Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons
Abstract
:1. Introduction
2. Prevalence of Multidrug-Resistant Bacteria in Gut
2.1. In the Community
2.2. In the Hospitals
2.3. Clinical Importance of Carrying MDR Bacteria in the Gut for the Development of Infections
3. Strategies to Decolonize the Gut from MDR Bacteria
3.1. Antibiotics
3.2. Bacteriotherapy: Probiotics, Prebiotics and Synbiotics
3.3. Fecal Microbiota Transplantation
3.4. Phages
3.5. CRISPR-Cas Systems
PROS | STRATEGY | CONS |
---|---|---|
Effective to prevent ICU-acquired infections [42,43,44] | Use of antibiotics | High impact on gut microbiota [48,49] No consensus on its application [42,43,44] Accelerate the appearance of resistances [46,47] Not recommended for routine decolonization [40] |
Promising results for the prevention and treatment of specific infections [56,66,67] Available as food supplements [51] | Bacteriotherapy | Lack of consensus [53] Bacteremia derived from probiotic intake have been detected [62,63] |
There is clinical evidence of its therapeutic effectiveness and safeness [68,69] Numerous clinical studies are happening [39,68,69,70] | Fecal Microbiota Transplantation | Lack of homogenous data [72] Standardization of the methodology and guidelines is still needed [72] |
High specificity for the host bacteria [73,74,75] Selective removal of MDR bacteria [75] Cocktails targeting different species can be administered [82] | Phages | High specificity can lead to low susceptibility [82] Poor knowledge about the efficacy of phages in the gastrointestinal tract |
High gene specificity Allows selective modification of the gut microbiome Discriminates between commensal and pathogenic bacteria [82,84,85,86,87,88,89] | CRISPR-Cas Systems | Difficult biocontainment Lack of CR-Phages for all gut pathogens, the narrow activity spectrum Low in vivo conjugation ratios [82,84,85,86,87,88,89] |
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heure, O.E.; et al. The Global Threat of Antimicrobial Resistance: Science for Intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Implementation Handbook for National Action Plans on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Vila, J. Microbiota Transplantation and/or CRISPR/Cas in the Battle against Antimicrobial Resistance. Clin. Microbiol. Infect. 2018, 24, 684–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vila, J.; Moreno-Morales, J.; Ballesté-Delpierre, C. Current Landscape in the Discovery of Novel Antibacterial Agents. Clin. Microbiol. Infect. 2020, 26, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Afonso, E.; Llauradó, M.; Gallart, E. The Value of Chlorhexidine Gluconate Wipes and Prepacked Washcloths to Prevent the Spread of Pathogens—A Systematic Review. Aust. Crit. Care 2013, 26, 158–166. [Google Scholar] [CrossRef]
- Taur, Y.; Xavier, J.; Lipuma, L.; Ubeda, C.; Goldberg, J.; Gobourne, A.; Lee, Y.J.; Dubin, K.A.; Socci, N.D.; Viale, A.; et al. Intestinal Domination and the Risk of Bacteremia in Patients Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Infect. Dis. 2012, 55, 905–914. [Google Scholar] [CrossRef]
- Bezabih, Y.M.; Bezabih, A.; Dion, M.; Batard, E.; Teka, S.; Obole, A.; Dessalegn, N.; Enyew, A.; Roujeinikova, A.; Alamneh, E.; et al. Comparison of the Global Prevalence and Trend of Human Intestinal Carriage of ESBL-Producing Escherichia Coli between Healthcare and Community Settings: A Systematic Review and Meta-Analysis. JAC Antimicrob. Resist. 2022, 4, dlac048. [Google Scholar] [CrossRef]
