Hypochlorous Acid as a Potential Postsurgical Antimicrobial Agent in Periodontitis: A Randomized, Controlled, Non-Inferiority Trial
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Clinical Indexes over Time
2.3. Adverse Effects
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Participants
4.3. Sample Size
4.4. Randomization
4.5. Clinical Evaluation
4.6. Microbiological Evaluation
4.7. Adverse Effects
4.8. Statistical Analysis
5. Conclusions
6. Strength and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89 (Suppl. 1), S159–S172, [published correction appears in J. Periodontol. 2018, 89, 1475]. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Martín, I.; Cha, J.K.; Yoon, S.W.; Sanz-Sánchez, I.; Jung, U.W. Long-term assessment of periodontal disease progression after surgical or non-surgical treatment: A systematic review. J. Periodontal Implant Sci. 2019, 49, 60–75. [Google Scholar] [CrossRef] [Green Version]
- Solderer, A.; Kaufmann, M.; Hofer, D.; Wiedemeier, D.; Attin, T.; Schmidlin, P.R. Efficacy of chlorhexidine rinses after periodontal or implant surgery: A systematic review. Clin. Oral Investig. 2019, 23, 21–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.G.; Sanz, M.; Nachnani, S.; Saltini, C.; Anderson, L. Effect of 0.12% chlorhexidine on bacterial recolonization following periodontal surgery. J. Periodontol. 1989, 60, 577–581. [Google Scholar] [CrossRef] [PubMed]
- James, P.; Worthington, H.V.; Parnell, C.; Harding, M.; Lamont, T.; Cheung, A.; Whelton, H.; Riley, P. Chlorhexidine mouthrinse as an adjunctive treatment for gingival health. Cochrane Database Syst. Rev. 2017, 3, CD008676. [Google Scholar]
- Sam, C.H.; Lu, H.K. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J. Dent. Sci. 2009, 4, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Gold, M.H.; Andriessen, A.; Bhatia, A.C.; Bitter, P., Jr.; Chilukuri, S.; Cohen, J.L.; Robb, C.W. The future gold standard for wound care and scar management in dermatologic and plastic surgery procedures. J. Cosmet. Dermatol. 2020, 19, 270–277. [Google Scholar] [CrossRef]
- Castillo, D.M.; Castillo, Y.; Delgadillo, N.A.; Neuta, Y.; Jola, J.; Calderón, J.L.; Lafaurie, G.I. Viability and Effects on Bacterial Proteins by Oral Rinses with Hypochlorous Acid as Active Ingredient. Braz. Dent. J. 2015, 26, 519–524. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.J.; Chen, C.C.; Ding, S.J. Effectiveness of Hypochlorous Acid to Reduce the Biofilms on Titanium Alloy Surfaces In Vitro. Int. J. Mol. Sci. 2016, 17, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aherne, O.; Ortiz, R.; Fazli, M.M.; Davies, J.R. Effects of stabilized hypochlorous acid on oral biofilm bacteria. BMC Oral Health 2022, 22, 415. [Google Scholar] [CrossRef]
