Phytochemical Screening, GC-MS Analysis, and Evaluating In Vivo Antitrypanosomal Effects of a Methanolic Extract of Garcinia kola Nuts on Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Characterization
2.2. General Toxicity and Antitrypanosomal Activity
2.3. Influence on Haematological Indices
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Collection, Authentication, Preparation, and Extraction Procedure
3.3. Identification of Constituents
3.4. Experimental Animals and Parasites
3.5. Determination of Acute Lethal Toxicity
3.6. Experimental Design and Inoculation with Trypanosomes
3.7. Monitoring Different Outcome Parameters
3.8. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elata, A.; Galon, E.M.; Moumouni, P.F.A.; Ybanez, R.H.D.; Mossaad, E.; Salces, C.B.; Bajenting, G.P.; Ybanez, A.P.; Xuan, X.; Inoue, N.; et al. First molecular detection and identification of Trypanosoma evansi in goats from Cebu, Philippines using a PCR-based assay. Vet. Parasitol. Reg. Stud. Rep. 2020, 21, 100414. [Google Scholar] [CrossRef] [PubMed]
- Ungogo, M.A.; Campagnaro, G.D.; Alghamdi, A.H.; Natto, M.J.; de Koning, H.P. Differences in Transporters Rather than Drug Targets Are the Principal Determinants of the Different Innate Sensitivities of Trypanosoma congolense and Trypanozoon Subgenus Trypanosomes to Diamidines and Melaminophenyl Arsenicals. Int. J. Mol. Sci. 2022, 23, 2844. [Google Scholar] [CrossRef]
- Abubakar, A.; Yaro, M.A.; Abdu, G.; Rufa’i, F.A. In Vivo and In Vitro Antitrypanosomal Activities of Nigerian Medicinal Plants. Int. J. Sci. Res. Chem. Sci. 2019, 6, 4–9. [Google Scholar]
- Wiedemar, N.; Hauser, D.A.; Mäser, P. 100 Years of Suramin. Antimicrob. Agents Chemother. 2020, 64, 1–14. [Google Scholar] [CrossRef] [PubMed]
- WHO. Human African Trypanosomiasis (Sleeping Sickness); WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Mahmoud, A.B.; Mäser, P.; Kaiser, M.; Hamburger, M.; Khalid, S. Mining Sudanese Medicinal Plants for ==Antiprotozoal Agents. Front. Pharmacol. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Nwodo, N.J.; Ibezim, A.; Ntie-Kang, F.; Adikwu, M.U.; Mbah, C.J. Anti-Trypanosomal Activity of Nigerian Plants and Their Constituents. Molecules 2015, 20, 7750–7771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmanuel, O.; Uche, M.E.; Dike, E.D.; Etumnu, L.R.; Ugbogu, O.C.; Ugbogu, E.A. A review on garcinia kola heckel: Traditional uses, phytochemistry, pharmacological activities, and toxicology. Biomarkers 2022, 27, 101–117. [Google Scholar] [CrossRef]
- Sani, A.; Zakariyya, U.A.; Mahe, A.; Singh, D. In vitro study of antitrypanosomal activity of ethanolic leaf extract of garcinia kola against trypanosoma brucei brucei. Asian J. Pharm. Clin. Res. 2018, 11, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Tcheghebe, O.; Signe, M.; Seukep, A.J.; Tatong, F. Review on traditional uses, phytochemical and pharmacological profiles of Garcinia kola Heckel. Merit Res. J. Med. Med. Sci. 2016, 4, 480–489. [Google Scholar]
