Microbiology Clinical Culture Diagnostic Yields and Antimicrobial Resistance Proportions before and during the COVID-19 Pandemic in an Indian Community Hospital and Two US Community Hospitals
Abstract
:1. Introduction
2. Results
2.1. Culture Positivity Proportion
2.2. Isolated Organisms
2.3. Antimicrobial Resistance Proportion
3. Discussion
4. Methods
4.1. Study Description
4.2. Data Collection
4.3. Organism Identification and Antimicrobial Susceptibility Testing
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Scaravilli, V.; Mangioni, D.; Scudeller, L.; Alagna, L.; Bartoletti, M.; Bellani, G.; Biagioni, E.; Bonfanti, P.; Bottino, N.; et al. Hospital-Acquired Infections in Critically Ill Patients With COVID-19. Chest 2021, 160, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Vijay, S.; Bansal, N.; Rao, B.K.; Veeraraghavan, B.; Rodrigues, C.; Wattal, C.; Goyal, J.P.; Tadepalli, K.; Mathur, P.; Venkateswaran, R.; et al. Secondary Infections in Hospitalized COVID-19 Patients: Indian Experience. Infect. Drug Resist. 2021, 14, 1893. [Google Scholar] [CrossRef]
- Pasero, D.; Cossu, A.P.; Terragni, P. Multi-Drug Resistance Bacterial Infections in Critically Ill Patients Admitted with COVID-19. Microorganisms 2021, 9, 1773. [Google Scholar] [CrossRef]
- Bork, J.T.; Leekha, S.; Claeys, K.; Seung, H.; Tripoli, M.; Amoroso, A.; Heil, E.L. Change in hospital antibiotic use and acquisition of multidrug-resistant gram-negative organisms after the onset of coronavirus disease. Infect. Control Hosp. Epidemiol. 2021, 42, 1115–1117. [Google Scholar] [CrossRef]
- Patel, A.; Emerick, M.; Cabunoc, M.K.; Williams, M.H.; Preas, M.A.; Schrank, G.; Rabinowitz, R.; Luethy, P.; Johnson, J.K.; Leekha, S. Rapid Spread and Control of Multidrug-Resistant Gram-Negative Bacteria in COVID-19 Patient Care Units. Emerg. Infect. Dis. 2021, 27, 1234. [Google Scholar] [CrossRef] [PubMed]
- Sturm, L.K.; Saake, K.; Roberts, P.; Masoudi, F.; Fakih, M.G. Impact of COVID-19 Pandemic on Hospital Onset Bloodstream Infec-tions (HOBSI) at a Large Health System. Am. J. Infect. Control. 2022, 50, 245–249. [Google Scholar] [CrossRef]
- Puzniak, L.; Finelli, L.; Yu, K.C.; Bauer, K.A.; Moise, P.; De Anda, C.; Vankeepuram, L.; Sepassi, A.; Gupta, V. A multicenter analysis of the clinical microbiology and antimicrobial usage in hospitalized patients in the US with or without COVID-19. BMC Infect. Dis. 2021, 21, 227. [Google Scholar] [CrossRef]
- Saini, V.; Jain, C.; Singh, N.; Alsulimani, A.; Gupta, C.; Dar, S.; Haque, S.; Das, S. Paradigm Shift in Antimicrobial Resistance Pattern of Bacterial Isolates during the COVID-19 Pandemic. Antibiotics 2021, 10, 954. [Google Scholar] [CrossRef]
- Amarsy, R.; Trystram, D.; Cambau, E.; Monteil, C.; Fournier, S.; Oliary, J.; Junot, H.; Sabatier, P.; Porcher, R.; Robert, J.; et al. Surging bloodstream infections and antimicrobial resistance during the first wave of COVID–19: A study in a large multihospital institution in the Paris region. Int. J. Infect. Dis. 2022, 114, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda, J.; Westblade, L.F.; Whittier, S.; Satlin, M.J.; Greendyke, W.G.; Aaron, J.G.; Zucker, J.; Dietz, D.; Sobieszczyk, M.; Choi, J.J.; et al. Bacteremia and Blood Culture Utilization during COVID-19 Surge in New York City. J. Clin. Microbiol. 2020, 58, e00875-20. [Google Scholar] [CrossRef] [PubMed]
