In Vitro Activity of Ceftaroline and Comparators against Bacterial Isolates Collected Globally from Patients with Skin and Soft Tissue Infections: ATLAS Program 2019–2020
Abstract
:1. Introduction
2. Results
2.1. Distribution of Isolates Causing SSTIs
2.2. Antimicrobial Activity of Ceftaroline and Comparators against Isolates Causing SSTIs
2.2.1. MSSA and MRSA
2.2.2. β-Hemolytic Streptococci
2.2.3. Gram-Negative Enterobacterales
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moffarah, A.S.; Al Mohajer, M.; Hurwitz, B.L.; Armstrong, D.G. Skin and Soft Tissue Infections. Microbiol. Spectr. 2016, 4, 691–708. [Google Scholar] [CrossRef]
- Tognetti, L.; Martinelli, C.; Berti, S.; Hercogova, J.; Lotti, T.; Leoncini, F.; Moretti, S. Bacterial skin and soft tissue infections: Review of the epidemiology, microbiology, aetiopathogenesis and treatment: A collaboration between dermatologists and infectivologists. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, M.H.; Dryden, M. Update on the epidemiology of healthcare-acquired bacterial infections: Focus on complicated skin and skin structure infections. J. Antimicrob. Chemother. 2021, 76, iv2–iv8. [Google Scholar] [CrossRef] [PubMed]
- Sartelli, M.; Guirao, X.; Hardcastle, T.C.; Kluger, Y.; Boermeester, M.A.; Raşa, K.; Ansaloni, L.; Coccolini, F.; Montravers, P.; Abu-Zidan, F.M.; et al. 2018 WSES/SIS-E consensus conference: Recommendations for the management of skin and soft-tissue infections. World J. Emerg. Surg. 2018, 13, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giesey, R.; Mehrmal, S.; Uppal, P.; Delost, G. The Global Burden of Skin and Subcutaneous Disease: A Longitudinal Analysis from the Global Burden of Disease Study From 1990-2017. Skin 2021, 5, 125–136. [Google Scholar] [CrossRef]
- Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Zhou, J.; Xu, B.-N.; Li, Y.; Bao, W.; Cheng, X.L.; He, Y.; Xu, C.P.; Ren, J.; Zheng, Y.; et al. Global Burden of Bacterial Skin Diseases: A Systematic Analysis Combined with Sociodemographic Index, 1990–2019. Front. Med. 2022, 9, 861115. [Google Scholar] [CrossRef] [PubMed]
- Dryden, M.S. Complicated skin and soft tissue infection. J. Antimicrob. Chemother. 2010, 65 (Suppl. 3), iii35–iii44. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Concia, E.; Cristini, F.; De Rosa, F.G.; Esposito, S.; Menichetti, F.; Petrosillo, N.; Tumbarello, M.; Venditti, M.; Viale, P.; et al. Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clin. Microbiol. Infect. 2016, 22 (Suppl. 2), S27–S36. [Google Scholar] [CrossRef] [Green Version]
- Russo, A.; Trecarichi, E.M.; Torti, C. The role of Gram-negative bacteria in skin and soft tissue infections. Curr. Opin. Infect. Dis. 2022, 35, 95–102. [Google Scholar] [CrossRef]
- Cardona, A.F.; Wilson, S.E. Skin and soft-tissue infections: A critical review and the role of telavancin in their treatment. Clin. Infect. Dis. 2015, 61 (Suppl. 2), S69–S78. [Google Scholar] [CrossRef] [Green Version]
- Leong, H.N.; Kurup, A.; Tan, M.Y.; Kwa, A.L.H.; Liau, K.H.; Wilcox, M.H. Management of complicated skin and soft tissue infections with a special focus on the role of newer antibiotics. Infect. Drug Resist. 2018, 11, 1959–1974. [Google Scholar] [CrossRef] [Green Version]
- Lodise, T.P.; Low, D.E. Ceftaroline fosamil in the treatment of community-acquired bacterial pneumonia and acute bacterial skin and skin structure infections. Drugs 2012, 72, 1473–1493. [Google Scholar] [CrossRef] [PubMed]
- TEFLARO® (Ceftaroline Fosamil) for Injection for Intravenous Use. 2021. Available online: https://www.rxabbvie.com/pdf/teflaro_pi.pdf (accessed on 2 December 2022).