- Hatanaka, N.; Yasugi, M.; Sato, T.; Mukamoto, M.; Yamasaki, S. Hypochlorous acid solution is a potent antiviral agent against SARS-CoV-2. J. Appl. Microbiol. 2022, 132, 1496–1502. [Google Scholar] [CrossRef]
- Addy, M.; Willis, L.; Moran, J. Effect of toothpaste rinses compared with chlorhexidine on plaque formation during a 4-day period. J. Clin. Periodontol. 1983, 10, 89–99. [Google Scholar] [CrossRef]
- Duss, C.; Lang, N.P.; Cosyn, J.; Persson, G.R. A randomized, controlled clinical trial on the clinical, microbiological, and staining effects of a novel 0.05% chlorhexidine/herbal extract and a 0.1% chlorhexidine mouthrinse adjunct to periodontal surgery. J. Clin. Periodontol. 2010, 37, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Lafaurie, G.I.; Castillo, D.M.; Iniesta, M.; Sanz, M.; Gómez, L.A.; Castillo, Y.; Pianeta, R.; Delgadillo, N.A.; Neuta, Y.; Diaz-Báez, D.; et al. Differential analysis of culturable and unculturable subgingival target microorganisms according to the stages of periodontitis. Clin. Oral Investig. 2023, 27, 3029–3043. [Google Scholar] [CrossRef]
- Cortelli, J.R.; Aquino, D.R.; Cortelli, S.C.; Nobre Franco, G.C.; Fernandes, C.B.; Roman-Torres, C.V.; Costa, F.O. Detection of periodontal pathogens in oral mucous membranes of edentulous individuals. J. Periodontol. 2008, 79, 1962–1965. [Google Scholar] [CrossRef] [PubMed]
- Cavalca Cortelli, S.; Cavallini, F.; Regueira Alves, M.F.; Alves Bezerra, A., Jr.; Queiroz, C.S.; Cortelli, J.R. Clinical and microbiological effects of an essential-oil-containing mouth rinse applied in the “one-stage full-mouth disinfection” protocol—A randomized doubled-blinded preliminary study. Clin. Oral Investig. 2009, 13, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, J.; Jepsen, S.; Jervøe-Storm, P.M.; Needleman, I.; Worthington, H.V. Full-mouth treatment modalities (within 24 hours) for chronic periodontitis in adults. Cochrane Database Syst. Rev. 2015, 2015, CD004622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westfelt, E.; Nyman, S.; Lindhe, J.; Socransky, S. Use of chlorhexidine as a plaque control measure following surgical treatment of periodontal disease. J. Clin. Periodontol. 1983, 10, 22–36. [Google Scholar] [CrossRef]
- Sanz, M.; Newman, M.G.; Anderson, L.; Matoska, W.; Otomo-Corgel, J.; Saltini, C. Clinical enhancement of post-periodontal surgical therapy by a 0.12% chlorhexidine gluconate mouthrinse. J. Periodontol. 1989, 60, 570–576. [Google Scholar] [CrossRef]
- Tazawa, K.; Jadhav, R.; Azuma, M.M.; Fenno, J.C.; McDonald, N.J.; Sasaki, H. Hypochlorous acid inactivates oral pathogens and a SARS-CoV-2-surrogate. BMC Oral Health 2023, 23, 111. [Google Scholar] [CrossRef]
