Domestic Waste and Wastewaters as Potential Sources of Pharmaceuticals in Nestling White Storks (Ciconia ciconia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Study Population
2.2. Fieldwork
2.3. Potential Sources of Exposure to the Pharmaceuticals
2.4. Analysis of the Presence of Pharmaceuticals in Blood
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- aus der Beek, T.; Weber, F.A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Liu, W. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, E. Pharmaceuticals in the environment: Expected and unexpected effects on aquatic fauna. Ann. N. Y. Acad. Sci. 2015, 1340, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Lienert, J.; Güdel, K.; Escher, B.I. Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ. Sci. Technol. 2007, 41, 4471–4478. [Google Scholar] [CrossRef] [PubMed]
- Nikolaou, A.; Meric, S.; Fatta, D. Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal. Bioanal. Chem. 2007, 387, 1225–1234. [Google Scholar] [CrossRef] [PubMed]
- Tambosi, J.L.; Yamanaka, L.Y.; José, H.J.; de Fátima Peralta Muniz Moreira, R.; Schröder, H.F. Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP). Química Nova 2010, 33, 411–420. [Google Scholar] [CrossRef]
- Díaz-Cruz, M.S.; de Alda MJ, L.; Barcelo, D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends Anal. Chem. 2003, 22, 340–351. [Google Scholar] [CrossRef]
- Caban, M.; Stepnowski, P. How to decrease pharmaceuticals in the environment? A review. Environ. Chem. Lett. 2021, 19, 3115–3138. [Google Scholar] [CrossRef]
- Robles-Jimenez, L.E.; Aranda-Aguirre, E.; Castelan-Ortega, O.A.; Shettino-Bermudez, B.S.; Ortiz-Salinas, R.; Miranda, M.; Li, X.; Angeles-Hernandez, J.C.; Vargas-Bello-Pérez, E.; Gonzalez-Ronquillo, M. Worldwide traceability of antibiotic residues from livestock in wastewater and soil: A systematic review. Animals 2021, 12, 60. [Google Scholar] [CrossRef] [PubMed]
- OECD. “Pharmaceutical Consumption”, in Health at a Glance 2019: OECD Indicators; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef] [Green Version]
- Miarov, O.; Tal, A.; Avisar, D. A critical evaluation of comparative regulatory strategies for monitoring pharmaceuticals in recycled wastewater. J. Environ. Manag. 2020, 254, 109794. [Google Scholar] [CrossRef]
- González Peña, O.I.; López Zavala, M.Á.; Cabral Ruelas, H. Pharmaceuticals market, consumption trends and disease incidence are not driving the pharmaceutical research on water and wastewater. Int. J. Environ. Res. Public Health 2021, 18, 2532. [Google Scholar] [CrossRef] [PubMed]
- Alnahas, F.; Yeboah, P.; Fliedel, L.; Abdin, A.Y.; Alhareth, K. Expired medication: Societal, regulatory and ethical aspects of a wasted opportunity. Int. J. Environ. Res. Public Health 2020, 17, 787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshemari, A.; Breen, L.; Quinn, G.; Sivarajah, U. Can we create a circular pharmaceutical supply chain (CPSC) to reduce medicines waste? Pharmacy 2020, 8, 221. [Google Scholar] [CrossRef]
- Pilli, S.; Sellamuthu, B.; Pandey, A.K.; Tyagi, R.D. Treatment of wastewater containing pharmaceuticals: Biological treatment. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 463–520. [Google Scholar]
- Jones-Lepp, T.L.; Stevens, R. Pharmaceuticals and personal care products in biosolids/sewage sludge: The interface between analytical chemistry and regulation. Anal. Bioanal. Chem. 2007, 387, 1173–1183. [Google Scholar] [CrossRef]
- Wang, J.; He, B.; Hu, X. Human-use antibacterial residues in the natural environment of China: Implication for ecopharmacovigilance. Environ. Monit. Assess. 2015, 187, 331. [Google Scholar] [CrossRef]
