Mycobacterium tuberculosis Adaptation in Response to Isoniazid Treatment in a Multi-Stress System That Mimics the Host Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Biosafety Approval
2.2. Isoniazid Stock Solution
2.3. Mycobacterial Strains
2.4. Culture Conditions
2.5. Sample Preparation for Real-Time PCR Assay
2.6. Real-Time PCR Targets Stress-Response Genes and LAM-Related Genes
2.7. Calculation and Statistical Analysis
3. Results
3.1. Stress-Response Gene Expression of Mtb in a Multi-Stress System Is Differently Regulated among Strains
3.2. A Single Treatment with INH in a Multi-Stress System Alters the Expression of Stress-Response Genes
3.3. The Expression of LAM-Related Genes of Mtb with Distinct Drug-Resistance Profile in a Multi-Stress System
3.4. Mycobacterial Adaptation via LAM-Related Gene Expression Induced by INH Treatment under a Multi-Stress System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO) Report. Global tuberculosis Report 2022. Available online: https://www.who.int/publications/i/item/9789240061729 (accessed on 1 April 2023).
- Parbhoo, T.; Mouton, J.M.; Sampson, S.L. Phenotypic adaptation of Mycobacterium tuberculosis to host-associated stressors that induce persister formation. Front. Cell Infect. Microbiol. 2022, 27, 956607. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Chatterji, D. Stress responses in mycobacteria. IUBMB Life 2005, 57, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, P.; Shankaran, D.; Bothra, A.; Gandotra, S.; Rao, V. The MmpS6-MmpL6 Operon Is an Oxidative Stress Response System Providing Selective Advantage to Mycobacterium tuberculosis in Stress. J. Infect. Dis. 2019, 219, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Bretl, D.J.; Demetriadou, C.; Zahrt, T.C. Adaptation to environmental stimuli within the host: Two-component signal transduction systems of Mycobacterium tuberculosis. Microbiol. Mol. Biol. Rev. MMBR 2011, 75, 566–582. [Google Scholar] [CrossRef][Green Version]
- Gengenbacher, M.; Kaufmann, S.H. Mycobacterium tuberculosis: Success through dormancy. FEMS Microbiol. Rev. 2012, 36, 514–532. [Google Scholar] [CrossRef][Green Version]
- Arora, G.; Bothra, A.; Prosser, G.; Arora, K.; Sajid, A. Role of post-translational modifications in the acquisition of drug resistance in Mycobacterium tuberculosis. FEBS J. 2021, 288, 3375–3393. [Google Scholar] [CrossRef]
- Betts, J.C.; Lukey, P.T.; Robb, L.C.; McAdam, R.A.; Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol. 2002, 43, 717–731. [Google Scholar] [CrossRef]
- Grant, S.S.; Kawate, T.; Nag, P.P.; Silvis, M.R.; Gordon, K.; Stanley, S.A.; Kazyanskaya, E.; Nietupski, R.; Golas, A.; Fitzgerald, M.; et al. Identification of novel inhibitors of nonreplicating Mycobacterium tuberculosis using a carbon starvation model. ACS Chem. Biol. 2013, 8, 2224–2234. [Google Scholar] [CrossRef][Green Version]
- Sohaskey, C.D.; Voskuil, M.I. In vitro models that utilize hypoxia to induce non-replicating persistence in Mycobacteria. Methods Mol. Biol. 2015, 1285, 201–213. [Google Scholar] [CrossRef]
- Bothra, A.; Arumugam, P.; Panchal, V.; Menon, D.; Srivastava, S.; Shankaran, D.; Nandy, A.; Jaisinghani, N.; Singh, A.; Gokhale, R.S.; et al. Phospholipid homeostasis, membrane tenacity and survival of Mtb in lipid rich conditions is determined by MmpL11 function. Sci. Rep. 2018, 8, 8317. [Google Scholar] [CrossRef][Green Version]