- Pfizer. Zinforo 600 mg Powder for Concentrate for Solution for Infusion: Summary of Product Characteristics. 2022. Available online: https://www.ema.europa.eu/en/documents/product-information/zinforo-epar-product-information_en.pdf (accessed on 2 December 2022).
- Zasowski, E.J.; Trinh, T.D.; Claeys, K.C.; Dryden, M.; Shlyapnikov, S.; Bassetti, M.; Carnelutti, A.; Khachatryan, N.; Kurup, A.; Pulido Cejudo, A.; et al. International Validation of a Methicillin-Resistant Staphylococcus aureus Risk Assessment Tool for Skin and Soft Tissue Infections. Infect. Dis. Ther. 2022, 11, 2253–2263. [Google Scholar] [CrossRef] [PubMed]
- Valderrama-Beltrán, S.; Gualtero, S.; Álvarez-Moreno, C.; Gil, F.; Ruiz, A.J.; Rodríguez, J.Y.; Osorio, J.; Tenorio, I.; Gómez Quintero, C.; Mackenzie, S.; et al. Risk factors associated with methicillin-resistant Staphylococcus aureus skin and soft tissue infections in hospitalized patients in Colombia. Int. J. Infect. Dis. 2019, 87, 60–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallin, D.J.; Camargo, C.A., Jr.; Schuur, J.D. Skin infections and antibiotic stewardship: Analysis of emergency department prescribing practices, 2007-2010. West J. Emerg. Med. 2014, 15, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, J.L.W.; Willson, T.M.; Sutton, J.D.; Spivak, E.S.; Samore, M.H.; Stevens, V.W. Epidemiology, Disposition, and Treatment of Ambulatory Veterans with Skin and Soft Tissue Infections. Clin. Infect. Dis. 2021, 72, 675–681. [Google Scholar] [CrossRef]
- Macmorran, E.; Harch, S.; Athan, E.; Lane, S.; Tong, S.; Crawford, L.; Krishnaswamy, S.; Hewagama, S. The rise of methicillin resistant Staphylococcus aureus: Now the dominant cause of skin and soft tissue infection in Central Australia. Epidemiol. Infect. 2017, 145, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
- Diekema, D.J.; Pfaller, M.A.; Shortridge, D.; Zervos, M.; Jones, R.N. Twenty-Year Trends in Antimicrobial Susceptibilities Among Staphylococcus aureus From the SENTRY Antimicrobial Surveillance Program. Open Forum Infect. Dis. 2019, 6, S47–S53. [Google Scholar] [CrossRef]
- Klein, S.; Menz, M.D.; Zanger, P.; Heeg, K.; Nurjadi, D. Increase in the prevalence of Panton-Valentine leukocidin and clonal shift in community-onset methicillin-resistant Staphylococcus aureus causing skin and soft-tissue infections in the Rhine-Neckar Region, Germany, 2012–2016. Int. J. Antimicrob. Agents 2019, 53, 261–267. [Google Scholar] [CrossRef]
- Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef] [PubMed]