- Davies, J.M.; Horwitz, D.A.; Davies, K.J. Potential roles of hypochlorous acid and N-chloroamines in collagen breakdown by phagocytic cells in synovitis. Free Radic. Biol. Med. 1993, 15, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Lafaurie, G.I.; Zaror, C.; Díaz-Báez, D.; Castillo, D.M.; De Ávila, J.; Trujillo, T.G.; Calderón-Mendoza, J. Evaluation of substantivity of hypochlorous acid as an antiplaque agent: A randomized controlled trial. Int. J. Dent. Hyg. 2018, 16, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Fine, D.H.; Kaplan, J.B.; Kachlany, S.C.; Schreiner, H.C. How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol. 2000 2006, 42, 114–157. [Google Scholar] [CrossRef]
- Rudney, J.D.; Chen, R.; Sedgewick, G.J. Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis are components of a polymicrobial intracellular flora within human buccal cells. J. Dent. Res. 2005, 84, 59–63. [Google Scholar] [CrossRef]
- Kolenbrander, P.E. Oral microbial communities: Biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 2000, 54, 413–437. [Google Scholar] [CrossRef]
- Gessa Sorroche, M.; Relimpio López, I.; García-Delpech, S.; Benítez Del Castillo, J.M. Hypochlorous acid as an antiseptic in the care of patients with suspected COVID-19 infection. Arch. Soc. Esp. Oftalmol. (Engl. Ed.) 2022, 97, 77–80. [Google Scholar] [CrossRef]
- Fukuyama, T.; Martel, B.C.; Linder, K.E.; Ehling, S.; Ganchingco, J.R.; Bäumer, W. Hypochlorous acid is antipruritic and anti-inflammatory in a mouse model of atopic dermatitis. Clin. Exp. Allergy 2018, 48, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Marcinkiewicz, J.; Kontny, E. Taurine, and inflammatory diseases. Amino Acids 2014, 46, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariotti, A.J.; Rumpf, D.A. Chlorhexidine-induced changes to human gingival fibroblast collagen and non-collagen protein production. J. Periodontol. 1999, 70, 1443–1448. [Google Scholar] [CrossRef]
- Tsourounakis, I.; Palaiologou-Gallis, A.A.; Stoute, D.; Maney, P.; Lallier, T.E. Effect of essential oil and chlorhexidine mouthwashes on gingival fibroblast survival and migration. J. Periodontol. 2013, 84, 1211–1220, [published correction appears in J. Periodontol. 2014, 85, 876]. [Google Scholar] [CrossRef] [PubMed]
- Heitz, F.; Heitz-Mayfield, L.J.; Lang, N.P. Effects of post-surgical cleansing protocols on early plaque control in periodontal and/or periimplant wound healing. J. Clin. Periodontol. 2004, 31, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Olsson, H.; Asklöw, B.; Johansson, E.; Slotte, C. Rinsing with alcohol-free or alcohol-based chlorhexidine solutions after periodontal surgery. A double-blind, randomized, cross-over, pilot study. Swed. Dent. J. 2012, 36, 91–99. [Google Scholar]
