Enolase Is Implicated in the Emergence of Gonococcal Tolerance to Ceftriaxone
Abstract
:1. Introduction
2. Material and Methods
2.1. Phenotypes
2.2. Whole-Genome Sequencing (WGS) and SNP Analysis
2.3. Genetic Characterization of Eno and tatC Genes Associated with Ceftriaxone Tolerance in WHO-P and Global Neisseria spp. Collection
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Unemo, M.; Seifert, H.S.; Hook, E.W., 3rd; Hawkes, S.; Ndowa, F.; Dillon, J.-A.R. Gonorrhoea. Nat. Rev. Dis. Prim. 2019, 5, 79. [Google Scholar] [CrossRef]
- Piszczek, J.; St Jean, R.; Khaliq, Y. Gonorrhea: Treatment update for an increasingly resistant organism. Can. Pharm. J. 2015, 148, 82–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, S.A.; Masters, T.L.; Wachter, J. Gonorrhea—An evolving disease of the new millennium. Microb. Cell 2016, 3, 371–389. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Preferred Product Characteristics for Gonococcal Vaccines; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- World Health Organization. Sexual and Reproductive Health: WHO Guidelines for the Treatment of Neisseria Gonorrhoeae; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ohnishi, M.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.I.; Watanabe, H.; Kitawaki, J. Ceftriaxone-resistant Neisseria gonorrhoeae, Japan. Emerg. Infect. Dis. 2011, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Golparian, D.; Nicholas, R.; Ohnishi, M.; Gallay, A.; Sednaoui, P. High-level cefixime-and ceftriaxone-resistant Neisseria gonorrhoeae in France: Novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother. 2012, 56, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Balaban, N.Q.; Helaine, S.; Lewis, K.; Ackermann, M.; Aldridge, B.; Andersson, D.I.; Brynildsen, M.P.; Bumann, D.; Camilli, A.; Collins, J.J.; et al. Publisher Correction: Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Genet. 2019, 17, 460. [Google Scholar] [CrossRef] [Green Version]
- Huemer, M.; Shambat, S.M.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence—Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef]
- Fridman, O.; Goldberg, A.; Ronin, I.; Shoresh, N.; Balaban, N.Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 2014, 513, 418–421. [Google Scholar] [CrossRef]
- Brauner, A.; Shoresh, N.; Fridman, O.; Balaban, N.Q. An experimental framework for quantifying bacterial tolerance. Biophys. J. 2017, 112, 2664–2671. [Google Scholar] [CrossRef] [Green Version]
- Hamad, M.A.; Austin, C.R.; Stewart, A.L.; Higgins, M.; Vázquez-Torres, A.; Voskuil, M.I. Adaptation and antibiotic tolerance of anaerobic Burkholderia pseudomallei. Antimicrob. Agents Chemother. 2011, 55, 3313–3323. [Google Scholar] [CrossRef] [Green Version]
- Lazarovits, G.; Gefen, O.; Cahanian, N.; Adler, K.; Fluss, R.; Levin-Reisman, I.; Ronin, I.; Motro, Y.; Moran-Gilad, J.; Balaban, N.Q.; et al. Prevalence of Antibiotic Tolerance and Risk for Reinfection Among Escherichia coli Bloodstream Isolates: A Prospective Cohort Study. Clin. Infect. Dis. 2022, 75, 1706–1713. [Google Scholar] [CrossRef] [PubMed]
- Santi, I.; Manfredi, P.; Maffei, E.; Egli, A.; Jenal, U. Evolution of antibiotic tolerance shapes resistance development in chronic Pseudomonas aeruginosa infections. mBio 2021, 12, e03482-20. [Google Scholar] [CrossRef]