- Van den Bunt, G.; van Pelt, W.; Hidalgo, L.; Scharringa, J.; de Greeff, S.C.; Schürch, A.C.; Mughini-Gras, L.; Bonten, M.J.; Fluit, A.C. Prevalence, Risk Factors and Genetic Characterisation of Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing Enterobacteriaceae (ESBL-E and CPE): A Community-Based Cross-Sectional Study, The Netherlands, 2014 to 2016. Eurosurveillance 2019, 24, 1800594. [Google Scholar] [CrossRef] [Green Version]
- Najem, S.; Eick, D.; Boettcher, J.; Aigner, A.; Aboutara, M.; Fenner, I.; Reinshagen, K.; Koenigs, I. High Prevalence of Multidrug-Resistant Gram-Negative Bacteria Carriage in Children Screened Prospectively for Multidrug Resistant Organisms at Admission to a Paediatric Hospital, Hamburg, Germany, September 2018 to May 2019. Eurosurveillance 2022, 27, 2001567. [Google Scholar] [CrossRef]
- Neut, C. Carriage of Multidrug-Resistant Bacteria in Healthy People: Recognition of Several Risk Groups. Antibiotics 2021, 10, 1163. [Google Scholar] [CrossRef]
- Rubin, J.; Mussio, K.; Xu, Y.; Suh, J.; Riley, L.W. Prevalence of Antimicrobial Resistance Genes and Integrons in Commensal Gram-Negative Bacteria in a College Community. Microb. Drug Resist. 2020, 26, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-S.; Lai, L.-C.; Chen, Y.-A.; Lin, K.-Y.; Chou, Y.-H.; Chen, H.-C.; Wang, S.-S.; Wang, J.-T.; Chang, S.-C. Colonization with Multidrug-Resistant Organisms among Healthy Adults in the Community Setting: Prevalence, Risk Factors, and Composition of Gut Microbiome. Front. Microbiol. 2020, 11, 1402. [Google Scholar] [CrossRef] [PubMed]
- Golzarri, M.F.; Silva-Sánchez, J.; Cornejo-Juárez, P.; Barrios-Camacho, H.; Chora-Hernández, L.D.; Velázquez-Acosta, C.; Vilar-Compte, D. Colonization by Fecal Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae and Surgical Site Infections in Patients with Cancer Undergoing Gastrointestinal and Gynecologic Surgery. Am. J. Infect. Control 2019, 47, 916–921. [Google Scholar] [CrossRef]
- Wieërs, G.; Verbelen, V.; Driessche, M.V.D.; Melnik, E.; Vanheule, G.; Marot, J.-C.; Cani, P.D. Do Probiotics during In-Hospital Antibiotic Treatment Prevent Colonization of Gut Microbiota with Multi-Drug-Resistant Bacteria? A Randomized Placebo-Controlled Trial Comparing Saccharomyces to a Mixture of Lactobacillus, Bifidobacterium, and Saccharomyces. Front. Public Health 2021, 8, 578089. [Google Scholar] [CrossRef] [PubMed]
- Valdéz, J.C.; Peral, M.C.; Rachid, M.; Santana, M.; Perdigón, G. Interference of Lactobacillus Plantarum with Pseudomonas Aeruginosa In Vitro and in Infected Burns: The Potential Use of Probiotics in Wound Treatment. Clin. Microbiol. Infect. 2005, 11, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Forestier, C.; Guelon, D.; Cluytens, V.; Gillart, T.; Sirot, J.; De Champs, C. Oral Probiotic and Prevention of Pseudomonas Aeruginosa Infections: A Randomized, Double-Blind, Placebo-Controlled Pilot Study in Intensive Care Unit Patients. Crit. Care 2008, 12, R69. [Google Scholar] [CrossRef] [Green Version]
- Vink, J.; Edgeworth, J.; Bailey, S.L. Acquisition of MDR-GNB in Hospital Settings: A Systematic Review and Meta-Analysis Focusing on ESBL-E. J. Hosp. Infect. 2020, 106, 419–428. [Google Scholar] [CrossRef]
- de Souza, S.G.P.; dos Santos, I.C.; Bondezan, M.A.D.; Corsatto, L.F.M.; Caetano, I.C.D.S.; Zaniolo, M.M.; da Matta, R.; Merlini, L.S.; Barbosa, L.N.; Gonçalves, D.D. Bacteria with a Potential for Multidrug Resistance in Hospital Material. Microb. Drug Resist. 2021, 27, 835–842. [Google Scholar] [CrossRef]