- Denny, S.; Rawson, T.M.; Hart, P.; Satta, G.; Abdulaal, A.; Hughes, S.; Gilchrist, M.; Mughal, N.; Moore, L.S.P. Bacteraemia Variation during the COVID-19 Pandemic; A Multi-Centre UK Secondary Care Ecological Analysis. BMC Infect. Dis. 2021, 21, 556. [Google Scholar] [CrossRef] [PubMed]
- Damonti, L.; Kronenberg, A.; Marschall, J.; Jent, P.; Sommerstein, R.; De Kraker, M.E.A.; Harbarth, S.; Gasser, M.; Buetti, N. The effect of the COVID-19 pandemic on the epidemiology of positive blood cultures in Swiss intensive care units: A nationwide surveillance study. Crit. Care 2021, 25, 403. [Google Scholar] [CrossRef]
- Garrigos, Z.E.; Wingler, M.J.B.; Svoronos, P.A.; Vijayvargiya, P.; Goodman-Meza, D.; O’Horo, J.C.; Navalkele, B.D.; Cretella, D.; Frame, I.J.; Parham, J.; et al. Increased rates of blood culture contamination during the coronavirus disease 2019 pandemic. Infect. Control Hosp. Epidemiol. 2022, 43, 1719–1721. [Google Scholar] [CrossRef]
- Ohki, R.; Fukui, Y.; Morishita, N.; Iwata, K. Increase of blood culture contamination during COVID-19 pandemic. A retrospective descriptive study. Am. J. Infect. Control 2021, 49, 1359–1361. [Google Scholar] [CrossRef]
- López-Jácome, L.E.; Fernández-Rodríguez, D.; Franco-Cendejas, R.; Camacho-Ortiz, A.; Morfin-Otero, M.D.R.; Rodríguez-Noriega, E.; Ponce-de-León, A.; Ortiz-Brizuela, E.; Rojas-Larios, F.; Velázquez-Acosta, M.D.C.; et al. Increment Antimicrobial Resistance During the COVID-19 Pandemic: Results from the Invifar Network. Microb. Drug Resist. 2022, 28, 338–345. [Google Scholar]
- Polemis, M.; Mandilara, G.; Pappa, O.; Argyropoulou, A.; Perivolioti, E.; Koudoumnakis, N.; Pournaras, S.; Vasilakopoulou, A.; Vourli, S.; Katsifa, H.; et al. COVID-19 and Antimicrobial Resistance: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance—WHONET-Greece (January 2018–March 2021). Life 2021, 11, 996. [Google Scholar] [CrossRef]
- Sinto, R.; Lie, K.C.; Setiati, S.; Suwarto, S.; Nelwan, E.J.; Djumaryo, D.H.; Karyanti, M.R.; Prayitno, A.; Sumariyono, S.; Moore, C.E.; et al. Blood culture utilization and epidemiology of antimicrobial-resistant bloodstream infections before and during the COVID-19 pandemic in the Indonesian national referral hospital. Antimicrob. Resist. Infect. Control. 2022, 11, 72. [Google Scholar] [CrossRef]
- Yu, D.; Ininbergs, K.; Hedman, K.; Giske, C.G.; Strålin, K.; Özenci, V. Low prevalence of bloodstream infection and high blood culture contamination rates in patients with COVID-19. PLoS ONE 2020, 15, e0242533. [Google Scholar] [CrossRef]
- Sulis, G.; Batomen, B.; Kotwani, A.; Pai, M.; Gandra, S. Impact of COVID-19 on antibiotics and hydroxychloroquine sales in India: An interrupted time series analysis. PLoS Med. 2021, 18, e1003682. [Google Scholar] [CrossRef] [PubMed]
