Off-Label Use of Ceftazidime/Avibactam for the Treatment of Pan-Drug-Resistant Klebsiella pneumoniae in a Neonate: Case Report and Literature Review
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
4.1. Strengths
4.2. Lessons Learned
4.3. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance.%20Accessed%2030%20January%202023 (accessed on 20 January 2023).
- Hu, Y.; Liu, C.; Shen, Z.; Zhou, H.; Cao, J.; Chen, S.; Lv, H.; Zhou, M.; Wang, Q.; Sun, L.; et al. Prevalence, risk factors and molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae in patients from Zhejiang, China, 2008–2018. Emerg. Microbes. Infect. 2020, 9, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
- Flannery, D.D.; Chiotos, K.; Gerber, J.S.; Puopolo, K.M. Neonatal multidrug-resistant gram-negative infection: Epidemiology, mechanisms of resistance, and management. Pediatr. Res. 2022, 91, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Ramalheira, E.; Stone, G.G. Longitudinal analysis of the in vitro activity of ceftazidime/avibactam versus Enterobacteriaceae, 2012–2016. J. Glob. Antimicrob. Resist. 2019, 19, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, J.; Hu, F.; Gao, K.; Sun, J.; Yang, J. Clinical and molecular epidemiologic characteristics of ceftazidime/avibactam-resistant carbapenem-resistant Klebsiella pneumoniae in a neonatal intensive care unit in China. Infect. Drug. Resist. 2020, 13, 2571–2578. [Google Scholar] [CrossRef] [PubMed]
- Peñalva-Moreno, G.; Diaz Högberg, L.; Weist, K.; Vlahović-Palčevski, V.; Heuer, O.; Monnet, D.L. Decreasing and stabilising trends of antimicrobial consumption and resistance in Escherichia coli and Klebsiella pneumoniae in segmented regression analysis, European Union/European Economic Area, 2001 to 2018. Eurosurveillance 2019, 24, 1900656. [Google Scholar] [CrossRef] [Green Version]
- Di Bella, S.; Giacobbe, D.R.; Maraolo, A.E.; Viaggi, V.; Luzzati, R.; Bassetti, M.; Luzzaro, F.; Principe, L. Resistance to ceftazidime/avibactam in infections and colonisations by KPC-producing Enterobacterales: A systematic review of observational clinical studies. J. Glob. Antimicrob. Resist. 2021, 25, 268–281. [Google Scholar] [CrossRef]
- Fontana, C.; Favaro, M.; Campogiani, L.; Malagnino, V.; Minelli, S.; Bossa, M.C.; Altieri, A.; Andreoni, M.; Sarmati, L. Ceftazidime/avibactam-resistant Klebsiella pneumoniae subsp. pneumoniae isolates in a tertiary Italian hospital: Identification of a new mutation of the carbapenemase type 3 (KPC-3) gene conferring ceftazidime/avibactam resistance. Microorganisms 2021, 9, 2356. [Google Scholar] [CrossRef]
- Hobson, C.A.; Pierrat, G.; Tenaillon, O.; Bonacorsi, S.; Bercot, B.; Jaouen, E.; Jacquier, H.; Birgy, A. Klebsiella pneumoniae carbapenemase variants resistant to ceftazidime-avibactam: An evolutionary overview. Antimicrob. Agents Chemother. 2022, 66, e00447-22. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wang, R.; Cai, Y. Resistance to ceftazidime–avibactam and underlying mechanisms. J. Glob. Antimicrob. Resist. 2020, 22, 18–27. [Google Scholar] [CrossRef]
- Muresu, N.; Del Rio, A.; Fox, V.; Scutari, R.; Alteri, C.; Are, B.M.; Terragni, P.; Sechi, I.; Sotgiu, G.; Piana, A. Genomic Characterization of KPC-31 and OXA-181 Klebsiella pneumoniae Resistant to New Generation of β-Lactam/β-Lactamase Inhibitor Combinations. Antibiotics 2022, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Product Information Zavicefta® 2 g/0.5 g Powder for Concentrate for Solution for Infusion. Available online: https://labeling.pfizer.com/ShowLabeling.aspx?id=13526 (accessed on 17 March 2023).