- Piérard, D.; Stone, G.G. In vitro activity of ceftaroline and comparators against bacterial isolates collected globally from patients with skin infections. J. Glob. Antimicrob. Resist. 2021, 26, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, M.; Yu, Y.; Liu, B.; Liu, Y. In Vitro Activity of Ceftaroline and Comparators Against Staphylococcus aureus Isolates: Results from 6 Years of the ATLAS Program (2012 To 2017). Infect. Drug Resist. 2019, 12, 3349–3358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbán, E.; Stone, G.G. Impact of EUCAST ceftaroline breakpoint change on the susceptibility of methicillin-resistant Staphylococcus aureus isolates collected from patients with complicated skin and soft-tissue infections. Clin. Microbiol. Infect. 2019, 25, 1429.e1–1429.e4. [Google Scholar] [CrossRef] [Green Version]
- Bassetti, M.; Baguneid, M.; Bouza, E.; Dryden, M.; Nathwani, D.; Wilcox, M. European perspective and update on the management of complicated skin and soft tissue infections due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin. Microbiol. Infect. 2014, 20, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.H.; Koirala, J. Methicillin Resistant Staphylococcus Aureus. In StatPearls; StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Dellinger, E.P.; Goldstein, E.J.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef]
- Flamm, R.K.; Jones, R.N.; Sader, H.S. In vitro activity of ceftaroline tested against isolates from the Asia-Pacific region and South Africa (2011). J. Glob. Antimicrob. Resist. 2014, 2, 183–189. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Biedenbach, D.J.; Bouchillon, S.K.; Hackel, M.; Iaconis, J.P.; Sahm, D.F. In vitro activity of Ceftaroline against bacterial pathogens isolated from patients with skin and soft tissue and respiratory tract infections in African and Middle Eastern countries: AWARE global surveillance program 2012-2014. Diagn. Microbiol. Infect. Dis. 2016, 86, 194–199. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; Bouchillon, S.L.K.; Lowman, W.; Kotb, R.E.M.; Mohamed, N.; Stone, G.G.; Sahm, D.F. In vitro activity of ceftaroline against bacterial pathogens isolated from patients with skin and soft tissue and respiratory tract infections in the Middle East and Africa: AWARE global surveillance programme 2015–2018. J. Glob. Antimicrob. Resist. 2021, 24, 249–256. [Google Scholar] [CrossRef]
- Hoban, D.; Biedenbach, D.; Sahm, D.; Reiszner, E.; Iaconis, J. Activity of ceftaroline and comparators against pathogens isolated from skin and soft tissue infections in Latin America—Results of AWARE surveillance 2012. Braz. J. Infect. Dis. 2015, 19, 596–603. [Google Scholar] [CrossRef]