- Weiner-Lastinger, L.M.; Pattabiraman, V.; Konnor, R.Y.; Patel, P.R.; Wong, E.; Xu, S.Y.; Smith, B.; Edwards, J.R.; Dudeck, M.A. The impact of coronavirus disease 2019 (COVID-19) on healthcare-associated infections in 2020: A summary of data reported to the National Healthcare Safety Network. Infect. Control Hosp. Epidemiol. 2022, 43, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; Asrat, H.; Liang, R.; Qiu, W.; Sunny, S.; Maro, A.; Abdallah, M.; Fornek, M.; Episcopia, B.; Quale, J. Methicillin-resistant Staphylococcus aureus bacteremia during the coronavirus disease 2019 (COVID-19) pandemic: Trends and distinguishing characteristics among patients in a healthcare system in New York City. Infect. Control Hosp. Epidemiol. 2022, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Tabah, A.; Ramanan, M.; Laupland, K.B.; Buetti, N.; Cortegiani, A.; Mellinghoff, J.; Conway Morris, A.; Camporota, L.; Zappella, N.; Elhadi, M.; et al. Personal protective equipment and intensive care unit healthcare worker safety in the COVID-19 era (PPE-SAFE): An international survey. J. Crit. Care 2020, 59, 70–75. [Google Scholar] [CrossRef]
- Zhou, Q.; Lai, X.; Wan, Z.; Zhang, X.; Tan, L. Impact of burnout, secondary traumatic stress and compassion satisfaction on hand hygiene of healthcare workers during the COVID-19 pandemic. Nurs. Open 2021, 8, 2551–2557. [Google Scholar] [CrossRef]
- Sulis, G.; Pai, M.; Gandra, S. Comment on: Global consumption of antimicrobials: Impact of the WHO Global Action Plan on Antimicrobial Resistance and 2019 coronavirus pandemic (COVID-19). J. Antimicrob. Chemother. 2022, 77, 2891–2892. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Healthcare Safety Network (NHSN) Bloodstream Infection (BSI) Events. Available online: https://www.cdc.gov/nhsn/psc/bsi/index.html (accessed on 8 February 2023).
- Burnham, J.P.; Kwon, J.H.; Babcock, H.M.; Olsen, M.A.; Kollef, M.H. ICD-9-CM Coding for Multidrug Resistant Infection Correlates Poorly With Microbiologically Confirmed Multidrug Resistant Infection. Infect. Control Hosp. Epidemiol. 2017, 38, 1381–1383. [Google Scholar] [CrossRef] [Green Version]
Indian Hospital | Hospital A, USA | Hospital B, USA | |||||||
---|---|---|---|---|---|---|---|---|---|
COVID-19 Period (15 April 2020 to 31 October 2020) | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) | p | COVID-19 Period (15 April 2020 to 30 September 2020) * | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) | p | COVID-19 Period (15 April 2020 to 30 September 2020) * | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) | p | |
Total number of inpatient cultures | 897 | 6763 | 1608 | 38,555 | 548 | 43,283 | |||
Patient-days ** | 44,380 | 192,935 | 5831 | 195,920 | 3711 | 240,258 | |||
Cultures per 1000 patient-days | 20.2 | 35.1 | <0.001 | 275.6 | 196.8 | <0.001 | 147.7 | 180.2 | <0.001 |
Blood cultures (inpatient) | 448 | 3133 | 1311 | 30,775 | 379 | 32,273 | |||
Blood cultures per 1000 patient-days | 10.1 | 16.2 | <0.001 | 224.8 | 157 | <0.001 | 102.1 | 134.3 | <0.001 |
Urine cultures (inpatient) | 242 | 2807 | 116 | 5576 | 89 | 7212 | |||
Urine cultures per 1000 patient-days | 5.5 | 14.6 | <0.001 | 19.9 | 28.5 | <0.001 | 24 | 30 | 0.035 |