- Acuña, V.; Bregoli, F.; Font, C.; Barceló, D.; Corominas, L.; Ginebreda, A.; Petrovic, M.; Rodríguez-Roda, I.; Sabater, S.; Marcé, R. Management actions to mitigate the occurrence of pharmaceuticals in river networks in a global change context. Environ. Int. 2020, 143, 105993. [Google Scholar] [CrossRef] [PubMed]
- Bottoni, P.; Caroli, S.; Caracciolo, A.B. Pharmaceuticals as priority water contaminants. Toxicol. Environ. Chem. 2010, 92, 549–565. [Google Scholar] [CrossRef]
- Boxall, A.B.; Brooks, B.W.; Caldwell, D.J.; Choi, K.; Hickmann, S.; Innes, E.; Ostapyk, K.; Staveley, J.P.; Verslycke, T.; Ankley, G.T.; et al. Pharmaceuticals and personal care products in the environment: What are the big questions? Environ. Health Perspect. 2012, 120, 1221–1229. [Google Scholar] [CrossRef]
- Chander, V.; Sharma, B.; Negi, V.; Aswal, R.S.; Singh, P.; Singh, R.; Dobhal, R. Pharmaceutical compounds in drinking water. J. Xenobiotics 2016, 6, 5774. [Google Scholar] [CrossRef]
- Oaks, J.L.; Watson, R.T. South asian vultures in crisis: Environmental contamination with a pharmaceutical. In Wildlife Ecotoxicology: Forensic Approaches; Elliot, J.E., Bishop, C.A., Morrisey, C.A., Eds.; Springer: New York, NY, USA, 2011; pp. 413–442. [Google Scholar]
- Herrero-Villar, M.; Delepoulle, É.; Suárez-Regalado, L.; Solano-Manrique, C.; Juan-Sallés, C.; Iglesias-Lebrija, J.J.; González, F.; Álvarez, E.; Mateo, R. First diclofenac intoxication in a wild avian scavenger in Europe. Sci. Total Environ. 2021, 782, 146890. [Google Scholar] [CrossRef]
- Margalida, A.; Green, R.E.; Hiraldo, F.; Blanco, G.; Sánchez-Zapata, J.A.; Santangeli, A.; Duriez, O.; Donázar, J.A. Ban veterinary use of diclofenac in Europe. Science 2021, 372, 694–695. [Google Scholar] [CrossRef] [PubMed]
- Bowden, C.; Botha, A. Vulture updates No 12-March 2020-Around the World of Vultures & VSG activities. Vulture News 2020, 78, 1–7. [Google Scholar]
- Herrero-Villar, M.; Velarde, R.; Camarero, P.R.; Taggart, M.A.; Bandeira, V.; Fonseca, C.; Marco, I.; Mateo, R. NSAIDs detected in Iberian avian scavengers and carrion after diclofenac registration for veterinary use in Spain. Environ. Pollut. 2020, 266, 115157. [Google Scholar] [CrossRef] [PubMed]
- Margalida, A.; Sánchez-Zapata, J.A.; Blanco, G.; Hiraldo, F.; Donázar, J.A. Diclofenac approval as a threat to Spanish vultures. Conserv. Biol. 2014, 28, 631–632. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ramírez, P.; Jiménez-Montalbán, P.J.; Delgado, D.; Martínez-López, E.; María-Mojica, P.; Godino, A.; García-Fernández, A.J. Development of a QuEChERS method for simultaneous analysis of antibiotics in carcasses for supplementary feeding of endangered vultures. Sci. Total Environ. 2018, 626, 319–327. [Google Scholar] [CrossRef]
- Blanco, G.; Junza, A.; Segarra, D.; Barbosa, J.; Barrón, D. Wildlife contamination with fluoroquinolones from livestock: Widespread occurrence of enrofloxacin and marbofloxacin in vultures. Chemosphere 2016, 144, 1536–1543. [Google Scholar] [CrossRef]
- Blanco, G.; Junza, A.; Barrón, D. Food safety in scavenger conservation: Diet-associated exposure to livestock pharmaceuticals and opportunist mycoses in threatened Cinereous and Egyptian vultures. Ecotoxicol. Environ. Saf. 2017, 135, 292–301. [Google Scholar] [CrossRef]
- Casas-Díaz, E.; Cristòfol, C.; Cuenca, R.; Agustí, S.; Carneiro, M.; Marco, I.; Lavín, S.; Margalida, A. Determination of fluoroquinolone antimicrobial residues in the plasma of Eurasian griffon vultures (Gyps fulvus) in Spain. Sci. Total Environ. 2016, 557, 620–626. [Google Scholar] [CrossRef]