- Flamm, R.K.; Sader, H.S.; Jones, R.N. Spectrum and potency of ceftaroline against leading pathogens causing community-acquired respiratory tract and skin and soft tissue infections in Latin America, 2010. Braz. J. Infect. Dis. 2013, 17, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, Y.; Jia, P.; Zhu, Y.; Zhang, G.; Zhang, J.; Duan, S.; Kang, W.; Wang, T.; Jing, R.; et al. Global trends of antimicrobial susceptibility to ceftaroline and ceftazidime-avibactam: A surveillance study from the ATLAS program (2012–2016). Antimicrob. Resist. Infect. Control 2020, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- ATLAS Surveillance. Antimicrobial Testing Leadership and Surveillance. Available online: https://atlas-surveillance.com (accessed on 2 December 2022).
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2022. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. 2022. Available online: https://www.eucast.org/ (accessed on 2 December 2022).
- Lob, S.H.; Kazmierczak, K.M.; Badal, R.E.; Hackel, M.A.; Bouchillon, S.K.; Biedenbach, D.J.; Sahm, D.F. Trends in susceptibility of Escherichia coli from intra-abdominal infections to ertapenem and comparators in the United States according to data from the SMART program, 2009 to 2013. Antimicrob. Agents Chemother. 2015, 59, 3606–3610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Organism/ Antimicrobial | Africa/Middle East | Asia-Pacific | Europe | Latin America | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | Susceptibility (%S)/Activity Attributes | |
MSSA | n = 629 | n = 1122 | n = 2775 | n = 588 | |||||||||
Ceftaroline | 0.25 | 0.06–0.5 | 100 | 0.5 | 0.06–1 | 100 | 0.25 | 0.06–1 | 100 | 0.5 | 0.06–0.5 | 100 | High %S/ very/highly potent |
Clindamycin | 0.12 | 0.03–4 | 99.1 | 0.25 | 0.03–4 | 93.6 | 0.12 | 0.03–4 | 97.0 | 0.12 | 0.03–4 | 96.4 | High %S/ potent to very/highly potent |
Daptomycin | 1 | 0.06–1 | 100 | 1 | 0.06–4 | 99.7 | 1 | 0.06–4 | 99.3 | 1 | 0.12–2 | 99.8 | High %S/ very/highly potent |
Erythromycin | 8 | 0.12–8 | 78.2 | 8 | 0.12–8 | 71.1 | 8 | 0.12–8 | 81.0 | 8 | 0.12–8 | 71.1 | Moderate |
Gentamicin | 1 | 1–32 | 94.4 | 4 | 1–32 | 88.8 | 1 | 1–32 | 95.9 | 4 | 1–32 | 88.3 | High %S/ good to very/highly potent |
Levofloxacin a | 4 | 0.03–8 | 87.6 | 8 | 0.06–8 | 78.1 | 0.5 | 0.03–8 | 94.9 | 0.5 | 0.06–8 | 95.2 | Moderate to high %S/ moderate to very/highly potent |
Linezolid | 2 | 0.5–16 | 99.8 | 2 | 0.5–4 | 100 | 2 | 0.5–4 | 100 | 2 | 0.5–4 | 100 | High %S/ very/highly potent |
Teicoplanin | 1 | 0.12–2 | 100 | 1 | 0.25–2 | 100 | 1 | 0.12–2 | 100 | 1 | 0.25–2 | 100 | High %S/ very/highly potent |
Tigecycline | 0.12 | 0.015–1 | 99.8 | 0.25 | 0.015–1 | 99.7 | 0.12 | 0.015–2 | 99.9 | 0.12 | 0.03–0.25 | 100 | High %S/ very/highly potent |
Trimethoprim sulfamethoxazole b | 0.5 | 0.03–4 | 97.5 | 0.5 | 0.03–4 | 98.2 | 0.12 | 0.03–4 | 99.6 | 0.12 | 0.03–4 | 99.8 | High %S/ very/highly potent |
Vancomycin | 1 | 0.25–2 | 100 | 1 | 0.5–2 | 100 | 1 | 0.25–2 | 100 | 1 | 0.5–2 | 100 | High %S/ very/highly potent |
MRSA | n = 237 | n = 494 | n = 655 | n = 438 | |||||||||