- Buelow, E.; Rico, A.; Gaschet, M.; Lourenço, J.; Kennedy, S.P.; Wiest, L.; Ploy, M.-C.; Dagot, C. Hospital Discharges in Urban Sanitation Systems: Long-Term Monitoring of Wastewater Resistome and Microbiota in Relationship to Their Eco-Exposome. Water Res. X 2020, 7, 100045. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, J.; Zhao, Z.; Cao, Y.; Li, B. Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Front. Public Health 2020, 8, 574968. [Google Scholar] [CrossRef]
- Worby, C.J.; Olson, B.S.; Dodson, K.W.; Earl, A.M.; Hultgren, S.J. Establishing the Role of the Gut Microbiota in Susceptibility to Recurrent Urinary Tract Infections. J. Clin. Investig. 2022, 132, e158497. [Google Scholar] [CrossRef] [PubMed]
- Dickson, R.P.; Singer, B.H.; Newstead, M.W.; Falkowski, N.R.; Erb-Downward, J.R.; Standiford, T.J.; Huffnagle, G.B. Enrichment of the Lung Microbiome with Gut Bacteria in Sepsis and the Acute Respiratory Distress Syndrome. Nat. Microbiol. 2016, 18, 16113. [Google Scholar] [CrossRef] [Green Version]
- Prado, V.; Hernández-Tejero, M.; Mücke, M.M.; Marco, F.; Gu, W.; Amoros, A.; Toapanta, D.; Reverter, E.; de la Peña-Ramirez, C.; Altenpeter, L.; et al. Rectal Colonization by Resistant Bacteria Increases the Risk of Infection by the Colonizing Strain in Critically Ill Patients with Cirrhosis. J. Hepatol. 2022, 76, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Denis, B.; Lafaurie, M.; Donay, J.-L.; Fontaine, J.-P.; Oksenhendler, E.; Raffoux, E.; Hennequin, C.; Allez, M.; Socie, G.; Maziers, N.; et al. Prevalence, Risk Factors, and Impact on Clinical Outcome of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Bacteraemia: A Five-Year Study. Int. J. Infect. Dis. 2015, 39, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chia, P.Y.; Sengupta, S.; Kukreja, A.; Ponnampalavanar, S.S.; Ng, O.T.; Marimuthu, K. The Role of Hospital Environment in Transmissions of Multidrug-Resistant Gram-Negative Organisms. Antimicrob. Resist. Infect. Control 2020, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andremont, O.; Armand-Lefevre, L.; Dupuis, C.; De Montmollin, E.; Ruckly, S.; Lucet, J.-C.; Smonig, R.; Magalhaes, E.; Ruppé, E.; Mourvillier, B.; et al. Semi-Quantitative Cultures of Throat and Rectal Swabs Are Efficient Tests to Predict ESBL-Enterobacterales Ventilator-Associated Pneumonia in Mechanically Ventilated ESBL Carriers. Intensive Care Med. 2020, 46, 1232–1242. [Google Scholar] [CrossRef]
- Frencken, J.F. Associations between Enteral Colonization with Gram-Negative Bacteria and ICU-Acquired Infections and Colonization of the Respiratory Tract; Oxford University Press for the Infectious Diseases Society of America: New York, NY, USA, 2017. [Google Scholar]
- Alevizakos, M.; Karanika, S.; Detsis, M.; Mylonakis, E. Colonisation with Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae and Risk for Infection among Patients with Solid or Haematological Malignancy: A Systematic Review and Meta-Analysis. Int. J. Antimicrob. Agents 2016, 48, 647–654. [Google Scholar] [CrossRef]
- Jean, S.-S.; Harnod, D.; Hsueh, P.-R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef]
- Demiraslan, H.; Cevahir, F.; Berk, E.; Metan, G.; Cetin, M.; Alp, E. Is Surveillance for Colonization of Carbapenem-Resistant Gram-Negative Bacteria Important in Adult Bone Marrow Transplantation Units? Am. J. Infect. Control 2017, 45, 735–739. [Google Scholar] [CrossRef]
- Kiddee, A.; Assawatheptawee, K.; Na-Udom, A.; Boonsawang, P.; Treebupachatsakul, P.; Walsh, T.R.; Niumsup, P.R. Risk Factors for Extended-Spectrum Carriage in Patients Admitted to Intensive Care Unit in a Tertiary Care Hospital in Thailand. Microb. Drug Resist. 2019, 25, 1182–1190. [Google Scholar] [CrossRef]
