Exposure to Non-Antimicrobial Drugs and Risk of Infection with Antibiotic-Resistant Enterobacteriaceae
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Study Overview
4.2. Non-Antimicrobial Drug Exposure
4.3. Microbiological Methods
4.4. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States; CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Schwaber, M.J.; Navon-Venezia, S.; Kaye, K.S.; Ben-Ami, R.; Schwartz, D.; Carmeli, Y. Clinical and economic impact of bacteremia with extended- spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2006, 50, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Bergman, M.; Huikko, S.; Pihlajamäki, M.; Laippala, P.; Palva, E.; Huovinen, P.; Seppälä, H.; Finnish Study Group for Antimicrobial Resistance (FiRe Network). Effect of macrolide consumption on erythromycin resistance in Streptococcus pyogenes in Finland in 1997–2001. Clin. Infect. Dis. 2004, 38, 1251–1256. [Google Scholar] [CrossRef] [PubMed]
- Goossens, H.; Ferech, M.; Vander Stichele, R.; Elseviers, M.; Group, E.P. Outpatient antibiotic use in Europe and association with resistance: A cross-national database study. Lancet 2005, 365, 579–587. [Google Scholar] [CrossRef]
- Ben-Ami, R.; Rodríguez-Baño, J.; Arslan, H.; Pitout, J.D.D.; Quentin, C.; Calbo, E.S.; Azap, Ö.K.; Arpin, C.; Pascual, A.; Livermore, D.M.; et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin. Infect. Dis. 2009, 49, 682–690. [Google Scholar] [CrossRef]
- MacDougall, C.; Powell, J.P.; Johnson, C.K.; Edmond, M.B.; Polk, R.E. Hospital and community fluoroquinolone use and resistance in Staphylococcus aureus and Escherichia coli in 17 US hospitals. Clin. Infect. Dis. 2005, 41, 435–440. [Google Scholar] [CrossRef]
- Ben-Ami, R.; Schwaber, M.J.; Navon-Venezia, S.; Schwartz, D.; Giladi, M.; Chmelnitsky, I.; Leavitt, A.; Carmeli, Y. Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin. Infect. Dis. 2006, 42, 925–934. [Google Scholar] [CrossRef]
- Frazee, B.W.; Trivedi, T.; Montgomery, M.; Petrovic, D.F.; Yamaji, R.; Riley, L. Emergency Department Urinary Tract Infections Caused by Extended-Spectrum beta-Lactamase-Producing Enterobacteriaceae: Many Patients Have No Identifiable Risk Factor and Discordant Empiric Therapy Is Common. Ann. Emerg. Med. 2018, 72, 449–456. [Google Scholar] [CrossRef]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555, 623–628. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Engelstädter, J.; Zhang, S.; Ding, P.; Mao, L.; Yuan, Z.; Bond, P.L.; Guo, J. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME J. 2020, 14, 2179–2196. [Google Scholar] [CrossRef]
- Papanicolas, L.E.; Gordon, D.L.; Wesselingh, S.L.; Rogers, G.B. Not Just Antibiotics: Is Cancer Chemotherapy Driving Antimicrobial Resistance? Trends Microbiol. 2018, 26, 393–400. [Google Scholar] [CrossRef]
- Bodet, C.A., 3rd; Jorgensen, J.H.; Drutz, D.J. Antibacterial activities of antineoplastic agents. Antimicrob. Agents Chemother. 1985, 28, 437–439. [Google Scholar] [CrossRef]