- Francetti, L.; del Fabbro, M.; Testori, T.; Weinstein, R.L. Chlorhexidine spray versus chlorhexidine mouthwash in the control of dental plaque after periodontal surgery. J. Clin. Periodontol. 2000, 27, 425–430. [Google Scholar] [CrossRef]
- Eriksen, H.M.; Nordbø, H.; Kantanen, H.; Ellingsen, J.E. Chemical plaque control and extrinsic tooth discoloration. A review of possible mechanisms. J. Clin. Periodontol. 1985, 12, 345–350. [Google Scholar] [CrossRef]
- Frank, A.C.; Kanzow, P.; Rödig, T.; Wiegand, A. Comparison of the Bleaching Efficacy of Different Agents Used for Internal Bleaching: A Systematic Review and Meta-Analysis. J. Endod. 2022, 48, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Maran, B.M.; Matos, T.P.; de Castro, A.D.S.; Vochikovski, L.; Amadori, A.L.; Loguercio, A.D.; Reis, A.; Berger, S.B. In-office bleaching with low/medium vs. high concentrate hydrogen peroxide: A systematic review and meta-analysis. J. Dent. 2020, 103, 103499. [Google Scholar] [CrossRef] [PubMed]
- Jervis, S.M.; Drake, M. The impact of iron on the bleaching efficacy of hydrogen peroxide in liquid whey systems. J. Food Sci. 2013, 78, R129–R137. [Google Scholar] [CrossRef]
- Boutaga, K.; van Winkelhoff, A.J.; Vandenbroucke-Grauls, C.M.; Savelkoul, P.H. Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. J. Clin. Microbiol. 2003, 41, 4950–4954. [Google Scholar] [CrossRef] [Green Version]
- Bello-Gualtero, J.M.; Lafaurie, G.I.; Hoyos, L.X.; Castillo, D.M.; De-Avila, J.; Munevar, J.C.; Unriza, S.; Londoño, J.; Valle-Oñate, R.; Romero-Sánchez, C. Periodontal Disease in Individuals with a Genetic Risk of Developing Arthritis and Early Rheumatoid Arthritis: A Cross-Sectional Study. J. Periodontol. 2016, 87, 346–356. [Google Scholar] [CrossRef]
- Boutaga, K.; van Winkelhoff, A.J.; Vandenbroucke-Grauls, C.M.; Savelkoul, P.H. Periodontal pathogens: A quantitative comparison of anaerobic culture and real-time PCR. FEMS Immunol. Med. Microbiol. 2005, 45, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Romero-Sánchez, C.; Malagón, C.; Vargas, C.; Torres, M.F.; Moreno, L.C.; Rodríguez, C.; Castillo, D.M.; De Avila, J.; Mosquera, Á.C.; Lafaurie, G.I. Porphyromonas Gingivalis and IgG1 and IgG2 Subclass Antibodies in Patients with Juvenile Idiopathic Arthritis. J. Dent. Child. 2017, 84, 72–79. [Google Scholar]
- Morillo, J.M.; Lau, L.; Sanz, M.; Herrera, D.; Martín, C.; Silva, A. Quantitative real-time polymerase chain reaction based on single copy gene sequence for detection of periodontal pathogens. J. Clin. Periodontol. 2004, 31, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, A.; Kawada, M.; Suzuki, N.; Nakano, Y.; Oho, T.; Saito, T.; Yamashita, Y. TaqMan real-time polymerase chain reaction assay for the correlation of Treponema denticola numbers with the severity of the periodontal disease. Oral Microbiol. Immunol. 2004, 19, 196–200. [Google Scholar] [CrossRef]