- Deb, C.; Lee, C.M.; Dubey, V.S.; Daniel, J.; Abomoelak, B.; Sirakova, T.D.; Pawar, S.; Rogers, L.; Kolattukudy, P.E. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE 2009, 4, e6077. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Joshi, H.; Kandari, D.; Bhatnagar, R. Insights into the molecular determinants involved in Mycobacterium tuberculosis persistence and their therapeutic implications. Virulence 2021, 12, 2721–2749. [Google Scholar] [CrossRef] [PubMed]
- Turapov, O.; O’Connor, B.D.; Sarybaeva, A.A.; Williams, C.; Patel, H.; Kadyrov, A.S.; Sarybaev, A.S.; Woltmann, G.; Barer, M.R.; Mukamolova, G.V. Phenotypically Adapted Mycobacterium tuberculosis Populations from Sputum Are Tolerant to First-Line Drugs. Antimicrob. Agents Chemother. 2016, 60, 2476–2483. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nieto, R.L.; Mehaffy, C.; Islam, M.N.; Fitzgerald, B.; Belisle, J.; Prenni, J.; Dobos, K. Biochemical Characterization of Isoniazid-resistant Mycobacterium tuberculosis: Can the Analysis of Clonal Strains Reveal Novel Targetable Pathways? Mol. Cell. Proteom. MCP 2018, 17, 1685–1701. [Google Scholar] [CrossRef][Green Version]
- Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol. 2016, 45, 474–492. [Google Scholar] [CrossRef]
- Dhar, N.; McKinney, J.D. Mycobacterium tuberculosis persistence mutants identified by screening in isoniazid-treated mice. Proc. Natl. Acad. Sci. USA 2010, 107, 12275–12280. [Google Scholar] [CrossRef][Green Version]
- Karakousis, P.C.; Williams, E.P.; Bishai, W.R. Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2008, 61, 323–331. [Google Scholar] [CrossRef][Green Version]
- Menzies, D.; Benedetti, A.; Paydar, A.; Royce, S.; Madhukar, P.; Burman, W.; Vernon, A.; Lienhardt, C. Standardized treatment of active tuberculosis in patients with previous treatment and/or with mono-resistance to isoniazid: A systematic review and meta-analysis. PLoS Med. 2009, 6, e1000150. [Google Scholar] [CrossRef]
- Gamngoen, R.; Putim, C.; Salee, P.; Phunpae, P.; Butr-Indr, B. A comparison of Rv0559c and Rv0560c expression in drug-resistant Mycobacterium tuberculosis in response to first-line antituberculosis drugs. Tuberculosis 2018, 108, 64–69. [Google Scholar] [CrossRef]
- Yimcharoen, M.; Saikaew, S.; Wattananandkul, U.; Phunpae, P.; Intorasoot, S.; Kasinrerk, W.; Tayapiwatana, C.; Butr-Indr, B. The Regulation of ManLAM-Related Gene Expression in Mycobacterium tuberculosis with Different Drug Resistance Profiles Following Isoniazid Treatment. Infect. Drug Resist. 2022, 15, 399–412. [Google Scholar] [CrossRef]
- Waddell, S.J.; Stabler, R.A.; Laing, K.; Kremer, L.; Reynolds, R.C.; Besra, G.S. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis 2004, 84, 263–274. [Google Scholar] [CrossRef]
- Gupta, A.K.; Katoch, V.M.; Chauhan, D.S.; Sharma, R.; Singh, M.; Venkatesan, K.; Sharma, V.D. Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb. Drug Resist. 2010, 16, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, M.; Nathan, C.; Rhee, K.Y. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 2014, 5, 4306. [Google Scholar] [CrossRef][Green Version]
- McKinney, J.D.; Höner zu Bentrup, K.; Muñoz-Elías, E.J.; Miczak, A.; Chen, B.; Chan, W.T.; Swenson, D.; Sacchettini, J.C.; Jacobs, W.R., Jr.; Russell, D.G. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 2000, 406, 735–738. [Google Scholar] [CrossRef]