Ceftaroline c | 1 | 0.25–4 | 93.7 | 2 | 0.25–8 | 89.5 | 1 | 0.25–32 | 92.5 | 1 | 0.25–4 | 91.6 | High %S/ potent |
Clindamycin | 4 | 0.03–4 | 84.0 | 4 | 0.06–4 | 75.9 | 4 | 0.03–4 | 72.5 | 4 | 0.03–4 | 74.9 | Moderate |
Daptomycin | 1 | 0.25–1 | 100 | 1 | 0.12–1 | 100 | 1 | 0.12–8 | 98.0 | 1 | 0.25–1 | 100 | High %S/ very/highly potent |
Erythromycin | 8 | 0.25–8 | 61.2 | 8 | 0.12–8 | 37.7 | 8 | 0.12–8 | 37.0 | 8 | 0.12–8 | 42.5 | Low |
Gentamicin | 32 | 1–32 | 66.7 | 32 | 1–32 | 55.3 | 32 | 1–32 | 83.1 | 32 | 1–32 | 84.7 | Low to moderate |
Levofloxacin a | 8 | 0.12–8 | 54.0 | 8 | 0.12–8 | 39.5 | 8 | 0.12–8 | 39.1 | 8 | 0.12–8 | 68.3 | Low to moderate |
Linezolid | 2 | 1–4 | 100 | 2 | 1–16 | 99.8 | 2 | 0.5–4 | 100 | 2 | 1–4 | 100 | High %S/ very/highly potent |
Teicoplanin | 1 | 0.12–2 | 100 | 1 | 0.25–8 | 96.2 | 1 | 0.12–16 | 99.1 | 1 | 0.25–2 | 100 | High %S/ very/highly potent |
Tigecycline | 0.12 | 0.03–0.25 | 100 | 0.25 | 0.03–1 | 98.6 | 0.25 | 0.03–2 | 99.9 | 0.25 | 0.03–1 | 99.5 | High %S/ very/highly potent |
Trimethoprim sulfamethoxazole b | 2 | 0.03–4 | 94.1 | 0.5 | 0.03–4 | 96.4 | 0.12 | 0.03–4 | 98.5 | 0.12 | 0.03–4 | 99.5 | High %S/ potent to very/highly potent |
Vancomycin | 1 | 0.5–2 | 100 | 1 | 0.5–2 | 100 | 2 | 0.5–8 | 99.9 | 2 | 0.5–2 | 100 | High %S/ very/highly potent |
Organism/ Antimicrobial | Africa/Middle East | Asia-Pacific | Europe | Latin America | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | Susceptibility (%S)/Activity Attributes | |
Streptococcus pyogenes | n = 62 | n = 136 | n = 428 | n = 97 | |||||||||
Ceftaroline a | 0.008 | 0.004–0.015 | NA | 0.015 | 0.004–0.03 | NA | 0.008 | 0.004–0.12 | NA | 0.008 | 0.004–0.03 | NA | Very/highly potent |
Clindamycin | 0.12 | 0.015–2 | 98.4 | 2 | 0.03–2 | 89.7 | 0.12 | 0.015–2 | 95.6 | 0.12 | 0.015–2 | 97.9 | High %S/ Potent to very/highly potent |
Daptomycin b | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
Erythromycin c | 0.06 | 0.015–2 | 93.6 | 2 | 0.015–2 | 76.5 | 0.25 | 0.015–2 | 90.2 | 0.06 | 0.015–2 | 92.8 | Moderate to high %S/ Moderate to potent |
Levofloxacin d | 1 | 0.25–2 | 100 | 1 | 0.25–8 | 98.5 | 1 | 0.25–8 | 98.8 | 2 | 0.25–8 | 90.7 | High %S/ Potent to very/highly potent |
Linezolid | 2 | 0.5–2 | 100 | 2 | 0.5–2 | 100 | 2 | 0.12–2 | 100 | 2 | 0.5–2 | 100 | High %S/ Very/highly potent |
Penicillin | 0.06 | 0.06–0.06 | 100 | 0.06 | 0.06–0.12 | 100 | 0.06 | 0.06–0.12 | 100 | 0.06 | 0.06–0.06 | 100 | High %S/ Very/highly potent |
Tigecycline | 0.06 | 0.015–0.06 | 100 | 0.06 | 0.008–0.06 | 100 | 0.06 | 0.015–0.06 | 100 | 0.06 | 0.015–0.06 | 100 | High %S/ Very/highly potent |
Vancomycin | 1 | 0.25–1 | 100 | 0.5 | 0.12–1 | 100 | 0.5 | 0.03–1 | 100 | 1 | 0.25–1 | 100 | High %S/ Very/highly potent |
Streptococcus agalactiae | n = 48 | n = 105 | n = 308 | n = 74 | |||||||||
