Phenotypic and Genotypic Characteristics of Antimicrobial Resistance in Citrobacter freundii Isolated from Domestic Ducks (Anas platyrhynchos domesticus) in Bangladesh
Abstract
:1. Introduction
2. Results
2.1. Occurrence of C. freundii Isolates
2.2. Phenotypic Antibiogram Profiles of Isolated C. freundii
2.3. MDR and MAR Profiles of C. freundii
2.4. Genotypic Resistance Profiles of C. freundii Isolates
2.5. Comparison of Phenotypic and Genotypic Resistance Profiles of Isolated C. freundii
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Sample Collection and Processing
4.3. Isolation and Molecular Detection of Citrobacter spp.
4.4. Detection of C. freundii by MALDI-TOF Mass Spectrometry
4.5. Antibiotic Susceptibility Test
4.5.1. Phenotypic Analysis
4.5.2. Genotypic Analysis
4.6. Statistical Analyses
4.6.1. Descriptive Analysis
4.6.2. Bivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, M.; Nayeem, M.; Hasan, M.; Sobur, M.; Ievy, S.; Rahman, S.; Kafi, M.; Ashour, H.M.; Rahman, M. Virulence determinants and multidrug resistance of Escherichia coli isolated from migratory birds. Antibiotics 2021, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Tawyabur, M.; Islam, M.; Sobur, M.; Hossain, M.; Mahmud, M.; Paul, S.; Hossain, M.T.; Ashour, H.M.; Rahman, M. Isolation and characterization of multidrug-resistant Escherichia coli and Salmonella spp. from healthy and diseased turkeys. Antibiotics 2020, 9, 770. [Google Scholar] [CrossRef]
- Urmi, M.R.; Ansari, W.K.; Islam, M.S.; Sobur, M.A.; Rahman, M.; Rahman, M.T. Antibiotic resistance patterns of Staphylococcus spp. isolated from fast foods sold in different restaurants of Mymensingh, Bangladesh. J. Adv. Vet. Anim. Res. 2021, 8, 274–281. [Google Scholar] [CrossRef]
- Liu, L.H.; Wang, N.Y.; Wu, A.Y.J.; Lin, C.C.; Lee, C.M.; Liu, C.P. Citrobacter freundii bacteremia: Risk factors of mortality and prevalence of resistance genes. J. Microbiol. Immunol. Infect. 2018, 51, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.T.; Chang, S.C. Citrobacter Species. 2016. Available online: http://www.antimicrobe.org/b93.asp (accessed on 25 February 2023).
- Pepperell, C.; Kus, J.V.; Gardam, M.A.; Humar, A.; Burrows, L.L. Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Antimicrob. Agents Chemother. 2002, 46, 3555–3560. [Google Scholar] [CrossRef]
- Sommer, M.O.; Dantas, G. Antibiotics and the resistant microbiome. Curr. Opin. Microbiol. 2011, 14, 556–563. [Google Scholar] [CrossRef]
- Olaitan, J.O.; Shittu, O.B.; Akinliba, A.A. Antibiotic resistance of enteric bacteria isolated from duck droppings. J. Appl. Biosci. 2011, 45, 3008–3018. [Google Scholar]
- Elmberg, J.; Berg, C.; Lerner, H.; Waldenström, J.; Hessel, R. Potential disease transmission from wild geese and swans to livestock, poultry and humans: A review of the scientific literature from a One Health perspective. Infect. Ecol. Epidemiol. 2017, 7, 1300450. [Google Scholar] [CrossRef]
- Lessenger, J.E. Diseases from Animals, Poultry, and Fish, in Agricultural Medicine; Springer: New York, NY, USA, 2006; pp. 367–382. [Google Scholar]