Respiratory cultures (inpatient) | 207 | 823 | 181 | 2224 | 80 | 3798 | |||
Respiratory cultures per 1000 patient-days | 4.7 | 4.3 | <0.001 | 31.0 | 11.4 | <0.001 | 21.6 | 15.8 | 0.006 |
Indian Hospital | Hospital A, USA | Hospital B, USA | |||||||
---|---|---|---|---|---|---|---|---|---|
COVID-19 Period (15 April 2020 to 31 October 2020) % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) % Positive | p | COVID-19 Period (15 April 2020 to 30 September 2020) * % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) % Positive | p | COVID-19 Period (15 April 2020 to 30 September 2020) * % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) % Positive | p | |
Blood cultures after excluding contaminants | 19.6% (88/448) | 7.4% (233/3133) | <0.001 | 15.0% (197/1311) | 9.0% (2772/30,775) | <0.001 | 5.8% (22/379) | 7.2% (2319/32,273) | 0.38 |
CONS contaminants in blood cultures | 1.8% (8/448) | 0.5% (15/3133) | 0.003 | 3.2% (42/1311) | 1.6% (493/30,775) | <0.001 | 4% (15/379) | 1.3% (405/32,273) | <0.001 |
Other common skin contaminants in blood cultures | 4.7% (21/448) | 5.6% (176/3133) | 0.43 | 0.5% (6/1311) | 1% (297/30,775) | 0.07 | 0.8% (3/379) | 0.7% (239/32,273) | 0.91 |
Respiratory cultures | 39.6% (82/207) | 16.8% (138/823) | <0.001 | 36.5% (66/181) | 29.5% (656/2224) | 0.10 | 18.6% (15/80) | 18.1% (687/3798) | 0.89 |
Urine cultures | 29.3% (71/242) | 18.8% (528/2807) | <0.001 | 49.1% (57/116) | 44.2% (2466/5576) | 0.43 | 48.3% (43/89) | 53.0% (3825/7212) | 0.54 |
Indian Hospital | Hospital A, USA | Hospital B, USA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
COVID-19 Period (15 April 2020 to 31 October 2020) Organism % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) Organism % Positive | COVID-19 Period (15 April 2020 to 30 September 2020) * Organism % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) Organism % Positive | COVID-19 Period (15 April 2020 to 30 September 2020) * Organism % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) Organism % Positive | |||||||
Top five organisms in blood cultures ** | CONS S. aureus K. pneumoniae E. coli E. faecium | 45.5% (40/88) 17.1% (15/88) 10.2% (9/88) 8.0% (7/88) 5.7% (5/88) | E. coli CONS K. pneumoniae S. Typhi S. aureus | 27.5% (64/233) 15.5% (36/233) 10.3% (24/233) 6.9% (16/233) 5.2% (12/233) | CONS S. aureus E. coli P. aeruginosa E. faecalis | 45.2% (89/197) 33.0% (65/197) 6.6% (13/197) 5.6% (11/197) 4.1% (8/197) | S. aureus CONS E. coli E. faecalis K. pneumoniae | 35.5% (983/2772) 17.6% (487/2772) 13.1% (364/2772) 4.7% (129/2772) 4.4% (123/2772) | CONS S. aureus E. faecalis K. pneumoniae Lactobacillus sp. | 59.1% (13/22) 13.6% (3/22) 9.1% (2/22) 9.1% (2/22) 4.6% (1/22) | E. coli S. aureus CONS E. faecalis K. pneumoniae | 24.8% (575/2319) 18.2% (423/2319) 13.0% (302/2319) 11.3% (263/2319) 7.3% (169/2319) |
