholar] [CrossRef]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Leang, S.K.; Hurt, A.C. Fluorescence-based Neuraminidase Inhibition Assay to Assess the Susceptibility of Influenza Viruses to the Neuraminidase Inhibitor Class of Antivirals. J. Vis. Exp. 2017, e55570. [Google Scholar] [CrossRef]
Strains | Genome Size (nt) | Accession Number | % GC Content | % dDDH | ANIb | ANIm |
---|---|---|---|---|---|---|
RCU-064T | 11017810 | GCA_024505145 | 71.3 | - | - | - |
S. malaysiensis DSM4137T | 10744231 | GCA_002591335 | 71.1 | 43.8 | 90.2 | 92.1 |
S. samsunensis DSM 42010T | 11053136 | GCF_024519315 | 70.9 | 43.5 | 89.3 | 92.1 |
S. melagnosporofaciens DSM 40318T | 10769732 | GCA_900105695 | 71.0 | 43.2 | 89.5 | 91.9 |
Cluster | Type | Most Similar Known Cluster (Class) | Similarity (%) |
---|---|---|---|
1 | aryl polyene, ladderane, NRPS, aminocoumarin | Coprisamide C/coprisamide D | 95% |
2 | CDPS | bicyclomycin | 100% |
3 | terpene | pristinol | 100 |
4 | NRPS-like, T1PKS | Geldanamycin | 69 |
5 | Terpene | 2-methylisoborneol | 100 |
6 | T1PKS | efomycin K/efomycin L | 100 |
7 | T1PKS | ectoine | 100 |
8 | NRPS-like | echoside A/echoside B/echosieC/echosideD/echoside E | 100 |
9 | T2PKS | spore pigment | 83 |
10 | NI-siderophore | Legonoxamine A/desferrioxamine B/legonoxamine B | 66 |
11 | Ladderane, aryl polyene | o-dialkylbenzene 1/o-dialkylbenzene 2 | 61 |
12 | T3PKS, NRPS | feglymycin | 84 |
13 | T1PKS | nigericin | 63 |
14 | terpene | Hopene | 53 |
15 | T1PKS | spirangien O | 53 |
Fatty Acid | RCU-064T |
---|---|
Saturated fatty acids | |
C14:0 | 2.7 |
C16:0 | 14.4 |
C17:0 cyclo | 5.1 |
Branched fatty acids | |
iso-C14:0 | 8.5 |
iso-C15:0 | 8.6 |
anteiso-C15:0 | 13.0 |
iso-C16:1H | 3.1 |
iso-C16:0 | 21.4 |
iso-C17:0 | 2.3 |
anteiso-C17:0 | 4.1 |
Unsaturated fatty acids | |
anteiso-C17:1ω9c | 2.2 |
Sum in feature 3 a | 3.2 |
Sum in feature 9 b | 2.5 |
Culture Media | Growth | Aerial Masses Color | Substrate Mycelia Color | Soluble Pigment |
---|---|---|---|---|
ISP2 | Very good | White, light greenish-grey | Dark greenish-yellow | - |
ISP3 | Very good | White | Dark greenish-yellow | - |
ISP4 | Good | White, grey | Greyish-yellow | - |
ISP5 | Good | White | Pale greenish-yellow | - |
ISP6 | Good | Absent | Greyish-yellow | - |
ISP7 | Good | White | Greyish-yellow | - |
Nutrient agar | Good | White, grey | Greyish-yellow | - |
Phenotypic Properties | Strain | |||
---|---|---|---|---|
CU-064T | S. malaysiensis JCM 10672T | S. samsunensis M1463T * | S. melanosporofaciens ISP 5318T ** | |
Liquefy gelatin | − | + | − | nd |
Skim milk peptonization | − | + | nd | nd |
Nitrate reduction | − | + | + | nd |
NaCl tolerance (% [w/v]) | 6% | 5% | nd | nd |
Carbon utilization of: | ||||
Arabinose | + | + | + | nd |
Cellobiose | ++ | ++ | + | nd |
myo-inositol | + | + | − | + |
Salicin | ± | + | − | nd |