- Bradley, J.S.; Broadhurst, H.; Cheng, K.; Mendez, M.; Newell, P.; Prchlik, M.; Stone, G.G.; Talley, A.K.; Tawadrous, M.; Wajsbrot, D. Safety and efficacy of ceftazidime-avibactam plus metronidazole in the treatment of children ≥3 months to <18 years with complicated intra-abdominal infection: Results from a phase 2, randomized, controlled trial. Pediatr. Infect. Dis. J. 2019, 38, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Roilides, E.; Broadhurst, H.; Cheng, K.; Huang, L.-M.; MasCasullo, V.; Newell, P.; Stone, G.G.; Tawadrous, M.; Wajsbrot, D. Safety and efficacy of Ceftazidime–Avibactam in the treatment of children ≥3 months to <18 years with complicated urinary tract infection: Results from a phase 2 randomized, controlled trial. Pediatr. Infect. Dis. J. 2019, 38, 920–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asfour, S.S.; Alaklobi, F.A.; Abdelrahim, A.; Taha, M.Y.; Asfour, R.S.; Khalil, T.M.; Al-Mouqdad, M.M. Intravenous ceftazidime-avibactam in extremely premature neonates with carbapenem-resistant enterobacteriaceae: Two case reports. J. Pediatr. Pharmacol. Ther. 2022, 27, 192–197. [Google Scholar] [CrossRef]
- Iosifidis, E.; Chorafa, E.; Agakidou, E.; Kontou, A.; Violaki, A.; Volakli, E.; Christou, E.-I.; Zarras, C.; Drossou-Agakidou, V.; Sdougka, M. Use of ceftazidime-avibactam for the treatment of extensively drug-resistant or pan drug-resistant Klebsiella pneumoniae in neonates and children< 5 years of age. Pediatr. Infect. Dis. J. 2019, 38, 812–815. [Google Scholar] [CrossRef]
- Esposito, P.; Sbrana, F.; Di Toro, A.; Gombos, S.; Tascini, C. Ceftazidine-avibactam salvage therapy in newborn with KPC-producing Klebsiella pneumoniae invasive infections. Minerva Anestesiol. 2019, 85, 804–805. [Google Scholar] [CrossRef]
- Coskun, Y.; Atici, S. Successful treatment of Pandrug-resistant Klebsiella pneumoniae infection with ceftazidime-avibactam in a preterm infant: A case report. Pediatr. Infect. Dis. J. 2020, 39, 854–856. [Google Scholar] [CrossRef]
- Ji, Z.; Sun, K.; Li, Z.; Cheng, W.; Yang, J. Carbapenem-Resistant Klebsiella pneumoniae Osteomyelitis Treated with Ceftazidime-Avibactam in an Infant: A Case Report. Infect. Drug Resist. 2021, 14, 3109–3113. [Google Scholar] [CrossRef]
- Nascimento, A.d.S.; Passaro, M.F.; Silva, P.S.d.S.; Rodriguez, S.F.; Martins, M.K.; Oliveira, S.C.P.; Moriel, P.; Visacri, M.B. Off-Label Use of Ceftazidime-Avibactam in a Premature Infant with Multidrug-Resistant Klebsiella pneumoniae Infection: A Case Report. J. Pharm. Pract. 2023, 36, 1020–1025. [Google Scholar] [CrossRef]
- Marino, A.; Pulvirenti, S.; Campanella, E.; Stracquandanio, S.; Ceccarelli, M.; Micali, C.; Tina, L.G.; Di Dio, G.; Stefani, S.; Cacapardo, B.; et al. Ceftazidime-Avibactam Treatment for Klebsiella pneumoniae Bacteremia in Preterm Infants in NICU: A Clinical Experience. Antibiotics 2023, 12, 1169. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: http://www.eucast.org (accessed on 20 May 2023).
- ECDC. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2021. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER-EARS-Net-2021_2022-final.pdf (accessed on 15 May 2023).
- Giamarellou, H.; Karaiskos, I. Current and Potential Therapeutic Options for Infections Caused by Difficult-to-Treat and Pandrug Resistant Gram-Negative Bacteria in Critically Ill Patients. Antibiotics 2022, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Antimicrobial Resistance Surveillance in Europe 2023–2021 data. Stockholm: European Centre for Disease Prevention and Control and World Health Organization. 2023. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial%20resistance%20surveillance%20in%20Europe%202023%20-%202021%20data.pdf (accessed on 20 May 2023).
- ECDC: European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2021. Stockholm: ECDC; 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/ESAC-Net_AER_2021_final-rev.pdf (accessed on 20 May 2023).