- Montero, J.G.; Lerma, F.; Galleymore, P.R.; Martínez, M.P.; Rocha, L.; Gaite, F.B.; Rodríguez, J.; González, M.C.; Moreno, I.F.; Baño, J.R.; et al. Combatting Resistance in Intensive Care: The Multimodal Approach of the Spanish ICU “Zero Resistance” Program. Crit. Care 2015, 19, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer, R.; Soriano, A.; Cantón, R.; Del Pozo, J.L.; García-Vidal, C.; Garnacho-Montero, J.; Larrosa, N.; Rascado, P.; Salavert, M.; Pintado, V.; et al. Systematic Review A Systematic Literature Review and Expert Consensus on Risk Factors Associated to Infection Progression in Adult Patients with Respiratory Tract or Rectal Colonisation by Carbapenem-Resistant Gram-Negative Bacteria. Rev. Esp. Quimioter. 2022, 35, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Zorrilla, S.; Camoez, M.; Tubau, F.; Cañizares, R.; Periche, E.; Dominguez, M.A.; Ariza, J.; Peña, C. Prospective Observational Study of Prior Rectal Colonization Status as a Predictor for Subsequent Development of Pseudomonas aeruginosa Clinical Infections. Antimicrob. Agents Chemother. 2015, 59, 5213–5219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.D.; Jackson, S.S.; Robinson, G.; Leekha, S.; Thom, K.A.; Wang, Y.; Pettigrew, M.M.; Johnson, J.K.; Abmm, D. Pseudomonas aeruginosa Colonization in the Intensive Care Unit: Prevalence, Risk Factors, and Clinical Outcomes. HHS Public Access 2017, 37, 544–548. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.; Babushkin, F.; Cohen, S.; Afraimov, M.; Shapiro, M.; Uda, M.; Khabra, E.; Adler, A.; Ben Ami, R.; Paikin, S. Prospective Survey of Pseudomonas Aeruginosa Colonization and Infection in the Intensive Care Unit. Antimicrob. Resist. Infect. Control 2017, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Risk, A.I.; Rao, K. Measurement of Klebsiella Intestinal Colonization Density To Assess Infection Risk. mSphere 2021, 6, e0050021. [Google Scholar]
- Gargiullo, L.; Del Chierico, F.; D’argenio, P.; Putignani, L. Gut Microbiota Modulation for Multidrug-Resistant Organism Decolonization: Present and Future Perspectives. Front. Microbiol. 2019, 10, 1704. [Google Scholar] [CrossRef]
- Tacconelli, E.; Mazzaferri, F.; de Smet, A.M.; Bragantini, D.; Eggimann, P.; Huttner, B.D.; Kuijper, E.J.; Lucet, J.-C.; Mutters, N.T.; Sanguinetti, M.; et al. ESCMID-EUCIC Clinical Guidelines on Decolonization of Multidrug-Resistant Gram-Negative Bacteria Carriers. Clin. Microbiol. Infect. 2019, 25, 807–817. [Google Scholar] [CrossRef] [Green Version]
- Mascolo, A.; Carannante, N.; di Mauro, G.; Sarno, M.; Costanzo, M.; Licciardi, F.; Bernardo, M.; Capoluongo, N.; Perrella, A.; Capuano, A. Decolonization of Drug-Resistant Enterobacteriaceae Carriers: A Scoping Review of the Literature. J. Infect. Public Health 2023, 16, 376–383. [Google Scholar] [CrossRef]
- Silvestri, L.; van Saene, H.K.; Weir, I.; Gullo, A. Survival Benefit of the Full Selective Digestive Decontamination Regimen. J. Crit. Care 2009, 24, 474.e7–474.e14. [Google Scholar] [CrossRef]
- Plantinga, N.; de Smet, A.; Oostdijk, E.; de Jonge, E.; Camus, C.; Krueger, W.; Bergmans, D.; Reitsma, J.; Bonten, M. Selective Digestive and Oropharyngeal Decontamination in Medical and Surgical ICU Patients: Individual Patient Data Meta-Analysis. Clin. Microbiol. Infect. 2017, 24, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minozzi, S.; Pifferi, S.; Brazzi, L.; Pecoraro, V.; Montrucchio, G.; D’Amico, R. Topical Antibiotic Prophylaxis to Reduce Respiratory Tract Infections and Mortality in Adults Receiving Mechanical Ventilation. Cochrane Database Syst. Rev. 2021, 2021, CD000022. [Google Scholar] [CrossRef]