Ceftaroline a | 0.03 | 0.008–0.03 | NA | 0.03 | 0.004–0.06 | NA | 0.015 | 0.004–0.03 | NA | 0.015 | 0.004–0.06 | NA | Very/highly potent |
Clindamycin | 2 | 0.03–2 | 81.3 | 2 | 0.03–2 | 77.1 | 2 | 0.015–2 | 78.3 | 2 | 0.015–2 | 85.1 | Moderate to high %S/ Moderate to good |
Daptomycin b | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
Erythromycin | 2 | 0.03–2 | 64.6 | 2 | 0.03–2 | 69.5 | 2 | 0.015–2 | 69.5 | 2 | 0.015–2 | 81.1 | Moderate |
Levofloxacin d | 1 | 0.5–8 | 97.9 | 2 | 0.25–8 | 90.5 | 2 | 0.25–8 | 98.1 | 2 | 0.25–8 | 94.6 | High %S/ Potent to very/highly potent |
Linezolid | 2 | 0.25–2 | 100 | 2 | 0.5–2 | 100 | 2 | 0.12–2 | 100 | 2 | 0.5–2 | 100 | High %S/ Very/highly potent |
Penicillin | 0.06 | 0.06–0.12 | 100 | 0.06 | 0.06–0.12 | 100 | 0.06 | 0.06–0.12 | 100 | 0.06 | 0.06–0.25 | 100 | High %S/ Very/highly potent |
Tigecycline | 0.06 | 0.03–0.12 | 100 | 0.06 | 0.015–0.12 | 100 | 0.06 | 0.015–0.06 | 100 | 0.06 | 0.015–0.06 | 100 | High %S/ Very/highly potent |
Vancomycin | 0.5 | 0.12–1 | 100 | 0.5 | 0.25–1 | 100 | 0.5 | 0.03–1 | 100 | 0.5 | 0.25–1 | 100 | High %S/ Very/highly potent |
Streptococcus dysgalactiae | n = 13 | n = 42 | n = 127 | n = 20 | |||||||||
Ceftaroline a | 0.015 | 0.004–0.015 | NA | 0.015 | 0.004–0.03 | NA | 0.008 | 0.004–0.015 | NA | 0.015 | 0.004–0.25 | NA | Very/highly potent |
Clindamycin | 0.12 | 0.06–2 | 92.3 | 2 | 0.03–2 | 88.1 | 2 | 0.03–2 | 88.2 | 0.5 | 0.06–2 | 95 | High %S/ Good to very/highly potent |
Daptomycin b | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | |
Erythromycin c | 2 | 0.03–2 | 53.9 | 2 | 0.015–2 | 64.3 | 2 | 0.03–2 | 72.4 | 2 | 0.03–2 | 75 | Low to moderate |
Levofloxacin d | 1 | 0.25–1 | 100 | 1 | 0.25–8 | 97.6 | 1 | 0.25–8 | 99.2 | 1 | 0.25–8 | 95 | High %S/ Very/highly potent |
Linezolid | 2 | 1–2 | 100 | 2 | 0.5–2 | 100 | 2 | 0.5–2 | 100 | 2 | 1–2 | 100 | High %S/ Very/highly potent |
Penicillin | 0.06 | 0.06–0.06 | 100 | 0.06 | 0.06–0.06 | 100 | 0.06 | 0.06–0.06 | 100 | 0.06 | 0.06–0.06 | 100 | High %S/ Very/highly potent |
Tigecycline | 0.12 | 0.03–0.12 | 100 | 0.25 | 0.03–0.25 | 85.7 | 0.06 | 0.015–0.25 | 98.4 | 0.25 | 0.03–0.25 | 90 | High %S/ Good to very/highly potent |
Vancomycin | 0.5 | 0.25–0.5 | 100 | 0.5 | 0.25–1 | 100 | 0.5 | 0.25–1 | 100 | 0.5 | 0.25–0.5 | 100 | High %S/ Very/highly potent |
Organism/ Antimicrobial | Africa/Middle East | Asia-Pacific | Europe | Latin America | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | MIC90 (mg/L) | MIC Range (mg/L) | %S | Susceptibility (%S)/Activity Attributes | |
Escherichia coli, ESBL-negative | n = 109 | n = 126 | n = 571 | n = 103 | |||||||||
Ceftaroline | 0.5 | ≤0.015–≥16 | 92.7 | 1 | 0.03–≥16 | 89.7 | 0.5 | ≤0.015–≥16 | 93 | 0.5 | ≤0.015–≥16 | 93.2 | High %S/ potent |