- Owoseni, M.; Okoh, A. Assessment of chlorine tolerance profile of Citrobacter species recovered from wastewater treatment plants in Eastern Cape, South Africa. Environ. Monit. Assess. 2017, 189, 1–12. [Google Scholar] [CrossRef]
- Doran, T.I. The role of Citrobacter in clinical disease of children. Clin. Infect. Dis. 1999, 28, 384–394. [Google Scholar] [CrossRef]
- Islam, M.S.; Sabuj, A.A.M.; Haque, Z.F.; Pondit, A.; Hossain, M.G.; Saha, S. Seroprevalence and risk factors of avian reovirus in backyard chickens in different areas of Mymensingh district in Bangladesh. J. Adv. Vet. Anim. Res. 2020, 7, 546. [Google Scholar] [CrossRef]
- Mili, S.A.; Islam, S.; Al Momen Sabuj, A.; Haque, Z.F.; Pondit, A.; Hossain, G.; Hassan, J.; Saha, S. A Cross-Sectional Seroepidemiological Study on Infectious Bursal Disease in Backyard Chickens in the Mymensingh District of Bangladesh. Vet. Med. Int. 2022, 2022, 9076755. [Google Scholar] [CrossRef]
- Rajput, D.S.; Singh, S.P.; Sudipta, G.; Nema, R.P. Duck farming, fascinating option in India. J. Vet. Sci. Technol. 2014, 5, 181. [Google Scholar]
- Dey, R.K.; Khan, M.S.R.; Nazir, K.H.M.N.H.; Islam, M.A.; Belal, S.M.S.H. Epidemiological investigation on Duck Salmonellosis in some selected areas of Bangladesh. Bangladesh J. Vet. Med. 2016, 14, 149–160. [Google Scholar] [CrossRef]
- Islam, M.A.; Howlider, M.A.R.; Alam, M.A.; Heyamet, M.A.; Debnath, M. Present status, problem and prospect of duck farming in rural areas of Mymensingh district, Bangladesh. Asian J. Med. Biol. Res. 2016, 2, 202–212. [Google Scholar] [CrossRef]
- Hoque, M.A.; Skerratt, L.F.; Rahman, M.A.; Rabiul Alam Beg, A.B.M.; Debnath, N.C. Factors limiting traditional household duck production in Bangladesh. Trop. Anim. Health Prod. 2010, 42, 1579–1587. [Google Scholar] [CrossRef]
- Khatun, A.; Giasuddin, M.; Islam, K.M.; Khanom, S.; Samad, M.A.; Islam, M.R.; Noor, M.; Bhuiyan, J.U.; Kim, W.I.; Eo, S.K.; et al. Surveillance of avian influenza virus type A in semi-scavenging ducks in Bangladesh. BMC Vet. Res. 2013, 9, 196. [Google Scholar] [CrossRef]
- Bai, L.; Xia, S.; Lan, R.; Liu, L.; Ye, C.; Wang, Y.; Jin, D.; Cui, Z.; Jing, H.; Xiong, Y.; et al. Isolation and characterization of cytotoxic, aggregative Citrobacter freundii. PLoS ONE 2012, 7, e33054. [Google Scholar] [CrossRef]
- Bisgaard, M. Salpingitis in web-footed birds: Prevalence, aetiology and significance. Avian Pathol. 1995, 24, 443–452. [Google Scholar] [CrossRef]
- Haruna, E.S.; Usman, M.; Ahmed, S.; Shaibu, J.S.; Makinde, A.A.; Lombin, L.H.; Henton, M.M. Isolation of Citrobacter murliniae from clinically ill and dead quail, ducks and chickens. Vet. Rec. 2004, 154, 119. [Google Scholar] [CrossRef]
- Rahman, A.; Shamsuzzaman, S.M.; Dola, N.Z. Antimicrobial Susceptibility Pattern and Virulence Genes Detection in Citrobacter freundii Isolated from Patients of a Tertiary Care Hospital, Bangladesh: Antimicrobial susceptibility pattern and virulence genes detection in Citrobacter freundii. Int. Arab. J. Antimicrob. Agents 2022, 12, 1. [Google Scholar] [CrossRef]
- Mohanty, S.; Singhal, R.; Sood, S.; Dhawan, B.; Kapil, A.; Das, B.K. Citrobacter infections in a tertiary care hospital in Northern India. J. Infect. 2007, 54, 58–64. [Google Scholar] [CrossRef]