- Daneman, N.; Sarwar, S.; Fowler, R.A.; Cuthbertson, B.H. Effect of Selective Decontamination on Antimicrobial Resistance in Intensive Care Units: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2013, 13, 328–341. [Google Scholar] [CrossRef]
- Brink, A.J.; Coetzee, J.; Corcoran, C.; Clay, C.G.; Hari-Makkan, D.; Jacobson, R.K.; Richards, G.A.; Feldman, C.; Nutt, L.; van Greune, J.; et al. Emergence of OXA-48 and OXA-181 Carbapenemases among Enterobacteriaceae in South Africa and Evidence of In Vivo Selection of Colistin Resistance as a Consequence of Selective Decontamination of the Gastrointestinal Tract. J. Clin. Microbiol. 2013, 51, 369–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lübbert, C.; Faucheux, S.; Becker-Rux, D.; Laudi, S.; Dürrbeck, A.; Busch, T.; Gastmeier, P.; Eckmanns, T.; Rodloff, A.C.; Kaisers, U.X. Rapid Emergence of Secondary Resistance to Gentamicin and Colistin Following Selective Digestive Decontamination in Patients with KPC-2-Producing Klebsiella Pneumoniae: A Single-Centre Experience. Int. J. Antimicrob. Agents 2013, 42, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Ruppé, E.; Ghozlane, A.; Tap, J.; Pons, N.; Alvarez, A.-S.; Maziers, N.; Cuesta, T.; Hernando-Amado, S.; Clares, I.; Martínez, J.L.; et al. Prediction of the Intestinal Resistome by a Three-Dimensional Structure-Based Method. Nat. Microbiol. 2018, 4, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Benus, R.F.; Harmsen, H.J.; Welling, G.W.; Spanjersberg, R.; Zijlstra, J.G.; Degener, J.E.; van der Werf, T.S. Impact of Digestive and Oropharyngeal Decontamination on the Intestinal Microbiota in ICU Patients. Intensive Care Med. 2010, 36, 1394–1402. [Google Scholar] [CrossRef] [Green Version]
- Parsaei, M.; Sarafraz, N.; Moaddab, S.Y.; Leylabadlo, H.E. The Importance of Faecalibacterium Prausnitzii in Human Health and Diseases. New Microbes New Infect. 2021, 43, 100928. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.L.E.Y.Y.R.; Roberfroid, M.B. Critical Review Dietary Modulation of the Human Colonie Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Patel, R.; Dupont, H.L. New Approaches for Bacteriotherapy: Prebiotics, New-Generation Probiotics, and Synbiotics. Clin. Infect. Dis. 2015, 60 (Suppl. S2), S108–S121. [Google Scholar] [CrossRef]
- Newman, A.M.; Arshad, M. The Role of Probiotics, Prebiotics and Synbiotics in Combating Multidrug-Resistant Organisms. Clin. Ther. 2020, 42, 1637–1648. [Google Scholar] [CrossRef]
- Karbalaei, M.; Keikha, M. Probiotics and Intestinal Decolonization of Antibiotic-Resistant Microorganisms; A Reality or Fantasy? Ann. Med. Surg. 2022, 80, 104269. [Google Scholar] [CrossRef]
- Manley, K.J.; Fraenkel, M.B.; Mayall, B.C.; Power, A.D. Probiotic Treatment of Vancomycin-Resistant Enterococci: A Randomised Controlled Trial. Med. J. Aust. 2007, 186, 454–457. [Google Scholar] [CrossRef]
- Buyukeren, M.; Yigit, S.; Buyukcam, A.; Kara, A.; Celik, H.T.; Yurdakok, M. A New Use of Lactobacillus rhamnosus GG Administration in the NICU: Colonized Vancomycin- Resistant Enterococcus Eradication in the Gastrointestinal System A New Use of Lactobacillus Rhamnosus GG Administration in the NICU: Colonized Vancomycin-Resistan. J. Matern. Neonatal Med. 2020, 35, 1192–1198. [Google Scholar] [CrossRef] [PubMed]