- Ogbadoyi, E.O.; Kabiru, A.; Omotosho, R. Preliminary Studies of the Antitrypanosomal Activity of Garcinia kola nut Extract in Mice Infected with Trypanosoma brucei brucei. J. Med. Med. Sci. 2011, 2, 628–631. [Google Scholar]
- Maňourová, A.; Leuner, O.; Tchoundjeu, Z.; Van Damme, P.; Verner, V.; Přibyl, O.; Lojka, B. Medicinal Potential, Utilization and Domestication Status of Bitter Kola (Garcinia kola Heckel) in West and Central Africa. Forests 2019, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.X.; Mughal, S.; Taiwo, O.; Lee, S.F. Isolation and characterization of an antibacterial biflavonoid from an African chewing stick Garcinia kola Heckel (Clusiaceae). J. Ethnopharmacol. 2013, 147, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Farombi, E.O.; Owoeye, O. Antioxidative and chemopreventive properties of Vernonia amygdalina and Garcinia biflavonoid. Int. J. Environ. Res. Public Health 2011, 8, 2533–2555. [Google Scholar] [CrossRef] [PubMed]
- Dogara, A.M.; Hamad, S.W.; Hama, H.A.; Bradosty, S.W.; Kayfi, S.; Al-Rawi, S.S.; Lema, A.A. Biological Evaluation of Garcinia kola Heckel. Adv. Pharmacol. Pharm. Sci. 2022, 2022, 3837965. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.; Ijeoma, K.O.; Ekanem, E.E.; Nelson, E.; Mohammed, B. In vitro Studies on the Trypanocidal activities of various Phytochemical fractions obtained from Garcinia kola seed. J. Med. Trop. 2011, 13. [Google Scholar] [CrossRef]
- Ukaoma, A.A.; Ukaoma, V.O.; Okechukwu, R.I.; Iwuagwu, M. Phytochemical screening and antibacterial properties of Garcinia kola. J. Phytopharm. 2013, 2, 34–38. [Google Scholar] [CrossRef]
- Seanego, C.T.; Ndip, R.N. Identification and Antibacterial Evaluation of Bioactive Compounds from Garcinia kola (Heckel) Seeds. Molecules 2012, 17, 6569–6584. [Google Scholar] [CrossRef]
- Aparna, V.; Dileep, K.V.; Mandal, P.K.; Karthe, P.; Sadasivan, C.; Haridas, M. Anti-inflammatory property of n-hexadecanoic acid: Structural evidence and kinetic assessment. Chem. Biol. Drug Des. 2012, 80, 434–439. [Google Scholar] [CrossRef]
- Kumar, P.; Kumaravel, S.; Chandrakumar, L. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. Afr. J. Biochem. Res. 2009, 4, 191–195. [Google Scholar]
- Ugwu, D.; Eze, F.; Ayogu, J. Synthesis of Multi-target Benzene-Sulphonamide Derivatives for the Treatment of Trypanosomiasis. Med. Chem. 2019, 9, 83–92. [Google Scholar]
- Akwu, N.A.; Naidoo, Y.; Singh, M.; Nundkumar, N.; Lin, J. Phytochemical screening, in vitro evaluation of the antimicrobial, antioxidant and cytotoxicity potentials of Grewia lasiocarpa E. Mey. ex Harv. S. Afr. J. Bot. 2019, 123, 180–192. [Google Scholar] [CrossRef]
- de Julián-Ortiz, J.V.; Gálvez, J.; Muñoz-Collado, C.; García-Domenech, R.; Gimeno-Cardona, C. Virtual Combinatorial Syntheses and Computational Screening of New Potential Anti-Herpes Compounds. J. Med. Chem. 1999, 42, 3308–3314. [Google Scholar] [CrossRef] [PubMed]
- Iornumbe, E.; Yiase, S.; Shaato, R. Studies on the Synthetic and Biological Activity of Some Organotin (IV) Derivatives of Hexanedioic Acid. IOSR J. Appl. Chem. 2016, 9, 23–32. [Google Scholar] [CrossRef]