Top five organisms in respiratory cultures ** | K. pneumoniae P. aeruginosa A. baumanni E. coli S. pneumoniae | 39.0% (32/82) 23.2% (19/82) 18.3% (15/82) 9.8% (8/82) 4.9% (4/82) | K. pneumoniae P. aeruginosa E. coli S. aureus A. baumannii | 30.4% (21/138) 21.7% (30/138) 13.8% (19/138) 8.7% (12/138) 5.8% (8/138) | P. aeruginosa S. aureus K. pneumoniae E. cloacae P. mirabilis | 39.4% (26/66) 28.8% (19/66) 7.6% (5/66) 4.6% (3/66) 4.6% (3/66) | S. aureus P. aeruginosa K. pneumoniae S. maltophilia E. coli | 34.0% (223/656) 20.4% (134/656) 6.4% (42/656) 6.1% (40/656) 5.6% (37/656) | S. aureus P. aeruginosa E. coli S. pyogenes | 60.0% (9/15) 33.3% (5/15) 6.7% (1/15) 6.7% (1/15) | P. aeruginosa S. aureus S. maltophilia H. influenzae S. pneumoniae | 30.4% (209/687) 27.2% (187/687) 6.8% (47/687) 5.5% (38/687) 4.5% (31/687) |
Top five organisms in urine cultures ** | E. coli K. pneumoniae Enterococcus sp. E. faecalis E. faecium | 53.5% (38/71) 21.1% (15/71) 18.3% (13/71) 4.2% (3/71) 2.8% (2/71) | E. coli K. pneumoniae Enterococcus sp. E. faecalis Enterobacter sp. | 66.1% (349/528) 19.3% (102/528) 11.7% (62/528) 2.7% (14/128) 1.9% (10/528) | E. coli P. mirabilis K. peumoniae Aerococcus urinae E. faecalis | 47.4% (27/57) 15.8% (9/57) 10.5% (6/57) 7.0% (4/57) 7.0% (4/57) | E. coli K. pneumoniae P. mirabilis E. faecalis Group B Streptococcus | 47.3% (1166/2466) 12.0% (295/2466) 8.8% (217/2466) 6.8% (168/2466) 6.6% (162/2466) | E. coli P. aeruginosa E. faecalis K. oxytoca K. pneumoniae | 44.2% (19/43) 21.0% (9/43) 9.3% (4/43) 7.0% (3/43) 7.0% (3/43) | E. coli K. pneumoniae E. faecalis P. aeruginosa P. mirabilis | 47.0% (1798/3825) 12.3% (471/3825) 8.7% (334/3825) 7.6% (292/3825) 6.8% (259/3825) |
Indian Hospital | Hospital A, USA | Hospital B, USA | |||||||
---|---|---|---|---|---|---|---|---|---|
COVID-19 Period (15 April 2020 to 31 October 2020) % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) % Positive | p | COVID-19 Period (15 April 2020 to 30 September 2020) ** % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) % Positive | p | COVID-19 Period (15 April 2020 to 30 September 2020) ** % Positive | Pre-COVID-19 Period (1 January 2017 to 31 December 2019) % Positive | p | |
% MDRO in blood cultures, excluding contaminants | 6.7% (30/448) | 3.0% (93/3133) | <0.001 | 4.4% (57/1311) | 2.6% (804/30775) | <0.001 | 0.0% (0/379) | 1.2% (380/32273) | 0.025 * |
% MDRO in respiratory cultures | 23.2% (48/207) | 9.0% (74/823) | <0.001 | 12.7% (23/181) | 11.8% (262/2224) | 0.73 | 7.5% (6/80) | 5.0% (189/3798) | 0.32 |
% MDRO in urine cultures | 21.5% (52/242) | 14.0% (394/2807) | 0.004 | 19.0% (22/116) | 12.3% (683/5576) | 0.04 | 11.2% (10/89) | 14.8% (1067/7212) | 0.39 |
Blood cultures E. coli % 3GCR % CR K. pneumoniae % 3GCR % CR % MRSA % VRE % MR CONS | 85.7% (6/7) 0.0% (0/7) 77.9% (7/9) 44.4% (4/9) 66.7% (10/15) 0.0% (0/11) 53.9% (28/52) | 78.1% (50/64) 12.5% (8/64) 66.7% (16/24) 25.0% (6/24) 58.3% (7/12) 5.3% (1/19) 39.0% (21/54) | 0.83 1.0 * 0.73 0.40 * 0.79 1.0 * 0.26 | 15.4% (2/13) 0.0% (0/13) 0.0% (0/5) 0.0% (0/5) 67.7% (44/65) 27.3% (3/11) 50.7% (45/89) | 15.4% (56/364) 0.0% (0/364) 11.4% (14/123) 0.8% (1/123) 47.3% (455/963) 31.0% (62/200) 50.3% (245/487) | 1.0 * 1.0 * 1.0 * 1.0 * 0.020 1.0 * 0.98 | 0.0% (0/0) 0.0% (0/0) 0.0% (0/2) 0.0% (0/2) 0.0% (0/3) 0.0% (0/2) 30.8% (4/13) | 6.6% (38/575) 0.0% (0/575) 2.4% (4/169) 0.0% (0/169) 46.6% (197/423) 11.5% (34/296) 27.8% (84/302) | NE NE 1.0 * 1.0 * 0.25 * 1.0 * 0.82 |