- Farjana, N.E.; Islam, M.A.; Zerin, T.; Begum, M.A. Bacterial association in urinary tract infection and their drug resistance among patients in Rajshahi, Bangladesh. Int. J. Community Med. Public Health 2021, 8, 2144. [Google Scholar] [CrossRef]
- Kim, B.N.; Woo, J.H.; Ryu, J.; Kim, Y.S. Resistance to extended-spectrum cephalosporins and mortality in patients with Citrobacter freundii bacteremia. Infection 2003, 31, 202–207. [Google Scholar] [CrossRef]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef]
- Sidjabat, H.E.; Paterson, D.L.; Qureshi, Z.A.; Adams-Haduch, J.M.; O’Keefe, A.; Pascual, A.; Rodrçguez-Bano, J.; Doi, Y. Clinical features and molecular epidemiology of CMY-type β-lactamase–producing Escherichia coli. Clin. Infect. Dis. 2009, 48, 739–744. [Google Scholar] [CrossRef]
- Islam, M.; Sobur, M.; Rahman, S.; Ballah, F.M.; Ievy, S.; Siddique, M.P.; Rahman, M.; Kafi, M.; Rahman, M. Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV Genes Among Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Migratory Birds Travelling to Bangladesh. Microb. Ecol. 2022, 83, 942–950. [Google Scholar] [CrossRef]
- Ngaiganam, E.P.; Pagnier, I.; Chaalal, W.; Leangapichart, T.; Chabou, S.; Rolain, J.M.; Diene, S.M. Investigation of urban birds as source of β-lactamase-producing Gram-negative bacteria in Marseille city, France. Acta Vet. Scand. 2019, 61, 1–7. [Google Scholar] [CrossRef]
- Daeseleire, E.; Van Pamel, E.; Van Poucke, C.; Croubels, S. Veterinary Drug Residues in Foods. In Chemical Contaminants and Residues in Food, 2nd ed.; Woodhead Publishing: Cambridge, UK, 2017; pp. 117–153. [Google Scholar]
- Botts, R.T.; Apffel, B.A.; Walters, C.J.; Davidson, K.E.; Echols, R.S.; Geiger, M.R.; Guzman, V.L.; Haase, V.S.; Montana, M.A.; La Chat, C.A.; et al. Characterization of four multidrug resistance plasmids captured from the sediments of an urban coastal wetland. Front. Microbiol. 2017, 8, 1922. [Google Scholar] [CrossRef]
- Hasan, M.S.; Sultana, M.; Hossain, M.A. Complete genome arrangement revealed the emergence of a poultry origin superbug Citrobacter portucalensis strain NR-12. J. Glob. Antimicrob. Resist. 2019, 18, 126–129. [Google Scholar] [CrossRef]
- Ribeiro, T.G.; Novais, Â.; Branquinho, R.; Machado, E.; Peixe, L. Phylogeny and comparative genomics unveil independent diversification trajectories of qnrB and genetic platforms within particular Citrobacter species. Antimicrob. Agents Chemother. 2015, 59, 5951–5958. [Google Scholar] [CrossRef]
- Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022, 11, 2966. [Google Scholar] [CrossRef]
- Truong, R.; Tang, V.; Grennan, T.; Tan, D.H.S. A systematic review of the impacts of oral tetracycline class antibiotics on antimicrobial resistance in normal human flora. JAC Antimicrob. Resist. 2022, 4, dlac009. [Google Scholar] [CrossRef]
- Roberts, M.C. Tetracycline resistance determinants: Mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 1996, 19, 1–24. [Google Scholar] [CrossRef]