- Quinonez, C.G.; Lee, J.J.; Lim, J.; Odell, M.; Lawson, C.P.; Anyogu, A.; Raheem, S.; Eoh, H. Fatty acid metabolism of Mycobacterium tuberculosis: A double-edged sword. Microb. Cell 2022, 9, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Saini, D.K.; Malhotra, V.; Dey, D.; Pant, N.; Das, T.K.; Tyagi, J.S. DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology 2004, 150, 865–875. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stewart, G.R.; Newton, S.M.; Wilkinson, K.A.; Humphreys, I.R.; Murphy, H.N.; Robertson, B.D.; Wilkinson, R.J.; Young, D.B. The stress-responsive chaperone alpha-crystallin 2 is required for pathogenesis of Mycobacterium tuberculosis. Mol. Microbiol. 2005, 55, 1127–1137. [Google Scholar] [CrossRef]
- Sirakova, T.D.; Dubey, V.S.; Deb, C.; Daniel, J.; Korotkova, T.A.; Abomoelak, B.; Kolattukudy, P.E. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 2006, 152, 2717–2725. [Google Scholar] [CrossRef][Green Version]
- Hu, Y.; Movahedzadeh, F.; Stoker, N.G.; Coates, A.R. Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased bacterial growth in vivo. Infect. Immun. 2006, 74, 861–868. [Google Scholar] [CrossRef][Green Version]
- Baek, S.H.; Li, A.H.; Sassetti, C.M. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol. 2011, 9, e1001065. [Google Scholar] [CrossRef][Green Version]
- Sedwick, C. Playing TAG with a bacterial stress response. PLoS Biol. 2011, 9, e1001068. [Google Scholar] [CrossRef][Green Version]
- Rodrigue, S.; Provvedi, R.; Jacques, P.E.; Gaudreau, L.; Manganelli, R. The sigma factors of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 2006, 30, 926–941. [Google Scholar] [CrossRef][Green Version]
- Bansal, R.; Anil Kumar, V.; Sevalkar, R.R.; Singh, P.R.; Sarkar, D. Mycobacterium tuberculosis virulence-regulator PhoP interacts with alternative sigma factor SigE during acid-stress response. Mol. Microbiol. 2017, 104, 400–411. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kalscheuer, R.; Palacios, A.; Anso, I.; Cifuente, J.; Anguita, J.; Jacobs, W.R., Jr.; Guerin, M.E.; Prados-Rosales, R. The Mycobacterium tuberculosis capsule: A cell structure with key implications in pathogenesis. Biochem. J. 2019, 476, 1995–2016. [Google Scholar] [CrossRef] [PubMed]
- Dulberger, C.L.; Rubin, E.J.; Boutte, C.C. The mycobacterial cell envelope—A moving target. Nat. Rev. Microbiol. 2020, 18, 47–59. [Google Scholar] [CrossRef]
- Boot, M.; van Winden, V.J.C.; Sparrius, M.; van de Weerd, R.; Speer, A.; Ummels, R.; Rustad, T.; Sherman, D.R.; Bitter, W. Cell envelope stress in mycobacteria is regulated by the novel signal transduction ATPase IniR in response to trehalose. PLoS Genet. 2017, 13, e1007131. [Google Scholar] [CrossRef][Green Version]
- Priestman, M.; Thomas, P.; Robertson, B.D.; Shahrezaei, V. Mycobacteria Modify Their Cell Size Control under Sub-Optimal Carbon Sources. Front. Cell Dev. Biol. 2017, 5, 64. [Google Scholar] [CrossRef][Green Version]
- Angala, S.K.; Belardinelli, J.M.; Huc-Claustre, E.; Wheat, W.H.; Jackson, M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 361–399. [Google Scholar] [CrossRef][Green Version]