- Walter, N.D.; Born, S.E.; Robertson, G.T.; Reichlen, M.; Dide-Agossou, C.; Ektnitphong, V.A.; Rossmassler, K.; Ramey, M.E.; Bauman, A.A.; Ozols, V. Mycobacterium tuberculosis precursor rRNA as a measure of treatment-shortening activity of drugs and regimens. Nat. Commun. 2021, 12, 2899. [Google Scholar] [CrossRef]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef]
- Balduck, M.; Laumen, J.G.E.; Abdellati, S.; De Baetselier, I.; de Block, T.; Manoharan-Basil, S.S.; Kenyon, C. Tolerance to Ceftriaxone in Neisseria gonorrhoeae: Rapid Induction in WHO P Reference Strain and Detection in Clinical Isolates. Antibiotics 2022, 11, 1480. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Golparian, D.; Sánchez-Busó, L.; Grad, Y.; Jacobsson, S.; Ohnishi, M.; Lahra, M.M.; Limnios, A.; Sikora, A.E.; Wi, T.; et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: Phenotypic, genetic and reference genome characterization. J. Antimicrob. Chemother. 2016, 71, 3096–3108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gefen, O.; Chekol, B.; Strahilevitz, J.; Balaban, N.Q. TDtest: Easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Sci. Rep. 2017, 7, 41284. [Google Scholar] [CrossRef] [Green Version]
- González, N.; Abdellati, S.; De Baetselier, I.; Laumen, J.G.E.; Van Dijck, C.; de Block, T.; Kenyon, C.; Manoharan-Basil, S.S. Alternative Pathways to Ciprofloxacin Resistance in Neisseria gonorrhoeae: An In Vitro Study of the WHO-P and WHO-F Reference Strains. Antibiotics 2022, 11, 499. [Google Scholar] [CrossRef]
- Manoharan-Basil, S.S.; Laumen, J.G.E.; Kenyon, C. Horizontal gene transfer of fluoroquinolone resistance-conferring genes from commensal Neisseria to Neisseria gonorrhoeae: A global phylogenetic analysis of 20,047 isolates. Front. Microbiol. 2022, 13, 225. [Google Scholar] [CrossRef]
- Krucinska, J.; Falcone, E.; Erlandsen, H.; Hazeen, A.; Lombardo, M.N.; Estrada, A.; Robinson, V.L.; Anderson, A.C.; Wright, D.L. Structural and Functional Studies of Bacterial Enolase, a Potential Target against Gram-Negative Pathogens. Biochemistry 2019, 58, 1188–1197. [Google Scholar] [CrossRef]
- Morita, T.; Kawamoto, H.; Mizota, T.; Inada, T.; Aiba, H. Enolase in the RNA degradosome plays a crucial role in the rapid decay of glucose transporter mRNA in the response to phosphosugar stress in Escherichia coli. Mol. Microbiol. 2004, 54, 1063–1075. [Google Scholar] [CrossRef] [PubMed]
- Tejada-Arranz, A.; de Crécy-Lagard, V.; de Reuse, H. Bacterial RNA Degradosomes: Molecular Machines under Tight Control. Trends Biochem. Sci. 2020, 45, 42–57. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Chen, F.; Liu, Y.; Zhao, Q.; Chen, R.; Pan, X.; Liu, C.; Cheng, Z.; Jin, S.; Jin, Y.; et al. Pseudomonas aeruginosa Enolase Influences Bacterial Tolerance to Oxidative Stresses and Virulence. Front. Microbiol. 2016, 7, 1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, M.; Jakobsen, T.H.; Givskov, M.; Twetman, S.; Tolker-Nielsen, T. Oxidative stress response plays a role in antibiotic tolerance of Streptococcus mutans biofilms. Microbiology 2019, 165, 334–342. [Google Scholar] [CrossRef]
- Li, T.; Wang, J.; Cao, Q.; Li, F.; Han, J.; Zhu, B.; Zhang, Y.; Niu, H. Identification of Novel Genes Involved in Escherichia coli Persistence to Tosufloxacin. Front. Cell. Infect. Microbiol. 2020, 10, 581986. [Google Scholar] [CrossRef]
- Lee, P.A.; Tullman-Ercek, D.; Georgiou, G. The Bacterial Twin-Arginine Translocation Pathway. Annu. Rev. Microbiol. 2006, 60, 373–395. [Google Scholar] [CrossRef] [Green Version]
