Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique
Abstract
1. Introduction
2. Results
2.1. Phenotypic and Genotypic Characterization of Klebsiella Isolates
2.1.1. Klebsiella Isolates and Antimicrobial Susceptibility Testing
2.1.2. Antimicrobial Resistance Determinants of Klebsiella Isolates
2.1.3. MLST and Virulence-Associated Genes Analysis of Klebsiella Isolates
2.1.4. Plasmid Content Analysis
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Bacterial Identification
4.2. Antibiotic Susceptibility Testing
4.3. PCR Detection of β-Lactamase Genes
4.4. Whole Genome Sequencing (WGS) and Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, D.; Sharma, L.; Dela Cruz, C.S.; Zhang, D. Clinical Epidemiology, Risk Factors, and Control Strategies of Klebsiella pneumoniae Infection. Front. Microbiol. 2021, 12, 750662. [Google Scholar] [CrossRef]
- Singh, C.L.; Cariappa, M.P.; Kaur, M. Klebsiella oxytoca: An emerging pathogen? Med. J. Armed Forces India 2016, 72 (Suppl. 1), S59–S61. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef] [PubMed]
- Diallo, O.O.; Baron, S.A.; Abat, C.; Colson, P.; Chaudet, H.; Rolain, J. Antibiotic resistance surveillance systems: A review. J. Glob. Antimicrob. Resist. 2020, 23, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ferrer, S.; Peñaloza, H.F.; Budnick, J.A.; Bain, W.G.; Nordstrom, H.R.; Lee, J.S.; Van Tyne, D. Finding Order in the Chaos: Outstanding Questions in Klebsiella pneumoniae Pathogenesis. Infect. Immun. 2021, 89, e00693-20. [Google Scholar] [CrossRef]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef]
- Bialek-Davenet, S.; Criscuolo, A.; Ailloud, F.; Passet, V.; Jones, L.; Delannoy-Vieillard, A.S.; Garin, B.; Le Hello, S.; Arlet, G.; Nicolas-Chanoine, M.H.; et al. Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups. Emerg. Infect. Dis. 2014, 20, 1813–1820. [Google Scholar] [CrossRef]
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae—Clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Chen, L.; Du, H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2021, 12, 642484. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wyres, K.L.; Duchêne, S.; Wick, R.R.; Judd, L.M.; Gan, Y.H.; Hoh, C.H.; Archuleta, S.; Molton, J.S.; Kalimuddin, S.; et al. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat. Commun. 2018, 9, 2703. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.; Yang, X.; Chan, E.W.; Zhang, R.; Chen, S. Klebsiella species: Taxonomy, hypervirulence and multidrug resistance. EBioMedicine 2022, 79, 103998. [Google Scholar] [CrossRef] [PubMed]
- Sigaúque, B.; Roca, A.; Mandomando, I.; Morais, L.; Quintó, L.; Sacarlal, J.; Macete, E.; Nhamposa, T.; Machevo, S.; Aide, P.; et al. Community-acquired bacteremia among children admitted to a rural hospital in Mozambique. Pediatr. Infect. Dis. J. 2009, 28, 108–113. [Google Scholar] [CrossRef]
- Mandomando, I.; Sigaúque, B.; Morais, L.; Espasa, M.; Vallès, X.; Sacarlal, J.; Macete, E.; Aide, P.; Quintò, L.; Nhampossa, T.; et al. Antimicrobial drug resistance trends of bacteremia isolates in a rural hospital in southern Mozambique. Am. J. Trop. Med. Hyg. 2010, 83, 152–157. [Google Scholar] [CrossRef] [PubMed]
- van der Meeren, B.T.; Chhaganlal, K.D.; Pfeiffer, A.; Gomez, E.; Ferro, J.J.; Hilbink, M.; Macome, C.; van der Vondervoort, F.J.; Steidel, K.; Wever, P.C. Extremely high prevalence of multi-resistance among uropathogens from hospitalized children in Beira, Mozambique. S. Afr. Med. J. 2013, 103, 382–386. [Google Scholar] [CrossRef][Green Version]
- Pons, M.J.; Vubil, D.; Guiral, E.; Jaintilal, D.; Fraile, O.; Soto, S.M.; Sigaúque, B.; Nhampossa, T.; Aide, P.; Alonso, P.L.; et al. Characterisation of extended-spectrum β-lactamases among Klebsiella pneumoniae isolates causing bacteraemia and urinary tract infection in Mozambique. J. Glob. Antimicrob. Resist. 2015, 3, 19–25. [Google Scholar] [CrossRef]