- Dall, L.B.; Lausch, K.R.; Gedebjerg, A.; Fuursted, K.; Storgaard, M.; Larsen, C.S. Do Probiotics Prevent Colonization with Multi-Resistant Enterobacteriaceae during Travel ? A Randomized Controlled Trial. Travel Med. Infect. Dis. 2018, 27, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Litton, E.; Anstey, M.; Broadhurst, D.; Chapman, A.; Currie, A.; Ferrier, J.; Gummer, J.; Higgins, A.; Lim, J.; Manning, L.; et al. Early and Sustained Lactobacillus Plantarum Probiotic Therapy in Critical Illness: The Randomised, Placebo-Controlled, Restoration of Gut Microflora in Critical Illness Trial (ROCIT). Intensive Care Med. 2021, 47, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Ljungquist, O.; Kampmann, C.; Resman, F.; Riesbeck, K.; Tham, J. Probiotics for Intestinal Decolonization of ESBL-Producing Enterobacteriaceae: A Randomized, Placebo-Controlled Clinical Trial. Clin. Microbiol. Infect. 2019, 26, 456–462. [Google Scholar] [CrossRef]
- Guitor, A.K.; Yousuf, E.I.; Raphenya, A.R.; Hutton, E.K.; Morrison, K.M.; McArthur, A.G.; Wright, G.D.; Stearns, J.C. Capturing the Antibiotic Resistome of Preterm Infants Reveals New Benefits of Probiotic Supplementation. Microbiome 2022, 10, 136. [Google Scholar] [CrossRef]
- Meini, S.; Laureano, R.; Fani, L.; Tascini, C.; Galano, A.; Antonelli, A.; Rossolini, G.M. Breakthrough Lactobacillus Rhamnosus GG Bacteremia Associated with Probiotic Use in an Adult Patient with Severe Active Ulcerative Colitis: Case Report and Review of the Literature. Infection 2015, 43, 777–781. [Google Scholar] [CrossRef]
- Skljarevski, S.; Barner, A.; Bruno-Murtha, L.A. Preventing Avoidable Central Line–Associated Bloodstream Infections: Implications for Probiotic Administration and Surveillance. Am. J. Infect. Control 2016, 44, 1427–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Q.; Zhang, L.; Liu, X.; Kang, L.; Yi, J.; Ren, J.; Qu, X. COF-based artificial probiotic for modulation of gut microbiota and immune microenvironment in inflammatory bowel disease. Chem. Sci. 2022, 14, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Phavichitr, N.; Wang, S.; Chomto, S.; Tantibhaedhyangkul, R.; Kakourou, A.; Intarakhao, S.; Jongpiputvanich, S.; Wongteerasut, A.; Ben-Amor, K.; Martin, R.; et al. Impact of Synbiotics on Gut Microbiota during Early Life: A Randomized, Double-Blind Study. Sci. Rep. 2021, 11, 3534. [Google Scholar] [CrossRef] [PubMed]
- Asahara, T.; Takahashi, A.; Yuki, N.; Kaji, R.; Takahashi, T.; Nomoto, K. Protective Effect of a Synbiotic against Multidrug-Resistant Acinetobacter Baumannii in a Murine Infection Model. Antimicrob. Agents Chemother. 2016, 60, 3041–3050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanamori, Y.; Hashizume, K.; Kitano, Y.; Tanaka, Y.; Morotomi, M.; Yuki, N.; Tanaka, R. Anaerobic Dominant Flora Was Reconstructed by Synbiotics in an Infant with MRSA Enteritis. Pediatr. Int. 2003, 45, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Mullish, B.H.; Quraishi, M.N.; Segal, J.P.; McCune, V.L.; Baxter, M.; Marsden, G.L.; Moore, D.; Colville, A.; Bhala, N.; Iqbal, T.H.; et al. The Use of Faecal Microbiota Transplant as Treatment for Recurrent or Refractory Clostridium Difficile Infection and Other Potential Indications: Joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) Guidelines. J. Hosp. Infect. 2018, 100, S1–S31. [Google Scholar] [CrossRef] [Green Version]
- van Prehn, J.; Reigadas, E.; Vogelzang, E.H.; Bouza, E.; Hristea, A.; Guery, B.; Krutova, M.; Norén, T.; Allerberger, F.; Coia, J.E.; et al. European Society of Clinical Microbiology and Infectious Diseases: 2021 Update on the Treatment Guidance Document for Clostridioides Difficile Infection in Adults. Clin. Microbiol. Infect. 2021, 27 (Suppl. S2), S1–S21. [Google Scholar] [CrossRef]