- Zaykova, K.; Nikolova, S.; Pancheva, R.; Serbezova, A. A survey of knowledge, attitudes and use of antibiotics among Bulgarian population. Biotechnol. Biotechnol. Equipt. 2022, 36, 933–941. [Google Scholar] [CrossRef]
- Dimova, R.; Dimitrova, D.; Semerdjieva, M.; Doikov, I. Patient attitudes and patterns of self-medication with antibiotics—A cross-sectional study in Bulgaria. Open Access Maced. J. Med. Sci. 2014, 2, 655–661. [Google Scholar] [CrossRef] [Green Version]
- You, T.; Zhang, H.; Guo, L.; Ling, K.R.; Hu, X.Y.; Li, L.Q. Differences in clinical characteristics of early- and late-onset neonatal sepsis caused by Klebsiella pneumoniae. Int. J. Immunopathol. Pharmacol. 2020, 34, 2058738420950586. [Google Scholar] [CrossRef]
- Alanezi, G.; Almulhem, A.; Aldriwesh, M.; Bawazeer, M. A triple antimicrobial regimen for multidrug-resistant Klebsiella pneumonia in a neonatal intensive care unit outbreak: A case series. J. Infect. Public Health. 2022, 15, 138–141. [Google Scholar] [CrossRef]
- ECDC. European Centre for Disease Prevention and Control and World Health Organization. Surveillance Atlas of Infectious Diseases. Available online: http://atlas.ecdc.europa.eu/public/index.aspx.%20Accessed%20by%20May%202023 (accessed on 20 May 2023).
- Simeoli, R.; Cairoli, S.; Decembrino, N.; Campi, F.; Dionisi Vici, C.; Corona, A.; Goffredo, B.M. Use of Antibiotics in Preterm Newborns. Antibiotics 2022, 11, 1142. [Google Scholar] [CrossRef]
- Gatti, M.; Raschi, E.; De Ponti, F. Relationship between adverse drug reactions to antibacterial agents and the Klebsiella pneumoniae carbapenemase-producing (KPC) Klebsiella pneumoniae outbreak: Insight from a pharmacovigilance study. BMC Pharmacol. Toxicol. 2019, 20, 65. [Google Scholar] [CrossRef] [Green Version]
Antibiotics | MIC (mg/L)/Zone Diameter (mm) | Result |
---|---|---|
Amikacin | >8/<18 | Resistant |
Amoxicillin-clavulanate | >8/<19 | Resistant |
Ampicillin | >8/<14 | Resistant |
Ampicillin-sulbactam | >8/<14 | Resistant |
Cefepime | >4/<24 | Resistant |
Ceftazidime | >4/<19 | Resistant |
Ceftazidime/avibactam | ≤8/>13 | Susceptible |
Ceftriaxone | >2/<22 | Resistant |
Cefuroxime | >8/<19 | Resistant |
Cephalexin | >16/<14 | Resistant |
Ciprofloxacin | >0.5/<22 | Resistant |
Colistin | >2 | Resistant |
Meropenem | >8/<16 | Resistant |
Piperacillin-tazobactam | >8/<20 | Resistant |
Trimethoprim-sulfamethoxazole | >4/<11 | Resistant |
Microorganism | Combined Resistance to | Total | Age 0–4 |
---|---|---|---|
Klebsiella pneumoniae | 3rd generation cephalosporins, fluoroquinolones and aminoglycosides | 59.9% | 50% |
Acinetobacter spp. | Fluoroquinolones, carbapenems and aminoglycosides | 71.9% | 14.3% |
Esherichia coli | 3rd generation cephalosporins, fluoroquinolones and aminoglycosides | 14.8% | 11.1% |
Author | Patient Age and Weight at Birth | Diagnosis | Culture | Notes | CAZ-AVI Dose and Duration of Therapy | Outcome |
---|---|---|---|---|---|---|
Asfour et al., 2022 [16] | Preterm female (27 gestational age) 920 g | Bacteraemia and meningitis | CSF (K. pneumoniae, sensitive to colistin, CAZ-AVI and fosfomycin) | Initial colistin therapy was ineffective | 62.5 mg/kg/dose every 8 h for 21 days | cured |
Preterm female (28 gestational age) 925 g | Bacteraemia | Blood (K. pneumoniae, sensitive to meropenem and amikacin) | Initial meropenem therapy was ineffective | 62.5 mg/kg/dose every 8 h for 4 days and 62.5 mg/kg/dose every 24 h (for 1 day) | died | |