- Chirindze, L.M.; Zimba, T.F.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Sundsfjiord, A.; Essack, S.Y.; Simonsen, G.S. Faecal colonization of E. coli and Klebsiella spp. producing extended-spectrum beta-lactamases and plasmid-mediated AmpC in Mozambican university students. BMC Infect. Dis. 2018, 18, 244. [Google Scholar] [CrossRef] [PubMed]
- Kenga, D.B.; Gebretsadik, T.; Simbine, S.; Maússe, F.E.; Charles, P.; Zaqueu, E.; Fernando, H.F.; Manjate, A.; Sacarlal, J.; Moon, T.D. Community-acquired bacteremia among HIV-infected and HIV-exposed uninfected children hospitalized with fever in Mozambique. Int. J. Infect. Dis. 2021, 109, 99–107. [Google Scholar] [CrossRef]
- Massinga, A.J.; Garrine, M.; Messa, A., Jr.; Nobela, N.A.; Boisen, N.; Massora, S.; Cossa, A.; Varo, R.; Sitoe, A.; Hurtado, J.C.; et al. Klebsiella spp. cause severe and fatal disease in Mozambican children: Antimicrobial resistance profile and molecular characterization. BMC Infect. Dis. 2021, 21, 526. [Google Scholar] [CrossRef]
- Villa, L.; Feudi, C.; Fortini, D.; García-Fernández, A.; Carattoli, A. Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob. Agents Chemother. 2014, 58, 1707–1712. [Google Scholar] [CrossRef]
- Lu, P.L.; Hsieh, Y.J.; Lin, J.E.; Huang, J.W.; Yang, T.Y.; Lin, L.; Tseng, S.P. Characterisation of fosfomycin resistance mechanisms and molecular epidemiology in extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Int. J. Antimicrob. Agents 2016, 48, 564–568. [Google Scholar] [CrossRef]
- Wang, Y.P.; Chen, Y.H.; Hung, I.C.; Chu, P.H.; Chang, Y.H.; Lin, Y.T.; Yang, H.C.; Wang, J.T. Transporter Genes and fosA Associated with Fosfomycin Resistance in Carbapenem-Resistant Klebsiella pneumoniae. Front. Microbiol. 2022, 13, 816806. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef]
- Mbelle, N.M.; Feldman, C.; Sekyere, J.O.; Maningi, N.E.; Modipane, L.; Essack, S.Y. Pathogenomics and Evolutionary Epidemiology of Multi-Drug Resistant Clinical Klebsiella pneumoniae Isolated from Pretoria, South Africa. Sci. Rep. 2020, 10, 1232. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.M.; Mphasa, M.; Banda, R.; Beale, M.A.; Mallewa, J.; Heinz, E.; Thomson, N.R.; Feasey, N.A. Genomic and antigenic diversity of colonizing Klebsiella pneumoniae isolates mirrors that of invasive isolates in Blantyre, Malawi. Microb. Genom. 2022, 8, 000778. [Google Scholar] [CrossRef] [PubMed]
- Estaleva, C.E.L.; Zimba, T.F.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Simonsen, G.S.; Haldorsen, B.; Essack, S.Y.; Sundsfjord, A. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique. BMC Infect. Dis. 2021, 21, 16. [Google Scholar] [CrossRef] [PubMed]
- Santona, A.; Sumbana, J.J.; Fiamma, M.; Deligios, M.; Taviani, E.; Simbine, S.E.; Zimba, T.; Sacarlal, J.; Rubino, S.; Paglietti, B. High-risk lineages among extended-spectrum β-lactamase-producing Escherichia coli from extraintestinal infections in Maputo Central Hospital, Mozambique. Int. J. Antimicrob. Agents 2022, 60, 106649. [Google Scholar] [CrossRef]
- Sumbana, J.J.; Santona, A.; Fiamma, M.; Taviani, E.; Deligios, M.; Zimba, T.; Lucas, G.; Sacarlal, J.; Rubino, S.; Paglietti, B. Extraintestinal Pathogenic Escherichia coli ST405 Isolate Coharboring blaNDM-5 and blaCTXM-15: A New Threat in Mozambique. Microb. Drug Resist. 2021, 27, 1633–1640. [Google Scholar] [CrossRef]
- Sumbana, J.J.; Santona, A.; Fiamma, M.; Taviani, E.; Deligios, M.; Chongo, V.; Sacarlal, J.; Rubino, S.; Paglietti, B. Polyclonal emergence of MDR Enterobacter cloacae complex isolates producing multiple extended spectrum beta-lactamases at Maputo Central Hospital, Mozambique. Rend. Fis. Acc. Lincei 2022, 33, 39–45. [Google Scholar] [CrossRef]