- Yoon, Y.K.; Suh, J.W.; Kang, E.-J.; Kim, J.Y. Efficacy and Safety of Fecal Microbiota Transplantation for Decolonization of Intestinal Multidrug-Resistant Microorganism Carriage: Beyond Clostridioides Difficile Infection; Taylor & Francis: Abingdon, UK, 2019; Volume 51. [Google Scholar] [CrossRef]
- Tavoukjian, V. Faecal Microbiota Transplantation for the Decolonization of Antibiotic-Resistant Bacteria in the Gut: A Systematic Review and Meta-Analysis. J. Hosp. Infect. 2019, 102, 174–188. [Google Scholar] [CrossRef]
- Feehan, A.; Garcia-Diaz, J. Bacterial, Gut Microbiome-Modifying Therapies to Defend against Multidrug Resistant Organisms. Microorganisms 2020, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Biswas, B.; Adhya, S.; Washart, P.; Paul, B.; Trostel, A.N.; Powell, B.; Carlton, R.; Merril, C.R. Bacteriophage Therapy Rescues Mice Bacteremic from a Clinical Isolate of Vancomycin-Resistant Enterococcus Faecium. Infect. Immun. 2002, 70, 1664, Erratum in Infect. Immun. 2002, 70, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Duplessis, C. Refractory Pseudomonas Bacteremia in a 2-Year-Old Sterilized by Bacteriophage Therapy. J. Pediatr. Infect. Dis. Soc. 2018, 7, 253–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, Y.; Luo, T.; Yang, Y.; Dong, D.; Wang, R.; Wang, Y.; Xu, M.; Guo, X.; Hu, F.; He, P. Phage Therapy as a Promising New Treatment for Lung Infection Caused by Carbapenem-Resistant Acinetobacter Baumannii in Mice. Front. Microbiol. 2018, 8, 2659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galtier, M.; De Sordi, L.; Maura, D.; Arachchi, H.; Volant, S.; Dillies, M.; Debarbieux, L. Bacteriophages to Reduce Gut Carriage of Antibiotic Resistant Uropathogens with Low Impact on Microbiota Composition. Environ. Microbiol. 2016, 18, 2237–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galtier, M.; De Sordi, L.; Sivignon, A.; De Vallée, A.; Maura, D.; Neut, C.; Rahmouni, O.; Wannerberger, K.; Darfeuille-Michaud, A.; Desreumaux, P.; et al. Bacteriophages Targeting Adherent Invasive Escherichia coli Strains as a Promising New Treatment for Crohn’s Disease. J. Crohn’s Colitis 2017, 11, 840–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cepko, L.C.S.; Garling, E.E.; Dinsdale, M.J.; Scott, W.P.; Bandy, L.; Nice, T.; Faber-Hammond, J.; Mellies, J.L. Myoviridae Phage PDX Kills Enteroaggregative Escherichia coli without Human Microbiome Dysbiosis. J. Med. Microbiol. 2020, 69, 309–323. [Google Scholar] [CrossRef]
- Weiss, M.; Denou, E.; Bruttin, A.; Serra-Moreno, R.; Dillmann, M.-L.; Brüssow, H. In Vivo Replication of T4 and T7 Bacteriophages in Germ-Free Mice Colonized with Escherichia coli. Virology 2009, 393, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Chibani-Chennoufi, S.; Sidoti, J.; Bruttin, A.; Kutter, E.; Sarker, S.; Brüssow, H. In Vitro and In Vivo Bacteriolytic Activities of Escherichia coli Phages: Implications for Phage Therapy. Antimicrob. Agents Chemother. 2004, 48, 2558–2569. [Google Scholar] [CrossRef] [Green Version]
- Javaudin, F.; Bémer, P.; Batard, E.; Montassier, E. Impact of Phage Therapy on Multidrug-Resistant Escherichia coli Intestinal Carriage in a Murine Model. Microorganisms 2021, 9, 2580. [Google Scholar] [CrossRef]
- Nath, A.; Bhattacharjee, R.; Nandi, A.; Sinha, A.; Kar, S.; Manoharan, N.; Mitra, S.; Mojumdar, A.; Panda, P.K.; Patro, S.; et al. Phage Delivered CRISPR-Cas System to Combat Multidrug-Resistant Pathogens in Gut Microbiome. Biomed. Pharmacother. 2022, 151, 113122. [Google Scholar] [CrossRef]
- Dąbrowska, K. Phage Therapy: What Factors Shape Phage Pharmacokinetics and Bioavailability? Systematic and Critical Review. Med. Res. Rev. 2019, 39, 2000–2025. [Google Scholar] [CrossRef] [Green Version]