- Halbig, D.; Wiegert, T.; Blaudeck, N.; Freudl, R.; Sprenger, G.A. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor bind. Eur. J. Biochem. 1999, 263, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Gomez, J.E.; Kaufmann-Malaga, B.B.; Wivagg, C.N.; Kim, P.B.; Silvis, M.R.; Renedo, N.; Ioerger, T.R.; Ahmad, R.; Livny, J.; Fishbein, S.; et al. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment. eLife 2017, 6, e20420. [Google Scholar] [CrossRef] [Green Version]
- Laumen, J.G.E.; Manoharan-Basil, S.S.; Verhoeven, E.; Abdellati, S.; De Baetselier, I.; Crucitti, T.; Xavier, B.B.; Chapelle, S.; Lammens, C.; Van Dijck, C.; et al. Molecular pathways to high-level azithromycin resistance in Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2021, 76, 1752–1758. [Google Scholar] [CrossRef]
- Levin-Reisman, I.; Brauner, A.; Ronin, I.; Balaban, N.Q. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc. Natl. Acad. Sci. USA 2019, 116, 14734–14739. [Google Scholar] [CrossRef] [Green Version]
- Cohen, N.R.; Lobritz, M.A.; Collins, J.J. Microbial Persistence and the Road to Drug Resistance. Cell Host Microbe 2013, 13, 632–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Exposure Cycles | ||||||||
---|---|---|---|---|---|---|---|---|
Biological Replicates | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Control isolates | 1 | / | / | 12.1 | / | / | / | 16.1 |
2 | / | / | / | / | / | / | / | |
Tolerant isolates | 1 | / | 11.3–2.3 | / | / | / | / | 16.3–2.3 |
2 | / | 11.4–2.3 | / | / | / | / | 16.4–2.3 | |
3 | / | 11.5–2.3 | / | / | / | / | 16.5–2.3 | |
4 | / | / | 12.6.3 | / | / | / | 16.6–2.3 | |
5 | / | 11.7–2.3 | / | / | / | / | 16.7–2.3 | |
6 | 10.8 | 11.8–2.3 | 12.8.3 | / | / | / | 16.8–2.3 |
Protein Product | Gene | Lineages | Cycle | Isolate ID | CDS Change | Amino acid Change |
---|---|---|---|---|---|---|
Helix-hairpin-helix domain-containing protein | C7S06_RS11330 | L6 | 1 | 10.8 | 205A > C | Ile69Leu |
Twin-arginine translocase subunit TatC | tatC | L1 | 7 | 16.3–2.3 | 189G > A | Met63Ile |
Phosphogluconate dehydratase | edd | L1 | 7 | 16.3–2.3 | 1529C > T | Ala510Val |
Phoshopyruvate hydratase | eno | L3 | 7 | 16.5–2.3 | 404G > A | Gly135Asp |
L4 | 7 | 16.6–2.3 | 413G > A | Gly138Asp | ||
L5 | 7 | 16.7–2.3 | 89G > T | Gly30Val |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoharan-Basil, S.S.; Balduck, M.; Abdellati, S.; Gestels, Z.; de Block, T.; Kenyon, C. Enolase Is Implicated in the Emergence of Gonococcal Tolerance to Ceftriaxone. Antibiotics 2023, 12, 534. https://doi.org/10.3390/antibiotics12030534
Manoharan-Basil SS, Balduck M, Abdellati S, Gestels Z, de Block T, Kenyon C. Enolase Is Implicated in the Emergence of Gonococcal Tolerance to Ceftriaxone. Antibiotics. 2023; 12(3):534. https://doi.org/10.3390/antibiotics12030534
Chicago/Turabian StyleManoharan-Basil, Sheeba Santhini, Margaux Balduck, Saïd Abdellati, Zina Gestels, Tessa de Block, and Chris Kenyon. 2023. "Enolase Is Implicated in the Emergence of Gonococcal Tolerance to Ceftriaxone" Antibiotics 12, no. 3: 534. https://doi.org/10.3390/antibiotics12030534
APA StyleManoharan-Basil, S. S., Balduck, M., Abdellati, S., Gestels, Z., de Block, T., & Kenyon, C. (2023). Enolase Is Implicated in the Emergence of Gonococcal Tolerance to Ceftriaxone. Antibiotics, 12(3), 534. https://doi.org/10.3390/antibiotics12030534