Respiratory cultures E. coli % 3GCR % CR K. pneumoniae % 3GCR % CR % CR A. baumannii % CR P. aeruginosa % MRSA | 87.5% (7/8) 37.5% (3/8) 65.6% (21/32) 34.4% (11/32) 73.3% (11/15) 26.3% (5/19) 66.7% (2/3) | 100.0% (19/19) 26.3% (5/19) 64.3% (27/42) 4.8% (2/42) 62.5 (5/8) 0.0% (0/30) 41.7% (5/12) | 0.76 0.66 * 0.94 0.001 0.77 0.003 0.57 * | 50.0% (1/2) 0.0% (0/2) 20.0% (1/5) 0.0% (0/5) 0.0% (0/0) 23.1% (6/26) 36.9% (7/19) | 24.3% (9/37) 0.0% (0/37) 19.1% (8/42) 0.0% (0/42) 0.0% (0/0) 26.9% (36/134) 55.2% (123/333) | 0.45 1.0 * 1.0 * 1.0 * NE 0.73 0.30 | 0.0% (0/1) 0.0% (0/1) 0.0% (0/0) 0.0% (0/0) 0.0% (0/0) 20.0% (1/5) 44.4% (4/9) | 22.2% (4/18) 0.0% (0/18) 5.3% (1/19) 0.0% (0/19) 100.0% (4/4) 16.3% (34/209) 70.6% (132/187) | 1.0 * 1.0 * NE NE NE 1.0 * 0.14 * |
Urine cultures E. coli % 3GCR % CR K. pneumoniae % 3GCR % CR % VRE | 89.5% (34/38) 26.3% (10/38) 60.0% (9/15) 33.3% (5/15) 5.6% (1/18) | 79.7% (278/349) 8.6% (30/349) 48.0% (49/102) 11.8% (12/102) 1.2% (1/81) | 0.52 0.002 0.54 0.027 0.33 * | 33.3% (9/27) 0.0% (0/27) 16.7% (1/6) 0.0% (0/6) 33.3% (2/6) | 19.0% (222/1166) 0.3% (4/1166) 14.2% (42/295) 0.0% (0/295) 33.5% (80/239) | 0.10 1.0 * 1.0 * 1.0 * 1.0 * | 10.5% (2/19) 0.0% (0/19) 33.3% (1/3) 0.0% (0/3) 25.0% (1/4) | 13.0% (234/1798) 0.1% (1/1798) 6.8% (32/471) 0.4% (2/471) 24.0% (104/434) | 1.0 * 1.0 * 0.20 * 1.0 * 1.0 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandra, S.; Alvarez-Uria, G.; Stwalley, D.; Nickel, K.B.; Reske, K.A.; Kwon, J.H.; Dubberke, E.R.; Olsen, M.A.; Burnham, J.P. Microbiology Clinical Culture Diagnostic Yields and Antimicrobial Resistance Proportions before and during the COVID-19 Pandemic in an Indian Community Hospital and Two US Community Hospitals. Antibiotics 2023, 12, 537. https://doi.org/10.3390/antibiotics12030537
Gandra S, Alvarez-Uria G, Stwalley D, Nickel KB, Reske KA, Kwon JH, Dubberke ER, Olsen MA, Burnham JP. Microbiology Clinical Culture Diagnostic Yields and Antimicrobial Resistance Proportions before and during the COVID-19 Pandemic in an Indian Community Hospital and Two US Community Hospitals. Antibiotics. 2023; 12(3):537. https://doi.org/10.3390/antibiotics12030537
Chicago/Turabian StyleGandra, Sumanth, Gerardo Alvarez-Uria, Dustin Stwalley, Katelin B. Nickel, Kimberly A. Reske, Jennie H. Kwon, Erik R. Dubberke, Margaret A. Olsen, and Jason P. Burnham. 2023. "Microbiology Clinical Culture Diagnostic Yields and Antimicrobial Resistance Proportions before and during the COVID-19 Pandemic in an Indian Community Hospital and Two US Community Hospitals" Antibiotics 12, no. 3: 537. https://doi.org/10.3390/antibiotics12030537
APA StyleGandra, S., Alvarez-Uria, G., Stwalley, D., Nickel, K. B., Reske, K. A., Kwon, J. H., Dubberke, E. R., Olsen, M. A., & Burnham, J. P. (2023). Microbiology Clinical Culture Diagnostic Yields and Antimicrobial Resistance Proportions before and during the COVID-19 Pandemic in an Indian Community Hospital and Two US Community Hospitals. Antibiotics, 12(3), 537. https://doi.org/10.3390/antibiotics12030537