- Neil, K.; Allard, N.; Roy, P.; Grenier, F.; Menendez, A.; Burrus, V.; Rodrigue, S. High-efficiency Delivery of CRISPR-Cas9 by Engineered Probiotics Enables Precise Microbiome Editing. Mol. Syst. Biol. 2021, 17, e10335. [Google Scholar] [CrossRef]
- Bikard, D.; Euler, C.W.; Jiang, W.; Nussenzweig, P.M.; Goldberg, G.W.; Duportet, X.; Fischetti, A.V.; Marraffini, A.L. Exploiting CRISPR-Cas Nucleases to Produce Sequence-Specific Antimicrobials. Nat. Biotechnol. 2014, 32, 1146–1150. [Google Scholar] [CrossRef] [Green Version]
- Yosef, I.; Manor, M.; Kiro, R.; Qimron, U. Temperate and Lytic Bacteriophages Programmed to Sensitize and Kill Antibiotic-Resistant Bacteria. Proc. Natl. Acad. Sci. USA 2015, 112, 7267–7272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, B.B.; Plant, I.N.; Lyon, L.; Anastassacos, F.M.; Way, J.C.; Silver, P.A. In Situ Reprogramming of Gut Bacteria by Oral Delivery. Nat. Commun. 2020, 11, 5030. [Google Scholar] [CrossRef] [PubMed]
- Reuter, A.; Hilpert, C.; Dedieu-Berne, A.; Lematre, S.; Gueguen, E.; Launay, G.; Bigot, S.; Lesterlin, C. Targeted-Antibacterial-Plasmids (TAPs) Combining Conjugation and CRISPR/Cas Systems Achieve Strain-Specific Antibacterial Activity. Nucleic Acids Res. 2021, 49, 3584–3598. [Google Scholar] [CrossRef] [PubMed]
- Brödel, A.K.; Charpenay, L.; Galtier, M.; Fuche, F.J.; Terrasse, R.; Poquet, C.; Arraou, M.; Prevot, G.; Spadoni, D.; Hessel, E.M.; et al. In Situ Targeted Mutagenesis of Gut Bacteria. bioRxiv 2022. [Google Scholar] [CrossRef]
- Dong, H.; Xiang, H.; Mu, D.; Wang, D.; Wang, T. Exploiting a Conjugative CRISPR/Cas9 System to Eliminate Plasmid Harbouring the Mcr-1 Gene from Escherichia coli. Int. J. Antimicrob. Agents 2018, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Fagen, J.R.; Collias, D.; Singh, A.K.; Beisel, C.L. Advancing the Design and Delivery of CRISPR Antimicrobials. Curr. Opin. Biomed. Eng. 2017, 4, 57–64. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in Alternative Strategies to Combat Antimicrobial Resistance: Focus on Antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef]
- Gencay, Y.E.; Jasinskytė, D.; Robert, C.; Semsey, S.; Martínez, V.; Petersen, A.; Brunner, K.; Torio, A.d.S.; Salazar, A.; Turcu, I.C.; et al. Engineered Phage with Antibacterial CRISPR–Cas Selectively Reduce E. coli Burden in Mice. Nat. Biotechnol. 2023, 1–10. [Google Scholar] [CrossRef]
- Wang, R.; Shu, X.; Zhao, H.; Xue, Q.; Liu, C.; Wu, A.; Cheng, F.; Wang, L.; Zhang, Y.; Feng, J.; et al. Associate Toxin-Antitoxin with CRISPR-Cas to Kill Multidrug-Resistant Pathogens. Nat. Commun. 2023, 14, 2078. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roson-Calero, N.; Ballesté-Delpierre, C.; Fernández, J.; Vila, J. Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons. Antibiotics 2023, 12, 1074. https://doi.org/10.3390/antibiotics12061074
Roson-Calero N, Ballesté-Delpierre C, Fernández J, Vila J. Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons. Antibiotics. 2023; 12(6):1074. https://doi.org/10.3390/antibiotics12061074
Chicago/Turabian StyleRoson-Calero, Natalia, Clara Ballesté-Delpierre, Javier Fernández, and Jordi Vila. 2023. "Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons" Antibiotics 12, no. 6: 1074. https://doi.org/10.3390/antibiotics12061074
APA StyleRoson-Calero, N., Ballesté-Delpierre, C., Fernández, J., & Vila, J. (2023). Insights on Current Strategies to Decolonize the Gut from Multidrug-Resistant Bacteria: Pros and Cons. Antibiotics, 12(6), 1074. https://doi.org/10.3390/antibiotics12061074