- Dominguez-Uscanga, A.; Aycart, D.F.; Li, K.; Witola, W.H.; Andrade Laborde, J.E. Anti-protozoal activity of Thymol and a Thymol ester against Cryptosporidium parvum in cell culture. Int. J. Parasitol. Drugs Drug Resist. 2021, 15, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Herbert, W.J.; Lumsden, W.H.R. Trypanosoma brucei: A rapid “matching” method for estimating the host’s parasitemia. Exp. Parasitol. 1976, 40, 427–431. [Google Scholar] [CrossRef]
- Kennedy, P.G.E. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol. 2013, 12, 186–194. [Google Scholar] [CrossRef]
- Laperchia, C.; Palomba, M.; Seke Etet, P.F.; Rodgers, J.; Bradley, B.; Montague, P.; Grassi-Zucconi, G.; Kennedy, P.G.E.; Bentivoglio, M. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes. PLoS Negl. Trop. Dis. 2016, 10, e0005242. [Google Scholar] [CrossRef] [Green Version]
- Sałaga-Zaleska, K.; Pikul, P.; Kreft, E.; Herman, S.; Chyła, G.; Dąbkowski, K.; Kuchta, A.; Lenartowicz, M.; Jankowski, M. Effect of suramin on urinary excretion of diabetes-induced glomerular and tubular injury parameters in rats. Biomed. Pharmacother. 2021, 139, 111683. [Google Scholar] [CrossRef]
- Szende, B.; Lapis, K.; Jeney, A.; Simon, K.; Ördog, A.; Moldvay, J. Liver Damaging Effect of Suramin in Normal and Carbon-Tetrachloride Treated Rats. Toxicol. Pathol. 1991, 19, 266–272. [Google Scholar] [CrossRef]
- Abdeta, D.; Kebede, N.; Giday, M.; Terefe, G.; Abay, S.M. In Vitro and In Vivo Antitrypanosomal Activities of Methanol Extract of Echinops kebericho Roots. Evid.-Based Complement. Altern. Med. eCAM 2020, 2020, 8146756. [Google Scholar] [CrossRef]
- Humphrey, P.A.; Ashraf, M.; Lee, C.M. Growth of trypanosomes in vivo, host body weight gains, and food consumption in zinc-deficient mice. J. Natl. Med. Assoc. 1997, 89, 48–56. [Google Scholar] [PubMed]
- Maigari, A.; Dabo, N.T. Prevalence and source distribution of trypanosoma evansi in trade camels (Camelus dromedarius) in Kano State, Nigeria. FUDMA J. Microbilogy1 2018, 1, 79–86. [Google Scholar]
- Silva, G.L.; Lee, I.-S.; Kinghorn, A.D. Special Problems with the Extraction of Plants. In Natural Products Isolation; Cannell, R.J.P., Ed.; Humana Press: Totowa, NJ, USA, 1998; pp. 343–363. [Google Scholar] [CrossRef]
- Woo, P.T. The haematocrit centrifuge for the detection of trypanosomes in blood. Can. J. Zool. 1969, 47, 921–923. [Google Scholar] [CrossRef] [PubMed]
- Nakayima, J. Diagnostic Methods for African Trypanosomiasis. 2016. Available online: https://www.researchgate.net/publication/320232153_Diagnostic_methods_for_African_trypanosomiasis (accessed on 15 March 2023).
- Rufa’i, F.A.; Mukhtar, M.D. Evaluation of Antitrypanosomal Activity of Tetracycline in Animal Model. Int. J. Sci. Res. Biol. Sci. 2022, 9, 91–96. [Google Scholar]
- Lorke, D. A new approach to practical acute toxicity testing. Arch. Toxicol. 1983, 54, 275–287. [Google Scholar] [CrossRef]
- Ajakaiye, J.J.; Muhammad, A.; Mazadu, M.; Yahya, S.; Kugu, B.; Mohammad, B.; Bizi, R.; Benjamin, M. Trypadim ®, Trypamidium ® and Novidium ® can eliminate the negative effects on the body temperature and serum chemistry in Wistar rats infected with Trypanosoma brucei brucei (Federe strain). Int. Res. J. Biochem. Bioinform. 2014, 4, 37–41. [Google Scholar]