- Romero-Sanchez, C.; Rodríguez, C.; Santos-Moreno, P.; Mesa, A.M.; Lafaurie, G.I.; Giraldo-Q, S.; De-Avila, J.; Castillo, D.M.; Duran, M.; Chalem, P.C.; et al. Is the treatment with biological or non-biological DMARDS a modifier of periodontal condition in patients with rheumatoid arthritis? Curr. Rheumatol. Rev. 2017, 13, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E. Methodology of superiority vs. equivalence trials and non-inferiority trials. J. Hepatol. 2007, 46, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.M. Rank-based tests for non-inferiority and equivalence hypotheses in multi-centre clinical trials using mixed models. Stat. Med. 2003, 22, 291–311. [Google Scholar] [CrossRef] [PubMed]
Variables | CHX Protocol | HOCl Protocol | p-Value |
---|---|---|---|
Gender (F %) | 0.273 | ||
Female | 12 (60.0%) | 8 (40.00%) | |
Male | 8 (66.67%) | 4 (33.33%) | |
Age (Mean ± SD) | 40.4 ± 10.8 | 40.6 ± 9.4 | 0.945 |
Teeth (Mean ± SD) | 25.3 ± 2.2 | 25.1 ± 2.8 | 0.782 |
Full Mouth Indexes | |||
Plaque Index (Mean ± SD) | 57 ± 10 | 57 ± 14 | 0.956 |
Gingival Index Mean ± SD) | 67 ± 14 | 62 ± 15 | 0.777 |
Bleeding on probing (Mean ± SD) | 58 ± 14 | 56 ± 13 | 0.607 |
Pocket Depth (Mean ± SD) | 2.51 ± 0.30 | 2.53 ± 0.30 | 0.881 |
Clinical attachment level (Mean ± SD) | 2.53 ± 0.92 | 2.43 ± 0.66 | 0.725 |
Experimental Quadrant | |||
Plaque Index (Mean ± SD) | 78 ± 15 | 70 ± 20 | 0.205 |
Gingival Index Mean ± SD) | 79 ± 13 | 71 ± 17 | 0.169 |
Bleeding on probing (Mean ± SD) | 58 ± 3.5 | 56 ± 3.2 | 0.621 |
Pocket Depth (Mean ± SD) | 3.69 ± 0.78 | 3.67 ± 0.72 | 0.949 |
Clinical attachment level (Mean ± SD) | 3.49 ± 1.17 | 3.52 ± 0.76 | 0.939 |
t0 | t1 | t2 | t3 | |
---|---|---|---|---|
Plaque Index (%) | ||||
CHX (Mean ± SD) | 78 ± 15 a,b,c | 10 ± 7.9 a | 12 ± 7 b,† | 10.8 ± 6.6 c |
HOCl (Mean ± SD | 70 ± 20 a,b,c | 15 ± 10 a | 22 ± 15 b,† | 12.4 ± 9 c |
Difference between groups with T0 (IC95%) | 5.03 | 10.34 † | 1.55 | |
(1.37–8.66) | (6.18–14.49) | (−2.11–5.13) | ||
Gingival Index (%) | ||||
CHX (Mean ± SD) | 79 ± 13 a,b,c | 18 ± 8 a | 11 ± 0.11 b | 8.5 ± 7.4 c |
HOCl (Mean ± SD) | 71 ± 17 a,b,c | 21 ± 13 a | 14 ± 12 b | 11.5 ± 8.1 c |
Difference between groups with T0% (IC95%) | 3.36 | 2.54 | 2.66 | |
(−1.07–7.79) | (−1.21–6.27) | (−0.78–6.02%) |
Clinical Index Protocol Groups | t0 | t3 | p-Value |
---|---|---|---|
Probing Pocket Depth | |||
CHX (Mean ± SD) | 3.69 ± 0.78 | 2.08 ± 0.20 | <0.0001 |
HOCl (Mean ± SD) | 3.77 ± 0.63 | 2.21 ± 0.23 | <0.0001 |