- Sancho-Vaello, E.; Albesa-Jové, D.; Rodrigo-Unzueta, A.; Guerin, M.E. Structural basis of phosphatidyl-myo-inositol mannosides biosynthesis in mycobacteria. Biochim. Et Biophys. Acta. Mol. Cell Biol. Lipids 2017, 1862, 1355–1367. [Google Scholar] [CrossRef]
- Mishra, A.K.; Alderwick, L.J.; Rittmann, D.; Tatituri, R.V.; Nigou, J.; Gilleron, M.; Eggeling, L.; Besra, G.S. Identification of an alpha(1-->6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis. Mol. Microbiol. 2007, 65, 1503–1517. [Google Scholar] [CrossRef][Green Version]
- Kaur, D.; Berg, S.; Dinadayala, P.; Gicquel, B.; Chatterjee, D.; McNeil, M.R.; Vissa, V.D.; Crick, D.C.; Jackson, M.; Brennan, P.J. Biosynthesis of mycobacterial lipoarabinomannan: Role of a branching mannosyltransferase. Proc. Natl. Acad. Sci. USA 2006, 103, 13664. [Google Scholar] [CrossRef][Green Version]
- Mikusová, K.; Huang, H.; Yagi, T.; Holsters, M.; Vereecke, D.; D’Haeze, W.; Scherman, M.S.; Brennan, P.J.; McNeil, M.R.; Crick, D.C. Decaprenylphosphoryl arabinofuranose, the donor of the D-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol. 2005, 187, 8020–8025. [Google Scholar] [CrossRef][Green Version]
- Goude, R.; Amin, A.G.; Chatterjee, D.; Parish, T. The critical role of embC in Mycobacterium tuberculosis. J. Bacteriol. 2008, 190, 4335–4341. [Google Scholar] [CrossRef][Green Version]
- Zhou, K.L.; Li, X.; Zhang, X.L.; Pan, Q. Mycobacterial mannose-capped lipoarabinomannan: A modulator bridging innate and adaptive immunity. Emerg. Microbes Infect. 2019, 8, 1168–1177. [Google Scholar] [CrossRef][Green Version]
- Correia-Neves, M.; Sundling, C.; Cooper, A.; Källenius, G. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Front. Immunol. 2019, 10, 1968. [Google Scholar] [CrossRef][Green Version]
- Sena, C.B.C.; Fukuda, T.; Miyanagi, K.; Matsumoto, S.; Kobayashi, K.; Murakami, Y.; Maeda, Y.; Kinoshita, T.; Morita, Y.S. Controlled Expression of Branch-forming Mannosyltransferase Is Critical for Mycobacterial Lipoarabinomannan Biosynthesis. J. Biol. Chem. 2010, 285, 13326–13336. [Google Scholar] [CrossRef][Green Version]
- Gold, B.; Warrier, T.; Nathan, C. A multi-stress model for high throughput screening against non-replicating Mycobacterium tuberculosis. Methods Mol. Biol. 2015, 1285, 293–315. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2013, 3, 71–85. [Google Scholar]
- Gordhan, B.G.; Peters, J.; Kana, B.D. Application of model systems to study adaptive responses of Mycobacterium tuberculosis during infection and disease. Adv. Appl. Microbiol. 2019, 108, 115–161. [Google Scholar] [CrossRef]
- Nguyen, L. Antibiotic resistance mechanisms in M. tuberculosis: An update. Arch. Toxicol. 2016, 90, 1585–1604. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Peddireddy, V.; Doddam, S.N.; Ahmed, N. Mycobacterial Dormancy Systems and Host Responses in Tuberculosis. Front. Immunol. 2017, 8, 84. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mishra, A.K.; Driessen, N.N.; Appelmelk, B.J.; Besra, G.S. Lipoarabinomannan and related glycoconjugates: Structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol. Rev. 2011, 35, 1126–1157. [Google Scholar] [CrossRef][Green Version]
- Allué-Guardia, A.; García, J.I.; Torrelles, J.B. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front. Microbiol. 2021, 12, 612675. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; He, L.; Deng, W.; Xie, J. The Mycobacterium DosR regulon structure and diversity revealed by comparative genomic analysis. J. Cell. Biochem. 2013, 114, 1–6. [Google Scholar] [CrossRef]