- Roy, K.; Islam, M.S.; Paul, A.; Ievy, S.; Talukder, M.; Sobur, M.A.; Ballah, F.M.; Khan, M.S.R.; Rahman, M.T. Molecular detection and antibiotyping of multi-drug resistant Enterococcus faecium from healthy broiler chickens in Bangladesh. Vet. Med. Sci. 2022, 8, 200–210. [Google Scholar] [CrossRef]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef]
- Ferranti, M.; Cicogna, G.T.; Sattin, A.; Alaibac, M. Citrobacter freundii sepsis in an immunosuppressed patient with pemphigus vulgaris. BMJ Case Rep. CP 2018, 11, e227091. [Google Scholar] [CrossRef]
- Norskov-Lauritsen, N.; Sandvang, D.; Hedegaard, J.; Fussing, V.; Mortensen, K.K.; Sperling-Petersen, H.U.; Schonheyder, H.C. Clonal origin of aminoglycoside-resistant Citrobacter freundii isolates in a Danish county. J. Med. Microbiol. 2001, 50, 636–641. [Google Scholar] [CrossRef]
- Davis, M.A.; Besser, T.E.; Orfe, L.H.; Baker, K.N.; Lanier, A.S.; Broschat, S.L.; New, D.; Call, D.R. Genotypic-phenotypic discrepancies between antibiotic resistance characteristics of Escherichia coli isolates from calves in management settings with high and low antibiotic use. Appl. Environ. Microbiol. 2011, 77, 3293–3299. [Google Scholar] [CrossRef]
- Urmi, U.L.; Nahar, S.; Rana, M.; Sultana, F.; Jahan, N.; Hossain, B.; Alam, M.S.; Mosaddek, A.S.; McKimm, J.; Rahman, N.A.; et al. Genotypic to Phenotypic Resistance Discrepancies Identified Involving β-Lactamase Genes, blaKPC, blaIMP, blaNDM-1, and blaVIM in Uropathogenic Klebsiella pneumoniae. Infect. Drug Resist. 2020, 13, 2863–2875. [Google Scholar] [CrossRef]
- Depardieu, F.; Podglajen, I.; Leclercq, R.; Collatz, E.; Courvalin, P. Modes and modulations of antibiotic resistance gene expression. Clin. Microbiol. Rev. 2007, 20, 79–114. [Google Scholar] [CrossRef]
- Talukder, M.; Islam, M.S.; Ievy, S.; Sobur, M.A.; Ballah, F.M.; Najibullah, M.; Rahman, M.B.; Rahman, M.T.; Khan, M.F.R. Detection of multidrug-resistant Salmonella spp. from healthy and diseased broilers having potential public health significance. J. Adv. Biotechnol. Exp. 2021, 4, 248–255. [Google Scholar] [CrossRef]
- Liu, L.; Qin, L.; Hao, S.; Lan, R.; Xu, B.; Guo, Y.; Jiang, R.; Sun, H.; Chen, X.; LV, X.; et al. Lineage, Antimicrobial Resistance and Virulence of Citrobacter spp. Pathogens 2020, 9, 195. [Google Scholar] [CrossRef]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef]
- Kang, X.; Wang, M.; Meng, C.; Li, A.; Jiao, X.; Pan, Z. Prevalence and whole–genome sequencing analysis of Salmonella reveal its spread along the duck production chain. Poult. Sci. 2022, 101, 101993. [Google Scholar] [CrossRef]
- Fong, I.W. Animals and Mechanisms of Disease Transmission. In Emerging Zoonoses: A Worldwide Perspective; Fong, I.W., Ed.; Springer: Toronto, ON, Canada, 2017; pp. 15–38. [Google Scholar]
- Brenner, D.J.; O’Hara, C.M.; Grimont, P.A.; Janda, J.M.; Falsen, E.; Aldova, E.; Ageron, E.; Schindler, J.; Abbott, S.L.; Steigerwalt, A.G. Biochemical identification of Citrobacter species defined by DNA hybridization and description of Citrobacter gillenii sp. nov.(formerly Citrobacter genomospecies 10) and Citrobacter murliniae sp. nov.(formerly Citrobacter genomospecies 11). J. Clin. Microbiol. 1999, 37, 2619–2624. [Google Scholar] [CrossRef]