- Zhao, W.H.; Hu, Z.Q. Epidemiology and genetics of CTX-M extended-spectrum β-lactamases in Gram-negative bacteria. Crit. Rev. Microbiol. 2013, 39, 79–101. [Google Scholar] [CrossRef]
- Yoon, E.J.; Gwon, B.; Liu, C.; Kim, D.; Won, D.; Park, S.G.; Choi, J.R.; Jeong, S.H. Beneficial Chromosomal Integration of the Genes for CTX-M Extended-Spectrum β-Lactamase in Klebsiella pneumoniae for Stable Propagation. mSystems 2020, 5, e00459-20. [Google Scholar] [CrossRef] [PubMed]
- Ngbede, E.O.; Adekanmbi, F.; Poudel, A.; Kalalah, A.; Kelly, P.; Yang, Y.; Adamu, A.M.; Daniel, S.T.; Adikwu, A.A.; Akwuobu, C.A.; et al. Concurrent Resistance to Carbapenem and Colistin Among Enterobacteriaceae Recovered From Human and Animal Sources in Nigeria Is Associated With Multiple Genetic Mechanisms. Front. Microbiol. 2021, 12, 740348. [Google Scholar] [CrossRef] [PubMed]
- Founou, R.C.; Founou, L.L.; Allam, M.; Ismail, A.; Essack, S.Y. Whole Genome Sequencing of Extended Spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae Isolated from Hospitalized Patients in KwaZulu-Natal, South Africa. Sci. Rep. 2019, 9, 6266. [Google Scholar] [CrossRef] [PubMed]
- Kibwana, U.O.; Manyahi, J.; Sandnes, H.H.; Blomberg, B.; Mshana, S.E.; Langeland, N.; Roberts, A.P.; Moyo, S.J. Fluoroquinolone resistance among fecal extended spectrum βeta lactamases positive Enterobacterales isolates from children in Dar es Salaam, Tanzania. BMC Infect. Dis. 2023, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Zemmour, A.; Dali-Yahia, R.; Maatallah, M.; Saidi-Ouahrani, N.; Rahmani, B.; Benhamouche, N.; Al-Farsi, H.M.; Giske, C.G. High-risk clones of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolated from the University Hospital Establishment of Oran, Algeria (2011–2012). PLoS ONE 2021, 16, e0254805. [Google Scholar] [CrossRef]
- Struve, C.; Roe, C.C.; Stegger, M.; Stahlhut, S.G.; Hansen, D.S.; Engelthaler, D.M.; Andersen, P.S.; Driebe, E.M.; Keim, P.; Krogfelt, K.A. Mapping the Evolution of Hypervirulent Klebsiella pneumoniae. mBio 2015, 6, e00630. [Google Scholar] [CrossRef]
- Hijazi, S.M.; Fawzi, M.A.; Ali, F.M.; Abd El Galil, K.H. Prevalence and characterization of extended-spectrum beta-lactamases producing Enterobacteriaceae in healthy children and associated risk factors. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 3. [Google Scholar] [CrossRef]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Heinz, E.; Holt, K.E.; Wyres, K.L. Kaptive Web: User-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella Genomes. J. Clin. Microbiol. 2018, 56, e00197-18. [Google Scholar] [CrossRef]
- Arredondo-Alonso, S.; Rogers, M.R.C.; Braat, J.C.; Verschuuren, T.D.; Top, J.; Corander, J.; Willems, R.J.L.; Schürch, A.C. mlplasmids: A user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb. Genom. 2018, 4, e000224. [Google Scholar] [CrossRef] [PubMed]
Isolates | Ward | Source | ST | Resistant Profile | oqxA/B | qnrB1 | qnrB6 | aac(6′)-Ib-cr | aac(3)-IIa | aac(3)-IId | aac(3)-IIe | aph(3″)-Ib | aph(6)-Id | aadA1 | aadA2 | aadA14 | aadA16 | TEM-1 | SHV | CTX-M-15 | OXA-1 | OXY-4-1 | catA1 | catA2 | catB3 | drA5 | dfrA7 | dfrA12 | dfrA14 | dfrA27 | sul1 | sul2 | mph(A) | tet(A) | tet(D) | fosA | ARR-3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSM90 a | P | B | NC | AMC-CTX-CAZ-GEN-FOF-SXT | |||||||||||||||||||||||||||||||||
SSM35 | P | B | ST13 | AMC-TZP-CTX-CAZ-GEN-CIP-FOF-SXT | |||||||||||||||||||||||||||||||||
SSM79 | P | B | ST14 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM63 | P | B | ST17 | AMC-FOF | |||||||||||||||||||||||||||||||||
SSM25L | P | C | ST23 | FOF | |||||||||||||||||||||||||||||||||
SSM56 | M | B | ST23 | FOF | |||||||||||||||||||||||||||||||||