Iosifidis et al., 2019 [17] | 8 patients (median age 53 days, range from 13 days to 4.5 years; gestational age, 25–37 weeks) | Bloodstream infections (8 courses), central nervous system infections (2 courses) and urinary tract infection (1 course) | Microbiologically proven XDR or PDR K. pneumoniae in blood cultures, CSF, urine and rectal swab | All patients were critically ill and received other antibiotics prior to and concomitantly with CAZ-AVI | 62.5 mg/kg/dose every 8 h for 4 to 38 days (median 14 days) In one case of febrile UTI due to renal insufficiency and CVVH, the dose was given at 50% of the recommended dose every 8 h. | cured |
Esposito et al., 2019 [18] | Preterm male, 20-day old 860 g | Bacteremia and meningitis | Sensitive to CAZ-AVI, colistin, phosphomycin and tigecycline | Initial therapy with colistin, rifampicin, gentamicin, phosphomycin and meropenem was ineffective | 75/20 mg/kg t.i.d. IV, but after 8 days decreased to 25/6.5 mg t.i.d. IV for 25 days. Due to recurrent infection, CAZ-AVI (25/6.5 mg t.i.d. IV) was administered for another 22 days, plus phosphomycin (45 mg/kg t.i.d. IV) and meropenem (40 mg/kg t.i.d. IV) | cured |
Coskun & Atici., 2020 [19] | Preterm male (27 gestational weeks) 1000 g | UTI | On day 6, blood and urine culture—carbapenem-resistant K. pneumoniae, sensitive to colistin; second blood culture on day 25—resistant to colistin, but sensitive to CAZ-AVI and tigecycline | Initial meropenem, colistin and vancomycin therapy was ineffective | 50 (40/10) mg/kg/dose every 8 h for 10 days | cured |
Ji et al., 2021 [20] | 81-day male | Osteomyelitis | Blood and bone marrow fluid culture (K. pneumoniae, sensitive to colistin, CAZ-AVI, tigecycline and TMP-SMZ) | Initial imipenem/cilastatin and fosfomycin therapy was ineffective | CAZ-AVI 50 (40/10) mg/kg IV every 8 h for 14 days | cured |
Nascimento et al., 2023 [21] | Preterm male (29 weeks gestational age) 830 g | Bloodstream infection | Sensitive to CAZ-AVI, amikacin and colistin | ampicillin, gentamicin, fluconazole, meropenem, amphotericin B deoxycholate, vancomycin, linezolid, polymyxin B, micafungin and phenobarbital | CAZ-AVI 50 (40/10) mg/kg IV q8h for 2 days; next two days adjusted to peritoneal dialysis to 23.75 mg/kg IV q48 h; followed by 50 mg/kg IV q8h | cured |
Marino et al., 2023 [22] | Eight preterm patients (3 males, 5 females) | Blood cultures | Sensitivity to CAZ-AVI and several other antibiotics | Due to the worsening of neonates’ clinical status and despite empirical broad spectrum antibiotic therapies, CAZ-AVI was initiated | 50 (40/10) mg/kg/dose every 8 h for medium 14 days | cured |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mangarov, I.; Georgieva, R.; Petkova, V.; Nikolova, I. Off-Label Use of Ceftazidime/Avibactam for the Treatment of Pan-Drug-Resistant Klebsiella pneumoniae in a Neonate: Case Report and Literature Review. Antibiotics 2023, 12, 1302. https://doi.org/10.3390/antibiotics12081302
Mangarov I, Georgieva R, Petkova V, Nikolova I. Off-Label Use of Ceftazidime/Avibactam for the Treatment of Pan-Drug-Resistant Klebsiella pneumoniae in a Neonate: Case Report and Literature Review. Antibiotics. 2023; 12(8):1302. https://doi.org/10.3390/antibiotics12081302
Chicago/Turabian StyleMangarov, Iliya, Ralitsa Georgieva, Valentina Petkova, and Irina Nikolova. 2023. "Off-Label Use of Ceftazidime/Avibactam for the Treatment of Pan-Drug-Resistant Klebsiella pneumoniae in a Neonate: Case Report and Literature Review" Antibiotics 12, no. 8: 1302. https://doi.org/10.3390/antibiotics12081302
APA StyleMangarov, I., Georgieva, R., Petkova, V., & Nikolova, I. (2023). Off-Label Use of Ceftazidime/Avibactam for the Treatment of Pan-Drug-Resistant Klebsiella pneumoniae in a Neonate: Case Report and Literature Review. Antibiotics, 12(8), 1302. https://doi.org/10.3390/antibiotics12081302