Chemical Compound | Retention Time (min) | Percentage Area (%) |
---|---|---|
Tridecanoic acid | 14.69 | 4.01 |
Cyclohexane | 17.48 | 2.86 |
Hexanedioic (adipic) acid | 22.22 | 45.3 |
Benzene | 22.58 | 3.60 |
Tetrasiloxane | 27.76 | 15.4 |
Thymol | 28.04 | 3.88 |
Pentanone | 28.44 | 6.06 |
Silane | 28.59 | 2.37 |
Phenol | 29.02 | 2.02 |
Experiment | Dose/Body Weight (mg/kg) | Number of Animals Used | Number of Animals Dead |
---|---|---|---|
Phase 1 | 10 | 3 | 0 |
100 | 3 | 0 | |
1000 | 3 | 0 | |
Phase 2 | 1600 | 1 | 0 |
2900 | 1 | 0 | |
5000 | 1 | 0 |
Parameter 1 | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 |
---|---|---|---|---|---|---|
Pallor of mucous membrane | + | - | - | - | - | +++ |
Loss of condition | - | - | - | - | - | +++ |
Pyrexia | - | - | + | - | - | +++ |
Lacrimation | - | + | - | - | - | +++ |
Eye redness | + | - | - | + | + | + |
Aggression | - | - | - | ++ | ++ | - |
Alopecia | - | - | - | - | - | - |
Ringtail | - | + | - | - | - | - |
Gangrene | - | - | - | - | - | - |
Food consumption | ++ | ++ | +++ | +++ | +++ | + |
Parameter | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | p Value 1 |
---|---|---|---|---|---|---|---|
PCV (%) | 28.5 ± 1.6 | 30.0 ± 0.0 | 32.8 ± 1.0 | 33.8 ± 0.3 | 36.0 ± 0.6 | 14.5 ± 0.3 | <0.001 |
Hgb (g/dL) | 9.65 ± 0.59 | 12.9 ± 2.4 | 11.1 ± 0.3 | 11.2 ± 0.1 | 12.2 ± 0.1 | 4.70 ± 0.06 | <0.001 |
RBC (106/μL) | 4.73 ± 0.11 | 4.85 ± 0.05 | 5.98 ± 0.10 | 5.18 ± 0.03 | 5.40 ± 0.14 | 2.85 ± 0.03 | <0.001 |
MCV (fl) | 60.2 ± 1.9 | 62.9 ± 0.4 | 64.5 ± 0.7 | 63.7 ± 0.4 | 65.5 ± 0.4 | 50.8 ± 0.5 | <0.001 |
MCH (pg) | 20.4 ± 0.8 | 21.5 ± 0.2 | 21.8 ± 0.2 | 21.3 ± 0.1 | 22.1 ± 0.0 | 16.5 ± 0.1 | <0.001 |
MCHC (g/dL) | 33.8 ± 0.2 | 34.1 ± 0.1 | 33.7 ± 0.1 | 33.8 ± 0.2 | 33.7 ± 0.1 | 32.4 ± 0.2 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rufa’i, F.A.; Baecker, D.; Mukhtar, M.D. Phytochemical Screening, GC-MS Analysis, and Evaluating In Vivo Antitrypanosomal Effects of a Methanolic Extract of Garcinia kola Nuts on Rats. Antibiotics 2023, 12, 713. https://doi.org/10.3390/antibiotics12040713
Rufa’i FA, Baecker D, Mukhtar MD. Phytochemical Screening, GC-MS Analysis, and Evaluating In Vivo Antitrypanosomal Effects of a Methanolic Extract of Garcinia kola Nuts on Rats. Antibiotics. 2023; 12(4):713. https://doi.org/10.3390/antibiotics12040713
Chicago/Turabian StyleRufa’i, Fatihu Ahmad, Daniel Baecker, and Muhammad Dauda Mukhtar. 2023. "Phytochemical Screening, GC-MS Analysis, and Evaluating In Vivo Antitrypanosomal Effects of a Methanolic Extract of Garcinia kola Nuts on Rats" Antibiotics 12, no. 4: 713. https://doi.org/10.3390/antibiotics12040713
APA StyleRufa’i, F. A., Baecker, D., & Mukhtar, M. D. (2023). Phytochemical Screening, GC-MS Analysis, and Evaluating In Vivo Antitrypanosomal Effects of a Methanolic Extract of Garcinia kola Nuts on Rats. Antibiotics, 12(4), 713. https://doi.org/10.3390/antibiotics12040713