- Falony, G.; Joossens, M.; Vieira-Silva, S.; Wang, J.; Darzi, Y.; Faust, K.; Kurilshikov, A.; Jan Bonder, M.; Valles-Colomer, M.; Vandeputte, D.; et al. Population-level analysis of gut microbiome variation. Science 2016, 352, 560–564. [Google Scholar] [CrossRef]
- Radman, M. SOS repair hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci. 1975, 5a, 355–367. [Google Scholar] [CrossRef]
- Cirz, R.T.; Chin, J.K.; Andes, D.R.; de Crécy-Lagard, V.; Craig, W.A.; Romesberg, F.E. Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 2005, 3, e176. [Google Scholar] [CrossRef]
- Cirz, R.T.; Romesberg, F.E. Induction and inhibition of ciprofloxacin resistance-conferring mutations in hypermutator bacteria. Antimicrob. Agents Chemother. 2006, 50, 220–225. [Google Scholar] [CrossRef]
- Jackson, M.A.; Goodrich, J.K.; Maxan, M.-E.; Freedberg, D.E.; Abrams, J.A.; Poole, A.C.; Sutter, J.L.; Welter, D.; Ley, R.E.; Bell, J.T.; et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut 2016, 65, 749–756. [Google Scholar] [CrossRef]
- Imhann, F.; Bonder, M.J.; Vich Vila, A.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.M.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef]
- Ni, W.; Cai, X.; Liang, B.; Cai, Y.; Cui, J.; Wang, R. Effect of proton pump inhibitors on in vitro activity of tigecycline against several common clinical pathogens. PLoS ONE 2014, 9, e86715. [Google Scholar] [CrossRef]
- Willems, R.P.J.; van Dijk, K.; Ket, J.C.F.; Vandenbroucke-Grauls, C. Evaluation of the Association Between Gastric Acid Suppression and Risk of Intestinal Colonization With Multidrug-Resistant Microorganisms: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2020, 180, 561–571. [Google Scholar] [CrossRef]
- Nakamura, A.; Komatsu, M.; Ohno, Y.; Noguchi, N.; Kondo, A.; Hatano, N. Identification of specific protein amino acid substitutions of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli ST131: A proteomics approach using mass spectrometry. Sci. Rep. 2019, 9, 8555. [Google Scholar] [CrossRef] [PubMed]
- Bezabih, Y.M.; Sabiiti, W.; Alamneh, E.; Bezabih, A.; Peterson, G.M.; Bezabhe, W.M.; Roujeinikova, A. The global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli in the community. J. Antimicrob. Chemother. 2021, 76, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, M.; Kleinjohann, L.; Rolling, T.; Winter, D.; Hackbarth, N.; Ramharter, M.; Addo, M.; Eibach, D.; Phillips, R.O.; Owusu-Ofori, A.; et al. Impact of antibiotic intake on the incidence of extended-spectrum beta-lactamase-producing Enterobacterales in sub-Saharan Africa: Results from a community-based longitudinal study. Clin. Microbiol. Infect. 2023, 29, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.M.; Li, Q.H.; Shen, Y.; Zhang, Q. Risk factors for quinolone-resistant Escherichia coli infection: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 11. [Google Scholar] [CrossRef]
- Zimmermann, M.; Patil, K.R.; Typas, A.; Maier, L. Towards a mechanistic understanding of reciprocal drug-microbiome interactions. Mol. Syst. Biol. 2021, 17, e10116. [Google Scholar] [CrossRef]