SSM58P | M | P | ST394 | AMC-TZP-CTX-CAZ-GEN-CIP-TGC | |||||||||||||||||||||||||||||||||
SSM85 | M | B | ST48 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM37 | na | B | ST607 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM56P | M | P | ST607 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM64 | P | B | ST607 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM114 | P | B | ST607 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM73 | M | B | ST711 | AMC-TZP-CTX-CAZ-GEN-CIP-FOF-SXT | |||||||||||||||||||||||||||||||||
SSM52A | na | B | ST831 | AMC-CTX-CAZ-CIP-SXT | |||||||||||||||||||||||||||||||||
SSM52B | na | B | ST831 | AMC-TZP-CTX-CAZ-GEN-SXT | |||||||||||||||||||||||||||||||||
SSM10P | na | P | ST985 | AMC-TZP-CTX-CAZ-GEN-CIP-SXT |
Isolates | ST | Beta-Lactamase Enzymes | Genetic Context of CTX-M-15 | Plasmids Replicons | IncF RST |
---|---|---|---|---|---|
SSM90 a | NC | CTX-M-15, TEM-1B, OXA-1, OXY-4-1 b | ISecp1-blaCTX-M-15-orf477 | IncHI2, IncHI2A | - |
SSM35 | ST13 | CTX-M-15, OXA-1, SHV-1 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), Col, FIB, repB | [K5:A-:B-] |
SSM79 | ST14 | CTX-M-15, TEM-1B, OXA-1, SHV-28 | IS26-ΔISecp1-blaCTX-M-15-orf477 | IncFIB(K), Col, FII | [K9:A-:B-] |
SSM63 | ST17 | TEM-1B, SHV-11 | - | FIA, FIB, FII | [K8:A21:B-] |
SSM25L | ST23 | SHV-11 | - | repB, HI1B | - |
SSM56 | ST23 | SHV-11 | - | repB, HI1B | - |
SSM58P | ST394 | CTX-M-15, TEM-1B, SHV-11 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), Col, FIB | [K13:A-:B-] |
SSM85 | ST48 | CTX-M-15, TEM-1B, SHV-1, OXA-1 | IS26-ΔISecp1-blaCTX-M-15-orf477 | IncFII(K), Col, FIB | [K5:A-:B-] |
SSM114 | ST607 | CTX-M-15, TEM-1B, SHV-1 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIA, FIB, R | [K7:A13:B-] |
SSM37 | ST607 | CTX-M-15, TEM-1B, SHV-1 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIA, FIB, R | [K13:A13:B-] |
SSM56P | ST607 | CTX-M-15, TEM-1B, SHV-1 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIA, FIB, R | [K13:A13:B-] |
SSM64 | ST607 | CTX-M-15, TEM-1B, SHV-2 b | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIA, FIB, R | [K13:A13:B-] |
SSM73 | ST711 | CTX-M-15, TEM-1B, OXA-1, SHV187 b | ISecp1-blaCTX-M-15-orf477 | Col(BS512) | - |
SSM52A | ST831 | CTX-M-15, TEM-1B, OXA-1, SHV-11 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIB, HI1B | [K5:A-:B-] |
SSM52B | ST831 | CTX-M-15, TEM-1B, OXA-1, SHV-11 | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIB, HI1B | [K5:A-:B-] |
SSM10P | ST985 | CTX-M-15, TEM-1C, OXA-1, SHV187 b | ISecp1-blaCTX-M-15-orf477 | IncFII(K), FIB, HI1B | [K5:A-:B-] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumbana, J.J.; Santona, A.; Abdelmalek, N.; Fiamma, M.; Deligios, M.; Manjate, A.; Sacarlal, J.; Rubino, S.; Paglietti, B. Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique. Antibiotics 2023, 12, 1439. https://doi.org/10.3390/antibiotics12091439
Sumbana JJ, Santona A, Abdelmalek N, Fiamma M, Deligios M, Manjate A, Sacarlal J, Rubino S, Paglietti B. Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique. Antibiotics. 2023; 12(9):1439. https://doi.org/10.3390/antibiotics12091439
Chicago/Turabian StyleSumbana, José João, Antonella Santona, Nader Abdelmalek, Maura Fiamma, Massimo Deligios, Alice Manjate, Jahit Sacarlal, Salvatore Rubino, and Bianca Paglietti. 2023. "Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique" Antibiotics 12, no. 9: 1439. https://doi.org/10.3390/antibiotics12091439
APA StyleSumbana, J. J., Santona, A., Abdelmalek, N., Fiamma, M., Deligios, M., Manjate, A., Sacarlal, J., Rubino, S., & Paglietti, B. (2023). Polyclonal Multidrug ESBL-Producing Klebsiella pneumoniae and Emergence of Susceptible Hypervirulent Klebsiella pneumoniae ST23 Isolates in Mozambique. Antibiotics, 12(9), 1439. https://doi.org/10.3390/antibiotics12091439