Clinical attachment level | |||
CHX (Mean ± SD) | 3.49 ± 1.17 | 2.46 ± 0.92 | <0.0001 |
HOCl (Mean ± SD) | 3.65 ± 0.57 | 2.48 ± 0.52 | <0.0001 |
Bleeding on Probing | |||
CHX (Mean ± SD) | 77.1 ± 16.5 | 7.8 ± 6.7. | <0.0001 |
HOCl (Mean ± SD) | 71.4 ± 17.7 | 9.9 ± 7.3 | <0.0001 |
CHX | HOCl | p-Value | |
---|---|---|---|
Median IQR | Median IQR | ||
P. gingivalis | |||
t0 | 6.27 (3.93–7.02) | 6.84 (3.84–7.37) | 0.94 |
t1 | 2.33 (0–3.82) | 2.97 (0–3.98) | 0.93 |
t2 | 3.27 (0–3.60) | 1.28 (0–4.34) | <0.001 |
t3 | 3.16 (0–3.88) | 3 (0–4.36) | 0.24 |
A. actinomycetemcomitans | |||
t0 | 1.17 (0–3.31) | 2.52 (0–2.88) | 1.0 |
t1 | 0.00 (0–1.41) | 0.00 (0–2.78) | 0.31 |
t2 | 2.24 (0–2.94) | 2.29 (0–2.73) | 0.42 |
t3 | 1.08 (0–2.84) | 2.36 (0–2.97) | 1.0 |
T. forsythia | |||
t0 | 2.36 (0.21–3.17) | 3.48 (1.91–4.11) | 0.99 |
t1 | 0 (0–0) | 0 (0–0) | N.C |
t2 | 0 (0–0) | 0 (0–0.13) | N.C |
t3 | 0 (0–0.81) | 0.2 (0–2.25) | 0.73 |
T. denticola | |||
t0 | 2.36 (0.21–3.17) | 3.48 (1.91–4.11) | 0.99 |
t1 | 0 (0–0) | 0 (0–0) | N.C |
t2 | 0 (0–0) | 0 (0–0.135) | N.C |
t3 | 0 (0–0.81) | 0.2 (0–2.25) | 0.73 |
E. nodatum | |||
t0 | 2.69 (0–3.97) | 3.4 (0–4.34) | 0.94 |
t1 | 0 (0–0) | 0 (0–0) | N.C |
t2 | 0 (0–0) | 0 (0–0) | N.C |
t3 | 0 (0–2.05) | 0 (0–0.84) | 0.38 |
No Detection | With Detection | Reduction | Recolonization | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | CHX | HOCl | p-Value | CHX | HOCl | p-Value | CHX | HOCl | p-Value | CHX | HOCl | p-Value | |
P. ginvgivalis | |||||||||||||
t0 | 16/16 | 2 (12.5) | 3 (18.7) | 0.389 | 14 (87.5) | 13 (81.3) | 0.114 | - | - | - | - | - | - |
t0–t1 | 16/16 | 2 (12.5) | 1 (6) | 0.067 | 14 (87.15) | 15 (94.0) | 0.363 | 8 (50) | 7 (43.8) | 0.189 | 6 (37.5) | 8 (50) | 0.555 |
t0–t2 | 16/16 | 2 (12.5) | 2 (12.5) | 0.207 | 14 (87.5) | 14 (87.5) | 0.207 | 9 (56.2) | 7 (43.8) | 0.112 | 5 (31.2) | 7 (43.8) | 0.556 |
t0–t3 | 16/15 | 2 (12.5) | 1 (6) | 0.079 | 14 (87.5) | 14 (93.3) | 0.353 | 7 (43.7) | 7 (46.6) | 0.352 | 7 (43.7) | 7 (46.6) | 0.292 |
A. actinomycetemcomitans | |||||||||||||
t0 | 16/16 | 8 (50.0) | 5 (31.2) | 0.056 | 8 (50.0) | 11 (68.7) | 0.056 | - | - | - | - | ||
t0–t1 | 16/16 | 8 (50.0) | 6 (37.5) | 0.110 | 8 (50.0) | 10 (62.5) | 0.110 | 4 (25) | 1 (6) | 0.016 | 4 (25) | 9 (56.2) | 0.010 |
t0–t2 | 16/16 | 7 (43.7) | 5 (31.2) | 0.105 | 9 (56.2) | 11 (68.7) | 0.105 | 5 (31.2) | 2 (12.5) | 0.029 | 4 (25) | 9 (56.9) | 0.010 |
t0–t3 | 16/15 | 7 (43.7) | 5 (31.2) | 0.105 | 9 (56.2) | 10 (66.5) | 0.133 | 6 (37.5) | 4 (26.6) | 0.118 | 3 (18.7) | 6 (40) | 0.705 |
T. forsythia | |||||||||||||
t0 | 16/16 | 4 (25.0) | 3 (18.7) | 0.144 | 12 (75.0) | 13 (81.2) | 0.402 | - | - | - | - | - | - |