- Hashim, M.H.; AlKhafaji, M.H. Isolation and identification of Citrobacter freundii from chicken meat samples using cultural and molecular techniques. Iraqi J. Sci. 2018, 59, 1216–1224. [Google Scholar]
- Ievy, S.; Islam, M.; Sobur, M.; Talukder, M.; Rahman, M.; Khan, M.F.R.; Rahman, M. Molecular detection of avian pathogenic Escherichia coli (APEC) for the first time in layer farms in Bangladesh and their antibiotic resistance patterns. Microorganisms 2020, 8, 1021. [Google Scholar] [CrossRef]
- Islam, M.S.; Paul, A.; Talukder, M.; Roy, K.; Sobur, M.A.; Ievy, S.; Nayeem, M.M.H.; Rahman, S.; Nazir, K.N.H.; Hossain, M.T.; et al. Migratory birds travelling to Bangladesh are potential carriers of multi-drug resistant Enterococcus spp., Salmonella spp., and Vibrio spp. Saudi J. Biol. Sci. 2021, 28, 5963–5970. [Google Scholar] [CrossRef]
- Kolínská, R.; Španělová, P.; Dřevínek, M.; Hrabák, J.; Žemličková, H. Species identification of strains belonging to genus Citrobacter using the biochemical method and MALDI-TOF mass spectrometry. Folia Microbiol. 2015, 60, 53–59. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, M100-S30; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Bauer, A.T.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disc method. Am. J. Clin. Pathol. 1966, 45, 149–158. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, S.; White, D.G.; Schroeder, C.M.; Lu, R.; Yang, H.; McDermott, P.F.; Ayers, S.; Meng, J. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 2004, 70, 1–7. [Google Scholar] [CrossRef]
- Azeez, D.A.; Findik, D.; Hatice, T.Ü.R.K.; Arslan, U. Plasmid-mediated fluoroquinolone resistance in clinical isolates of Escherichia coli in Konya, Turkey. Cukurova Med. J. 2018, 43, 295–300. [Google Scholar] [CrossRef]
- Brown, L.D.; Cai, T.T.; DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci. 2001, 16, 101–133. [Google Scholar] [CrossRef]
Locations | No. of Samples Collected | No. of Positive Isolates (%) | 95% CI (%) | p-Value |
---|---|---|---|---|
Mymensingh | 50 | 9 (18 a) | 9.77–30.80 | 0.261 |
Netrokona | 50 | 5 (10 a) | 4.35–21.36 | |
Kishoreganj | 50 | 11 (22 a) | 12.75–35.24 | |
Overall | 150 | 25 (16.67) | 11.55–23.45 |
Pattern No. | Antibiotic Resistance Patterns | No. of Antibiotics (Classes) | No. of MDR Isolates (%) | MAR Index |
---|---|---|---|---|
1 | CN, CIP, CL, AZM, TE, AMP, CRO, COT, CTX, CAZ, LEV | 11 (7) | 1 (6.67) | 0.79 |
2 | CIP, CL, AZM, TE, AMP, CRO, COT, CTX, CAZ, LEV | 10 (6) | 1 (6.67) | 0.71 |
3 | CN, CIP, CL, AZM, TE, AMP, COT, LEV | 8 (7) | 4 (26.67) | 0.57 |
4 | CN, CIP, CL, AZM, TE, AMP, COT, CTX | 8 (7) | 1 (6.67) | 0.57 |
5 | CIP, CL, AZM, TE, AMP, COT, LEV | 7 (6) | 1 (6.67) | 0.50 |
6 | CIP, CL, AZM, TE, AMP, COT | 6 (6) | 1 (6.67) | 0.43 |
7 | CL, AZM, TE, AMP, COT, CRO | 6 (5) | 1 (6.66) | 0.43 |
8 | CL, AMP, LEV, CTX, CAZ | 5 (3) | 1 (6.67) | 0.36 |
9 | CL, AZM, AMP, FO | 4 (4) | 1 (6.67) | 0.29 |
10 | CL, AZM, TE, LEV | 4 (4) | 1 (6.67) | 0.29 |
11 | CL, AZM, AMP | 3 (3) | 2 (13.33) | 0.21 |
12 * | CL, AMP | 2 (2) | 4 * | 0.14 |