- Bottery, M.J.; Pitchford, J.W.; Friman, V.-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2020, 15, 939–948. [Google Scholar] [CrossRef]
- Butt, J.H.; Fosbøl, E.L.; Verhamme, P.; Gerds, T.A.; Iversen, K.; Bundgaard, H.; Bruun, N.E.; Larsen, A.R.; Petersen, A.; Andersen, P.S.; et al. Dabigatran and the Risk of Staphylococcus aureus Bacteremia: A Nationwide Cohort Study. Clin. Infect. Dis. 2021, 73, 480–486. [Google Scholar] [CrossRef]
- Ulloa, E.R.; Uchiyama, S.; Gillespie, R.; Nizet, V.; Sakoulas, G. Ticagrelor Increases Platelet-Mediated Staphylococcus aureus Killing, Resulting in Clearance of Bacteremia. J. Infect. Dis. 2021, 224, 1566–1569. [Google Scholar] [CrossRef]
- Ejim, L.; Farha, M.A.; Falconer, S.B.; Wildenhain, J.; Coombes, B.K.; Tyers, M.; Brown, E.D.; Wright, G.D. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol. 2011, 7, 348–350. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M100: Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Cattaneo, M.; Drukker, D.; Holland, A. Estimation of multivalued treatment effects under conditional independence. Stata J. 2013, 13, 407–450. [Google Scholar] [CrossRef]
Characteristic | All Patients |
---|---|
Age, years, years, median (IQR) | 82 (71–88) |
Sex | |
Male | 742 (41.1) |
Female | 1065 (58.9) |
Charlson comorbidity score, median (IQR) | 5 (4–7) |
Norton score, median (IQR) | 16 (13–20) |
eGFR, ml/min, median (IQR) | 51.7 (33.2–75.2) |
Bloodstream infection | 520 (26.4) |
Inotropic support | 65 (3.3) |
Indwelling urinary catheter | 358 (19.8) |
Microbiology | |
E. coli | 1239 (62.83) |
Klebsiella spp. | 417 (21.15) |
Proteus spp. | 177 (8.98) |
Other Enterobacterales | 139 (7.05) |
DRO | |
Aminoglycoside | 331 (18.3) |
Ciprofloxacin | 692 (38.3) |
TMP-SMX | 612 (33.87) |
Ceftriaxone | 611 (33.81) |
Meropenem | 9 (0.5) |
MDRO | 431 (23.8) |
Resistance Phenotype | AG n = 331 | Ceftriaxone n = 611 | Ciprofloxacin n = 692 | Meropenem n = 9 | Tmp-Smx n = 612 | MDRO n = 431 |
---|---|---|---|---|---|---|
Age | 1.00 (0.99–1.01) | 1.01 (1.00–1.01) | 1.01 (1.00–1.02) | 0.99 (0.95–1.02) | 1.00 (0.99–1.00) | 1.00 (0.99–1.01) |
Norton score | 0.91 (0.88–0.94) | 0.88 (0.86–0.9) | 0.9 (0.88–0.92) | 0.87 [0.72–1.04] | 0.94 (0.91–0.96) | 0.90 (0.87–0.92) |
CCI | 1.03 (0.98–1.08) | 1.13 (1.09–1.18) | 1.12 (1.081–1.16) | 1.04 (0.81–1.35) | 1.09 (1.04–1.13) | 1.08 (1.04–1.13) |
Recent hospitalization | 1.59 (1.39–1.82) | 1.6 (1.43–1.84) | 1.4 (1.24–1.6) | 2.3 (1.61–3.28) | 1.39 (1.22–1.58) | 1.59 (1.4–1.8) |
Previous antibiotic therapy | 2.25 (1.63–3.1) | 2.12 (1.55–2.89) | 1.79 (1.31–2.45) | 1.37 (0.21–8.79) | 2 (1.47–2.73) | 2.2 (1.63–3.03) |
Indwelling urinary catheter | 1.79 (1.48–2.1) | 1.4 (1.18–1.71) | 1.48 (1.23–1.79) | 0.55 (0.087–3.55) | 1.31 (1.08–1.58) | 1.54 (1.22–0.46) |
Drug/Class | Age | Charlson Index | Norton | Hospitalization |
---|---|---|---|---|
Typical antipsychotic | 0.95 (0.93–0.97) | 1.060 (0.89–1.25) | 0.82 (0.76–0.89) | 1.15 (0.56–2.36) |
SSRI | 1.012 (1.00051–1.024) | 1.071 (1.0060–1.14) | 0.95 (0.92–0.98) | 1.19 (0.91–1.57) |
Anti Xa agents | 1.031 (1.015–1.047) | 1.16 (1.08–1.25) | 0.99 (0.95–1.02) | 1.29 (0.95–1.76) |