t0–t1 | 16/16 | 4 (25.0) | 3 (18.7) | 0.144 | 12 (75.0) | 13 (81.2) | 0.402 | 1 (6.2) | 0 (0) | 0.276 | 11 (68.7) | 13 (81.2) | 0.563 |
t0–t2 | 16/16 | 3 (18.7) | 3 (18.7) | 0.244 | 13 (86.6) | 13 (81.2) | 0.244 | 1 (6.2) | 3 (18.7) | 0.583 | 12 (75) | 10 (62.5) | 0.095 |
t0–t3 | 16/15 | 3 (18.7) | 3 (20) | 0.278 | 13 (86.6) | 12 (80.0) | 0.278 | 3 (18.7) | 5 (33.3) | 0.563 | 10 (62.5) | 7 (46.6) | 0.084 |
T. denticola | |||||||||||||
t0 | 16/16 | 4 (25) | 3 (18.7) | 0.144 | 12 (75) | 13 (81.2) | 0.402 | - | - | - | - | - | - |
t0–t1 | 16/16 | 4 (25) | 3 (18.7) | 0.144 | 12 (75) | 13 (81.2) | 0.402 | 1 (6.2) | 0 (0) | 0.276 | 11 (68.7) | 13 (81.2) | 0.563 |
t0–t2 | 16/16 | 3 (18.7) | 3 (18.7) | 0.244 | 13 (86.6) | 13 (86.6) | 0.244 | 1 (6.2) | 4 (26.6) | 0.016 | 13 (81.2) | 9 (56.9) | 0.020 |
t0–t3 | 16/15 | 3 (18.7) | 3 (20.0) | 0.278 | 13 (86.6) | 12 (80.0) | 0.278 | 3 (18.7) | 5 (33.3) | 0.068 | 10 (62.5) | 7 (46.6) | 0.084 |
E. nodatum | |||||||||||||
t0 | 16/16 | 7 (43.7) | 5 (31.2) | 0.104 | 9 (56.2) | 11 (68.7) | 0.556 | - | - | - | - | - | - |
t0–t1 | 16/16 | 4 (25.0) | 3 (18.7 | 0.144 | 12 (75.0) | 13 (86.6) | 0.402 | 1 (6.2) | 0 (0) | 0.276 | 11 (68.7) | 13 (81.2) | 0.563 |
t0–t2 | 16/16 | 7 (43.7) | 5 (31.2) | 0.104 | 9 (56.2) | 11 (68.7) | 0.556 | 2 (13) | 3 (18.7) | 0.389 | 7 (43.7) | 8 (50) | 0.419 |
t0–t3 | 16/15 | 4 (25) | 4 (26.6) | 0.306 | 12 (75.0) | 12 (81.2) | 0.375 | 0 (0) | 2 (13) | 0.646 | 12 (80) | 10 (66.6) | 0.142 |
7 Days | 21 Days | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CHX | HOCl | p-Value | CHX | HOCl | p-Value | |||||
n | (%) | n | (%) | n | (%) | n | (%) | |||
Taste Sensation | ||||||||||
Pleasant | 5 | 31.3 | 1 | 6.3 | 0.097 | 6 | 37.5 | 1 | 6.3 | 0.048 |
Unpleasant | 10 | 62.5 | 15 | 93.8 | 9 | 56.3 | 15 | 93.8 | ||
Disgusting | 1 | 6.3 | 0 | 0.0 | 1 | 6.3 | 0 | 0.0 | ||
Mouth irritation | ||||||||||
Absence | 6 | 37.5 | 6 | 37.5 | 1.000 | 11 | 68.8 | 14 | 87.5 | 0.394 |
Presence | 10 | 62.5 | 10 | 62.5 | 5 | 31.3 | 2 | 12.5 | ||
Pain | ||||||||||
Absence | 16 | 100.0 | 16 | 100.0 | 1.000 | 16 | 100.0 | 16 | 100.0 | 1.000 |
Presence | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | ||
Burning | ||||||||||
Absence | 12 | 75.0 | 15 | 93.8 | 0.144 | 15 | 93.8 | 15 | 93.8 | 1.000 |
Presence | 4 | 25.0 | 1 | 6.3 | 1 | 6.3 | 1 | 6.3 | ||
Numbness | ||||||||||
Absence | 9 | 56.3 | 8 | 50.0 | 0.723 | 14 | 87.5 | 13 | 81.3 | 1.000 |
Presence | 7 | 43.8 | 8 | 50.0 | 2 | 12.5 | 3 | 18.8 | ||
Burning sensation | ||||||||||
Absence | 15 | 93.8 | 16 | 100.0 | 0.310 | 16 | 100.0 | 16 | 100.0 | 1.000 |
Presence | 1 | 6.3 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | ||
Roughness | ||||||||||
Absence | 13 | 81.3 | 14 | 87.5 | 0.626 | 16 | 100.0 | 15 | 93.8 | 0.310 |