- Iona, E.; Pardini, M.; Mustazzolu, A.; Piccaro, G.; Nisini, R.; Fattorini, L.; Giannoni, F. Mycobacterium tuberculosis gene expression at different stages of hypoxia-induced dormancy and upon resuscitation. J. Microbiol. 2016, 54, 565–572. [Google Scholar] [CrossRef]
- Alhusain, F. HspX-mediated survival pathways of pathogenic mycobacteria. Saudi Med. J. 2021, 42, 721–727. [Google Scholar] [CrossRef]
- Jee, B.; Sharma, P.; Katoch, K.; Joshi, B.; Awasthi, S.K. IL-10 down-regulates the expression of survival associated gene hspX of Mycobacterium tuberculosis in murine macrophage. Braz. J. Infect. Dis. 2017, 21, 386–390. [Google Scholar] [CrossRef]
- Daniel, J.; Maamar, H.; Deb, C.; Sirakova, T.D.; Kolattukudy, P.E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 2011, 7, e1002093. [Google Scholar] [CrossRef][Green Version]
- Sivaramakrishnan, S.; de Montellano, P.R. The DosS-DosT/DosR Mycobacterial Sensor System. Biosensors 2013, 3, 259–282. [Google Scholar] [CrossRef][Green Version]
- Zondervan, N.A.; van Dam, J.C.J.; Schaap, P.J.; Martins Dos Santos, V.A.P.; Suarez-Diez, M. Regulation of Three Virulence Strategies of Mycobacterium tuberculosis: A Success Story. Int. J. Mol. Sci. 2018, 19, 347. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fontán, P.A.; Aris, V.; Alvarez, M.E.; Ghanny, S.; Cheng, J.; Soteropoulos, P.; Trevani, A.; Pine, R.; Smith, I. Mycobacterium tuberculosis sigma factor E regulon modulates the host inflammatory response. J. Infect. Dis. 2008, 198, 877–885. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Casonato, S.; Provvedi, R.; Dainese, E.; Palù, G.; Manganelli, R. Mycobacterium tuberculosis requires the ECF sigma factor SigE to arrest phagosome maturation. PLoS ONE 2014, 9, e108893. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Muñoz-Elías, E.J.; McKinney, J.D. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat. Med. 2005, 11, 638–644. [Google Scholar] [CrossRef][Green Version]
- Fisher, M.A.; Plikaytis, B.B.; Shinnick, T.M. Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J. Bacteriol. 2002, 184, 4025–4032. [Google Scholar] [CrossRef][Green Version]
- Baker, J.J.; Johnson, B.K.; Abramovitch, R.B. Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol. Microbiol. 2014, 94, 56–69. [Google Scholar] [CrossRef][Green Version]
- Baker, J.J.; Dechow, S.J.; Abramovitch, R.B. Acid Fasting: Modulation of Mycobacterium tuberculosis Metabolism at Acidic pH. Trends Microbiol. 2019, 27, 942–953. [Google Scholar] [CrossRef]
- Rodríguez, J.G.; Hernández, A.C.; Helguera-Repetto, C.; Aguilar Ayala, D.; Guadarrama-Medina, R.; Anzóla, J.M.; Bustos, J.R.; Zambrano, M.M.; González, Y.M.J.; García, M.J.; et al. Global adaptation to a lipid environment triggers the dormancy-related phenotype of Mycobacterium tuberculosis. mBio 2014, 5, e01125-14. [Google Scholar] [CrossRef][Green Version]
- Bhusal, R.P.; Bashiri, G.; Kwai, B.X.C.; Sperry, J.; Leung, I.K.H. Targeting isocitrate lyase for the treatment of latent tuberculosis. Drug Discov. Today 2017, 22, 1008–1016. [Google Scholar] [CrossRef]
- Bacon, J.; Alderwick, L.J.; Allnutt, J.A.; Gabasova, E.; Watson, R.; Hatch, K.A.; Clark, S.O.; Jeeves, R.E.; Marriott, A.; Rayner, E.; et al. Non-replicating Mycobacterium tuberculosis elicits a reduced infectivity profile with corresponding modifications to the cell wall and extracellular matrix. PLoS ONE 2014, 9, e87329. [Google Scholar] [CrossRef][Green Version]