Amikacin | 4 | 1–32 | 97.2 | 4 | 1–16 | 99.2 | 4 | ≤0.25–≥128 | 98.2 | 8 | 1–16 | 99 | High %S/ very/highly potent |
Amoxicillin-clavulanate | 16 | 0.25–≥32 | 89 | 16 | 1–≥32 | 88.1 | 8 | 0.25–≥32 | 93 | 8 | 0.5–≥32 | 93.2 | High %S/ good to potent |
Aztreonam | 0.12 | ≤0.015–1 | 100 | 0.25 | 0.03–1 | 100 | 0.12 | ≤0.015–1 | 100 | 0.12 | ≤0.015–1 | 100 | High %S/ very/highly potent |
Cefepime a | ≤0.12 | ≤0.12–2 | 99.1 | ≤0.12 | ≤0.12–1 | 100 | ≤0.12 | ≤0.12–16 | 98.8 | ≤0.12 | ≤0.12–8 | 98.1 | High %S/ very/highly potent |
Levofloxacin b | ≥16 | ≤0.25–≥16 | 71.6 | ≥16 | ≤0.25–≥16 | 69.8 | ≥16 | ≤0.25–≥16 | 80.9 | ≥16 | ≤0.25–≥16 | 66 | Moderate |
Meropenem | ≤0.06 | ≤0.06–≤0.06 | 100 | ≤0.06 | ≤0.06–2 | 100 | ≤0.06 | ≤0.06–0.5 | 100 | ≤0.06 | ≤0.06–0.25 | 100 | High %S/ very/highly potent |
Piperacillin-tazobactam | 4 | 0.5–≥128 | 93.6 | 8 | 0.5–≥128 | 91.3 | 4 | ≤0.12–≥128 | 94.7 | 8 | 0.25–≥128 | 94.2 | High %S/ potent |
Tigecycline | 0.25 | 0.06–2 | 98.2 | 0.5 | 0.06–2 | 96.8 | 0.25 | ≤0.03–2 | 98.9 | 0.25 | 0.06–2 | 99 | High %S/ very/highly potent |
Trimethoprim sulfamethoxazole c | ≥64 | 1–≥64 | 57.8 | ≥64 | 1–≥64 | 62.7 | ≥64 | 1–≥64 | 73 | ≥64 | 1–≥64 | 55.3 | Low to moderate |
Klebsiella pneumoniae, ESBL-negative | n = 63 | n = 160 | n = 317 | n = 73 | |||||||||
Ceftaroline | 0.25 | 0.03–1 | 95.2 | 0.25 | 0.03–≥16 | 98.1 | 1 | ≤0.015–≥16 | 89.6 | 0.25 | 0.03–2 | 98.6 | High %S/ potent to very/highly potent |
Amikacin | 2 | 0.5–4 | 100 | 2 | ≤0.25–16 | 99.4 | 2 | ≤0.25–32 | 98.7 | 2 | 0.5–64 | 98.6 | High %S/ very/highly potent |
Amoxicillin-clavulanate | 4 | 0.5–8 | 100 | 4 | 0.25–≥32 | 96.9 | 8 | 0.25–≥32 | 92.4 | 4 | 0.5–16 | 97.3 | High %S/ potent to very/highly potent |
Aztreonam | 0.12 | ≤0.015–0.25 | 100 | 0.12 | ≤0.015–1 | 100 | 0.25 | ≤0.015–1 | 100 | 0.12 | ≤0.015–0.5 | 100 | High %S/ very/highly potent |
Cefepime a | ≤0.12 | ≤0.12–0.25 | 100 | ≤0.12 | ≤0.12–16 | 99.4 | 0.25 | ≤0.12–16 | 98.1 | ≤0.12 | ≤0.12–8 | 98.6 | High %S/ very/highly potent |
Levofloxacin b | 0.5 | ≤0.25–≥16 | 90.5 | 0.5 | ≤0.25–≥16 | 92.5 | 2 | ≤0.25–≥16 | 83.6 | 1 | ≤0.25–≥16 | 82.2 | Moderate to high %S/ moderate to potent |
Meropenem | ≤0.06 | ≤0.06–≤0.06 | 100 | ≤0.06 | ≤0.06–0.12 | 100 | ≤0.06 | ≤0.06–≥32 | 99.4 | ≤0.06 | ≤0.06–0.5 | 100 | High %S/ very/highly potent |
Piperacillin-tazobactam | 4 | 1–≥128 | 96.8 | 4 | ≤0.5–≥128 | 96.3 | 16 | ≤0.5–≥128 | 86.4 | 4 | ≤0.5–32 | 95.9 | High %S/ good to very/highly potent |
Tigecycline d | 0.5 | 0.12–2 | NA | 1 | 0.06–4 | NA | 1 | 0.06–4 | NA | 1 | 0.25–4 | NA | Very/highly potent |
Trimethoprim sulfamethoxazole c | ≥64 | 1–≥64 | 87.3 | 4 | 1–≥64 | 88.8 | ≥64 | 1–≥64 | 83.9 | ≥64 | 1–≥64 | 82.2 | Moderate to high %S/ moderate to good |
Klebsiella oxytoca, ESBL-negative | n = 20 | n = 22 | n = 149 | n = 17 | |||||||||