Presence | 3 | 18.8 | 2 | 12.5 | 0 | 0.0 | 1 | 6.3 | ||
Lip Dryness | ||||||||||
Absence | 13 | 81.3 | 9 | 56.3 | 0.127 | 11 | 68.8 | 10 | 62.5 | 0.710 |
Presence | 3 | 18.8 | 7 | 43.8 | 5 | 31.3 | 6 | 37.5 | ||
Change in taste sensation | ||||||||||
Absence | 9 | 56.3 | 14 | 87.5 | 0.049 | 6 | 37.5 | 14 | 87.5 | 0.009 |
Presence | 7 | 43.8 | 2 | 12.5 | 10 | 62.5 | 2 | 12.5 | ||
Gastric Alteration | ||||||||||
Absence | 16 | 100.0 | 16 | 100.0 | 1.000 | 16 | 100.0 | 16 | 100.0 | 1.000 |
Presence | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | ||
Color change in teeth | ||||||||||
Absence | 13 | 81.3 | 9 | 56.3 | 0.127 | 5 | 31.3 | 11 | 68.8 | 0.034 |
Presence | 3 | 18.8 | 7 | 43.8 | 11 | 68.8 | 5 | 31.3 | ||
Color change trend | ||||||||||
White | 16 | 100.0 | 15 | 93.8 | 0.310 | 0 | 0.0 | 5 | 100.0 | 0.000 |
Black | 0 | 0.0 | 1 | 6.3 | 11 | 100.0 | 0 | 0.0 | ||
Location of the AE | ||||||||||
No AE | 0 | 0.0 | 0 | 0.0 | 0.081 | 10 | 62.5 | 9 | 56.3 | 0.083 |
Lips | 7 | 43.8 | 12 | 75.0 | 0 | 0.0 | 0 | 0.0 | ||
Gum | 2 | 12.5 | 0 | 0.0 | 0 | 0.0 | 4 | 25.0 | ||
Palate | 2 | 12.5 | 1 | 6.3 | 0 | 0.0 | 1 | 6.3 | ||
Language | 0 | 0.0 | 2 | 12.5 | 3 | 18.8 | 0 | 0.0 | ||
Whole mouth | 5 | 31.3 | 1 | 6.3 | 3 | 18.8 | 2 | 12.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plata, J.C.; Díaz-Báez, D.; Delgadillo, N.A.; Castillo, D.M.; Castillo, Y.; Hurtado, C.P.; Neuta, Y.; Calderón, J.L.; Lafaurie, G.I. Hypochlorous Acid as a Potential Postsurgical Antimicrobial Agent in Periodontitis: A Randomized, Controlled, Non-Inferiority Trial. Antibiotics 2023, 12, 1311. https://doi.org/10.3390/antibiotics12081311
Plata JC, Díaz-Báez D, Delgadillo NA, Castillo DM, Castillo Y, Hurtado CP, Neuta Y, Calderón JL, Lafaurie GI. Hypochlorous Acid as a Potential Postsurgical Antimicrobial Agent in Periodontitis: A Randomized, Controlled, Non-Inferiority Trial. Antibiotics. 2023; 12(8):1311. https://doi.org/10.3390/antibiotics12081311
Chicago/Turabian StylePlata, Julio Cesar, David Díaz-Báez, Nathaly Andrea Delgadillo, Diana Marcela Castillo, Yormaris Castillo, Claudia Patricia Hurtado, Yineth Neuta, Justo Leonardo Calderón, and Gloria Inés Lafaurie. 2023. "Hypochlorous Acid as a Potential Postsurgical Antimicrobial Agent in Periodontitis: A Randomized, Controlled, Non-Inferiority Trial" Antibiotics 12, no. 8: 1311. https://doi.org/10.3390/antibiotics12081311
APA StylePlata, J. C., Díaz-Báez, D., Delgadillo, N. A., Castillo, D. M., Castillo, Y., Hurtado, C. P., Neuta, Y., Calderón, J. L., & Lafaurie, G. I. (2023). Hypochlorous Acid as a Potential Postsurgical Antimicrobial Agent in Periodontitis: A Randomized, Controlled, Non-Inferiority Trial. Antibiotics, 12(8), 1311. https://doi.org/10.3390/antibiotics12081311