Clopidogrel | 0.99 (0.98–1.011) | 1.25 (1.16–1.35) | 0.96 (0.92–1.00) | 1.24 (0.89–1.74) |
Beta-blocker | 1.016 (1.0069–1.026) | 1.14 (1.085–1.20) | 1.0048 (0.97–1.031) | 1.34 (1.062–1.69) |
Antimetabolite | 0.95 (0.93–0.97) | 1.20 (1.046–1.38) | 1.11 (1.027–1.21) | 3.38 (1.046–1.38) |
Proton pump inhibitor | 1.0089 (0.99–1.018) | 1.19 (1.13–1.26) | 1.0058 (0.98–1.032) | 1.35 (1.07–1.70) |
Drug/Class | Resistance Phenotype | AG n = 331 | Ceftriaxone n = 611 | Ciprofloxacin n = 692 | Meropenem n = 9 | Tmp-Smx n = 612 |
---|---|---|---|---|---|---|
SSRI | Probability unexposed | 0.18 | 0.32 | 0.37 | 0.0048 | 0.34 |
Average treatment effect | 0.0028 ±0.022 | 0.090 ±0.028 | 0.040 ±0.028 | −0.0003 ±0.0037 | 0.0052 ±0.027 | |
P value | 0.89 | 0.001 | 0.15 | 0.93 | 0.85 | |
Anti Xa agents | Probability unexposed | 0.17 | 0.33 | 0.38 | 0.0044 | 0.32 |
Average treatment effect | 0.030 ±0.03 | 0.044 ±0.037 | 0.0053 ±0.037 | 0.0040 ±0.0064 | 0.096 ±0.038 | |
P value | 0.3 | 0.23 | 0.88 | 0.52 | 0.012 | |
Clopidogrel | Probability unexposed | 0.18 | 0.32 | 0.38 | 0.0051 | 0.34 |
Average treatment effect | 0.031 ±0.031 | 0.090 ±0.036 | 0.0096 ±0.036 | −0.0012 ±0.0042 | 0.0076 ±0.035 | |
P value | 0.31 | 0.013 | 0.79 | 0.77 | 0.83 | |
Beta-blockers | Probability unexposed | 0.16 | 0.31 | 0.37 | 0.0053 | 0.30 |
Average treatment effect | 0.052 ±0.019 | 0.051 ±0.022 | 0.041 ±0.023 | −0.00083 ±0.0033 | 0.079 ±0.023 | |
P value | 0.006 | 0.026 | 0.079 | 0.80 | 0.001 | |
Proton pump inhibitor | Probability unexposed | 0.17 | 0.31 | 0.36 | 0.0019 | 0.30 |
Average treatment effect | 0.016 ±0.018 | 0.055 ±0.022 | 0.067 ±0.023 | 0.0060 ±0.0033 | 0.075 ±0.023 | |
P value | 0.37 | 0.015 | 0.004 | 0.07 | 0.001 | |
Antimetabolites | Probability unexposed | 0.17 | 0.31 | 0.36 | 0.0039 | 0.31 |
Average treatment effect | 0.18 ±0.077 | 0.20 ±0.099 | 0.21 ±0.097 | 0.019 ±0.023 | 0.29 ±0.093 | |
P value | 0.017 | 0.04 | 0.028 | 0.39 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbaz, M.; Stein, E.; Raykhshtat, E.; Weiss-Meilik, A.; Cohen, R.; Ben-Ami, R. Exposure to Non-Antimicrobial Drugs and Risk of Infection with Antibiotic-Resistant Enterobacteriaceae. Antibiotics 2023, 12, 789. https://doi.org/10.3390/antibiotics12040789
Elbaz M, Stein E, Raykhshtat E, Weiss-Meilik A, Cohen R, Ben-Ami R. Exposure to Non-Antimicrobial Drugs and Risk of Infection with Antibiotic-Resistant Enterobacteriaceae. Antibiotics. 2023; 12(4):789. https://doi.org/10.3390/antibiotics12040789
Chicago/Turabian StyleElbaz, Meital, Esther Stein, Eli Raykhshtat, Ahuva Weiss-Meilik, Regev Cohen, and Ronen Ben-Ami. 2023. "Exposure to Non-Antimicrobial Drugs and Risk of Infection with Antibiotic-Resistant Enterobacteriaceae" Antibiotics 12, no. 4: 789. https://doi.org/10.3390/antibiotics12040789
APA StyleElbaz, M., Stein, E., Raykhshtat, E., Weiss-Meilik, A., Cohen, R., & Ben-Ami, R. (2023). Exposure to Non-Antimicrobial Drugs and Risk of Infection with Antibiotic-Resistant Enterobacteriaceae. Antibiotics, 12(4), 789. https://doi.org/10.3390/antibiotics12040789