- Dong, W.; Wang, R.; Li, P.; Wang, G.; Ren, X.; Feng, J.; Lu, H.; Lu, W.; Wang, X.; Chen, H.; et al. Orphan response regulator Rv3143 increases antibiotic sensitivity by regulating cell wall permeability in Mycobacterium smegmatis. Arch. Biochem. Biophys. 2020, 692, 108522. [Google Scholar] [CrossRef] [PubMed]
- Goude, R.; Amin, A.G.; Chatterjee, D.; Parish, T. The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2009, 53, 4138–4146. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Berg, S.; Starbuck, J.; Torrelles, J.B.; Vissa, V.D.; Crick, D.C.; Chatterjee, D.; Brennan, P.J. Roles of Conserved Proline and Glycosyltransferase Motifs of EmbC in Biosynthesis of Lipoarabinomannan. J. Biol. Chem. 2005, 280, 5651–5663. [Google Scholar] [PubMed][Green Version]
Target | Forward (F) and Reverse (R) Primers 5′ → 3′ | Amplicon Length (bp) | Reference |
---|---|---|---|
hspX (Rv2031c) | F: CGACAAGGACGTCGACATTA R: CCTTGTCGTAGGTGGCCTTA | 173 bp | [21] |
tgs1 (Rv3130c) | F: TAGCTGGGCTCTCCGATGAA R: ATTGACACGGAATCCACCCC | 107 bp | [21] |
icl1 (Rv0467) | F: GTTGGCCTCTGAGAAGAAGTG R: CAGCGTGATGAACTGGAACT | 493 bp | This work * |
sigE (Rv1221) | F: GCAGTGCAAATTCGGAGGAT R: ATTGGTCAGACGGCTCCA | 114 bp | [21] |
pimB (Rv2188c) | F: GCGGTAGGTATTCCAACGAAG R: TATGCACCGCAGTGGAAAG | 394 bp | [21] |
mptA (Rv2174) | F: CGGTTGATTTGGCTACAGCG R: CGTAAGGATCCAGACCGTCG | 435 bp | [21] |
mptC (Rv2181) | F: ATAGCCCTCAAACTCACCCC R: TCATCGCCAATCGTCAACC | 245 bp | [21] |
dprE1 (Rv3790) | F: TATCCACTCCATTGACGCCG R: ATGATGATGCCGGTGAGACC | 318 bp | [21] |
dprE2 (Rv3791) | F: GACAGCCACCCGAAGATGAT R: AACCCCAGGTAAAACCCGTC | 302 bp | This work * |
embC (Rv3793) | F: CCGACAAAGTGGACCCATCA R: ACCGAAGTTGGACACGTACC | 195 bp | This work * |
sigA (Rv2703) | F: GTCGGAGGCCCTGCGTCAAG R: AGGCCAGCCTCGATCCGCTT | 147 bp | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yimcharoen, M.; Saikaew, S.; Wattananandkul, U.; Phunpae, P.; Intorasoot, S.; Tayapiwatana, C.; Butr-Indr, B. Mycobacterium tuberculosis Adaptation in Response to Isoniazid Treatment in a Multi-Stress System That Mimics the Host Environment. Antibiotics 2023, 12, 852. https://doi.org/10.3390/antibiotics12050852
Yimcharoen M, Saikaew S, Wattananandkul U, Phunpae P, Intorasoot S, Tayapiwatana C, Butr-Indr B. Mycobacterium tuberculosis Adaptation in Response to Isoniazid Treatment in a Multi-Stress System That Mimics the Host Environment. Antibiotics. 2023; 12(5):852. https://doi.org/10.3390/antibiotics12050852
Chicago/Turabian StyleYimcharoen, Manita, Sukanya Saikaew, Usanee Wattananandkul, Ponrut Phunpae, Sorasak Intorasoot, Chatchai Tayapiwatana, and Bordin Butr-Indr. 2023. "Mycobacterium tuberculosis Adaptation in Response to Isoniazid Treatment in a Multi-Stress System That Mimics the Host Environment" Antibiotics 12, no. 5: 852. https://doi.org/10.3390/antibiotics12050852
APA StyleYimcharoen, M., Saikaew, S., Wattananandkul, U., Phunpae, P., Intorasoot, S., Tayapiwatana, C., & Butr-Indr, B. (2023). Mycobacterium tuberculosis Adaptation in Response to Isoniazid Treatment in a Multi-Stress System That Mimics the Host Environment. Antibiotics, 12(5), 852. https://doi.org/10.3390/antibiotics12050852