Ceftaroline | 0.5 | 0.06–1 | 95 | 0.5 | ≤0.015–1 | 95.5 | 0.5 | 0.03–≥16 | 95.3 | 1 | 0.03–1 | 88.2 | High %S/ good to very/highly potent |
Amikacin | 2 | 1–4 | 100 | 2 | 1–2 | 100 | 2 | ≤0.25–8 | 100 | 4 | 1–16 | 94.1 | High %S/ potent to very/highly potent |
Amoxicillin-clavulanate | 4 | 1–≥32 | 90 | 4 | 1–≥32 | 95.5 | 2 | ≤0.12–≥32 | 98 | 4 | 1–≥32 | 94.1 | High %S/ potent to very/highly potent |
Aztreonam | 0.5 | ≤0.015–0.5 | 100 | 0.5 | ≤0.015–1 | 100 | 0.5 | ≤0.015–1 | 100 | 0.25 | ≤0.015–0.25 | 100 | High %S/ very/highly potent |
Cefepime | ≤0.12 | ≤0.12–≤0.12 | 100 | ≤0.12 | ≤0.12–≤0.12 | 100 | ≤0.12 | ≤0.12–0.5 | 100 | ≤0.12 | ≤0.12–1 | 100 | High %S/ very/highly potent |
Levofloxacin b | ≤0.25 | ≤0.25–≤0.25 | 100 | ≤0.25 | ≤0.25–≤0.25 | 100 | ≤0.25 | ≤0.25–≥16 | 98 | 0.5 | ≤0.25–0.5 | 100 | High %S/ very/highly potent |
Meropenem | ≤0.06 | ≤0.06–≤0.06 | 100 | ≤0.06 | ≤0.06–≤0.06 | 100 | ≤0.06 | ≤0.06–4 | 99.3 | ≤0.06 | ≤0.06–0.12 | 100 | High %S/ very/highly potent |
Piperacillin-tazobactam | 4 | 0.5–8 | 100 | 4 | 0.5–4 | 100 | 4 | 0.25–≥128 | 97.3 | 4 | 0.5–4 | 100 | High %S/ very/highly potent |
Tigecycline d | 0.5 | 0.12–0.5 | NA | 0.5 | 0.06–0.5 | NA | 0.5 | 0.06–4 | NA | 0.5 | 0.12–1 | NA | Very/highly potent |
Trimethoprim sulfamethoxazole | 1 | 1–1 | 100 | 1 | 1–≥64 | 95.5 | 1 | 1–≥64 | 98.7 | 1 | 1–≥64 | 94.1 | High %S/ potent to very/highly potent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by Pfizer Inc. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuraieva, A.; Cabezas-Camarero, G.; Kiratisin, P.; Utt, E. In Vitro Activity of Ceftaroline and Comparators against Bacterial Isolates Collected Globally from Patients with Skin and Soft Tissue Infections: ATLAS Program 2019–2020. Antibiotics 2023, 12, 1237. https://doi.org/10.3390/antibiotics12081237
Kuraieva A, Cabezas-Camarero G, Kiratisin P, Utt E. In Vitro Activity of Ceftaroline and Comparators against Bacterial Isolates Collected Globally from Patients with Skin and Soft Tissue Infections: ATLAS Program 2019–2020. Antibiotics. 2023; 12(8):1237. https://doi.org/10.3390/antibiotics12081237
Chicago/Turabian StyleKuraieva, Alona, Guillermo Cabezas-Camarero, Pattarachai Kiratisin, and Eric Utt. 2023. "In Vitro Activity of Ceftaroline and Comparators against Bacterial Isolates Collected Globally from Patients with Skin and Soft Tissue Infections: ATLAS Program 2019–2020" Antibiotics 12, no. 8: 1237. https://doi.org/10.3390/antibiotics12081237
APA StyleKuraieva, A., Cabezas-Camarero, G., Kiratisin, P., & Utt, E. (2023). In Vitro Activity of Ceftaroline and Comparators against Bacterial Isolates Collected Globally from Patients with Skin and Soft Tissue Infections: ATLAS Program 2019–2020. Antibiotics, 12(8), 1237. https://doi.org/10.3390/antibiotics12081237