13 * | CL | 1 (1) | 5 * | 0.07 |
14 * | AMP | 1 (1) | 1 * | 0.07 |
Factors | Target Genes | Primer Sequences (5′-3′) | Annealing Temp. | Amplicon Size (bp) | References |
---|---|---|---|---|---|
Beta-lactamase | blaTEM-1 | F-CAGCGGTAAGATCCTTGAGA R-ACTCCCCGTCGTGTAGATAA | 55 | 643 | [58] |
blaCMY-2 | F-TGGCCGTTGCCGTTATCTAC R-CCCGTTTTATGCACCCATGA | 55 | 870 | [58] | |
blaCMY-9 | F-TCAGCGAGCAGACCCTGTTC R-CTGGCCGGGATGGGATAGTT | 55 | 874 | [58] | |
blaSHV-1 | F-GGCCGCGTAGGCATGATAGA R-CCCGGCGATTTGCTGATTTC | 55 | 714 | [58] | |
blaCTXM-2 | F-GGCGTTGCGCTGATTAACAC R-TTGCCCTTAAGCCACGTCAC | 55 | 486 | [58] | |
blaCTX-M-1 | F-AACCGTCACGCTGTTGTTAG R-TTGAGGCTGGGTGAAGTAAG | 55 | 766 | [58] | |
blaCTX-M-14 | F-GCCTGCCGATCTGGTTAACT R-GCCGGTCGTATTGCCTTTGA | 55 | 358 | [58] | |
Tetracyclines | tetA | F-GCGCCTTTCCTTTGGGTTCT R-CCACCCGTTCCACGTTGTTA | 55 | 831 | [58] |
tetB | F-CCCAGTGCTGTTGTTGTCAT R-CCACCACCAGCCAATAAAAT | 55 | 723 | [58] | |
tetC | F-TTGCGGGATATCGTCCATTC R-CATGCCAACCCGTTCCATGT | 54 | 1019 | [58] | |
Fluroquinolones | qnrA | F-TCAGCAAGAGGATTTCTCA R-GGCAGCACTATTACTCCCA | 55 | 670 | [59] |
qnrB | F-ATGACGCCATTACTGTATAA R-GATCGCAATGTGTGAAGTTT | 53 | 680 | [59] | |
qnrS | F-ACGACATTCGTCAACTGCAA R-TAAATTGGCACCCTGTAGGC | 54 | 428 | [58] | |
Sulfonamides | sul1 | F-TCACCGAGGACTCCTTCTTC R-CAGTCCGCCTCAGCAATATC | 55 | 331 | [58] |
sul2 | F-CCTGTTTCGTCCGACACAGA R-GAAGCGCAGCCGCAATTCAT | 55 | 435 | [58] | |
Aminoglycosides | aacC2 | F-GGCAATAACGGAGGCAATTCGA R-CTCGATGGCGACCGAGCTTCA | 55 | 450 | [58] |
aacC4 | F-ACTGAGCATGACCTTGCGATGCTCTA R-TACCTTGCCTCTCAAACCCCGCTT | 55 | 436 | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, T.; Islam, M.S.; Haider, N.; Elton, L.; Hasan, B.; Nuruzzaman, M.; Rahman, M.T.; Kabir, S.M.L.; Khan, M.S.R. Phenotypic and Genotypic Characteristics of Antimicrobial Resistance in Citrobacter freundii Isolated from Domestic Ducks (Anas platyrhynchos domesticus) in Bangladesh. Antibiotics 2023, 12, 769. https://doi.org/10.3390/antibiotics12040769
Ahmed T, Islam MS, Haider N, Elton L, Hasan B, Nuruzzaman M, Rahman MT, Kabir SML, Khan MSR. Phenotypic and Genotypic Characteristics of Antimicrobial Resistance in Citrobacter freundii Isolated from Domestic Ducks (Anas platyrhynchos domesticus) in Bangladesh. Antibiotics. 2023; 12(4):769. https://doi.org/10.3390/antibiotics12040769
Chicago/Turabian StyleAhmed, Tarana, Md. Saiful Islam, Najmul Haider, Linzy Elton, Badrul Hasan, Mohammad Nuruzzaman, Md. Tanvir Rahman, S. M. Lutful Kabir, and Md. Shahidur Rahman Khan. 2023. "Phenotypic and Genotypic Characteristics of Antimicrobial Resistance in Citrobacter freundii Isolated from Domestic Ducks (Anas platyrhynchos domesticus) in Bangladesh" Antibiotics 12, no. 4: 769. https://doi.org/10.3390/antibiotics12040769
APA StyleAhmed, T., Islam, M. S., Haider, N., Elton, L., Hasan, B., Nuruzzaman, M., Rahman, M. T., Kabir, S. M. L., & Khan, M. S. R. (2023). Phenotypic and Genotypic Characteristics of Antimicrobial Resistance in Citrobacter freundii Isolated from Domestic Ducks (Anas platyrhynchos domesticus) in Bangladesh. Antibiotics, 12(4), 769. https://doi.org/10.3390/antibiotics12040769