Raffinose | ++ | + | − | + |
Fructose | ± | ++ | + | + |
Sucrose | − | − | − | − |
Compound | Anti-B. cereus MIC (µg/mL) | Anti-M. tuberculosis MIC (µg/mL) | Anti-P. falciparum IC50 (µg/mL) | Cytotoxicity IC50 (µg/mL) | |||
---|---|---|---|---|---|---|---|
Vero | KB | NCI-H187 | MCF-7 | ||||
(1) | inactive | inactive | inactive | 0.094 | 16.72 | 0.045 | 3.510 |
(2) | inactive | inactive | inactive | 6.430 | inactive | 4.250 | inactive |
(3) | inactive | inactive | inactive | 7.750 | 21.30 | 0.313 | 1.270 |
(4) | inactive | inactive | inactive | 13.50 | inactive | 1.330 | inactive |
(5) | inactive | inactive | inactive | 16.57 | inactive | inactive | inactive |
(6) | inactive | inactive | inactive | inactive | inactive | 13.960 | inactive |
Vancomycin * | 2.00 | - | - | - | - | - | - |
Rifampicin * | - | 0.013 | - | - | - | - | - |
Ofloxacin * | - | 0.391 | - | - | - | - | - |
Isoniazid * | - | 0.047 | - | - | - | - | - |
Ethambutol * | - | 0.938 | - | - | - | - | - |
Dihydroartemisinine * | - | - | 7.02 × 10−4 | - | - | - | - |
Mefloquine * | - | - | 0.024 | - | - | - | - |
Ellipticine * | - | - | - | 1.580 | 1.810 | 1.65 | - |
Doxorubicin * | - | - | - | - | 0.655 | 0.088 | 8.07 |
Tamoxifen * | - | - | - | - | - | - | 6.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weeraphan, T.; Supong, K.; Sripreechasak, P.; Jutakanoke, R.; Kowinthanaphat, S.; Tanasupawat, S.; Pittayakhajonwut, P.; Phongsopitanun, W. Streptomyces rugosispiralis sp. nov., a Novel Actinobacterium Isolated from Peat Swamp Forest Soil That Produces Ansamycin Derivatives and Nocardamines. Antibiotics 2023, 12, 1467. https://doi.org/10.3390/antibiotics12091467
Weeraphan T, Supong K, Sripreechasak P, Jutakanoke R, Kowinthanaphat S, Tanasupawat S, Pittayakhajonwut P, Phongsopitanun W. Streptomyces rugosispiralis sp. nov., a Novel Actinobacterium Isolated from Peat Swamp Forest Soil That Produces Ansamycin Derivatives and Nocardamines. Antibiotics. 2023; 12(9):1467. https://doi.org/10.3390/antibiotics12091467
Chicago/Turabian StyleWeeraphan, Trinset, Khomsan Supong, Paranee Sripreechasak, Rumpa Jutakanoke, Supalerk Kowinthanaphat, Somboon Tanasupawat, Pattama Pittayakhajonwut, and Wongsakorn Phongsopitanun. 2023. "Streptomyces rugosispiralis sp. nov., a Novel Actinobacterium Isolated from Peat Swamp Forest Soil That Produces Ansamycin Derivatives and Nocardamines" Antibiotics 12, no. 9: 1467. https://doi.org/10.3390/antibiotics12091467
APA StyleWeeraphan, T., Supong, K., Sripreechasak, P., Jutakanoke, R., Kowinthanaphat, S., Tanasupawat, S., Pittayakhajonwut, P., & Phongsopitanun, W. (2023). Streptomyces rugosispiralis sp. nov., a Novel Actinobacterium Isolated from Peat Swamp Forest Soil That Produces Ansamycin Derivatives and Nocardamines. Antibiotics, 12(9), 1467. https://doi.org/10.3390/antibiotics12091467