- Gómez-Ramírez, P.; Blanco, G.; García-Fernández, A.J. Validation of multi-residue method for quantification of antibiotics and NSAIDs in avian scavengers by using small amounts of plasma in HPLC-MS-TOF. Int. J. Environ. Res. Public Health 2020, 17, 4058. [Google Scholar] [CrossRef]
- Pitarch, A.; Gil, C.; Blanco, G. Oral mycoses in avian scavengers exposed to antibiotics from livestock farming. Sci. Total Environ. 2017, 605, 139–146. [Google Scholar] [CrossRef]
- Blanco, G.; López-Hernández, I.; Morinha, F.; López-Cerero, L. Intensive farming as a source of bacterial resistance to antimicrobial agents in sedentary and migratory vultures: Implications for local and transboundary spread. Sci. Total Environ. 2020, 739, 140356. [Google Scholar] [CrossRef]
- Plaza, P.I.; Blanco, G.; Lambertucci, S.A. Implications of bacterial, viral and mycotic microorganisms in vultures for wildlife conservation, ecosystem services and public health. Ibis 2020, 162, 1109–1124. [Google Scholar] [CrossRef]
- Plaza, P.I.; Lambertucci, S.A. How are garbage dumps impacting vertebrate demography, health, and conservation? Glob. Ecol. Conserv. 2017, 12, 9–20. [Google Scholar] [CrossRef]
- Świacka, K.; Maculewicz, J.; Kowalska, D.; Caban, M.; Smolarz, K.; Świeżak, J. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms–current state of knowledge. J. Hazard. Mater. 2022, 424, 127350. [Google Scholar] [CrossRef]
- Chung, S.S.; Brooks, B.W. Identifying household pharmaceutical waste characteristics and population behaviors in one of the most densely populated global cities. Resour. Conserv. Recycl. 2019, 140, 267–277. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef]
- Distefano, G.G.; Zangrando, R.; Basso, M.; Panzarin, L.; Gambaro, A.; Ghirardini, A.V.; Picone, M. Assessing the exposure to human and veterinary pharmaceuticals in waterbirds: The use of feathers for monitoring antidepressants and nonsteroidal anti-inflammatory drugs. Sci. Total Environ. 2022, 821, 153473. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Avizanda, A.; Blanco, G.; De Vault, T.L.; Markandya, A.; Virani, M.Z.; Donázar, J.A. Supplementary feeding and endangered avian scavengers: Benefits, caveats and controversies. Front. Ecol. Environ. 2016, 14, 191–199. [Google Scholar] [CrossRef] [Green Version]
- BirdLife International. European Red List of Birds; Office for Official Publications of the European Communities: Luxembourg, 2015. [Google Scholar]
- Gilbert, N.I.; Correia, R.A.; Silva, J.P.; Pacheco, C.; Catry, I.; Atkinson, P.W.; Gill, J.A.; Franco, A.M. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 2016, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, G. Population dynamics and communal roosting of white storks foraging at a Spanish refuse dump. Colonial Waterbirds 1996, 19, 273–276. [Google Scholar] [CrossRef]
- Kruszyk, R.; Ciach, M. White Storks, Ciconia ciconia, forage on rubbish dumps in Poland—A novel behaviour in population. Eur. J. Wildl. Res. 2010, 56, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Djerdali, S.; Guerrero-Casado, J.; Tortosa, F.S. Food from dumps increases the reproductive value of last laid eggs in the White Stork Ciconia ciconia. Bird Study 2016, 63, 107–114. [Google Scholar] [CrossRef]
- Marchamalo, J.; Blanco, G.; Prieto, J. Presencia durante el otoño de la cigüeña blanca en la Comunidad de Madrid (1991–1997). Anu. Ornitológico Madr. 1997, 1997, 14–21. [Google Scholar]
- Arizaga, J.; Resano-Mayor, J.; Villanúa, D.; Alonso, D.; Barbarin, J.M.; Herrero, A.; Lekuona, J.M.; Rodríguez, R. Importance of artificial stopover sites through avian migration flyways: A landfill-based assessment with the White Stork Ciconia ciconia. Ibis 2018, 160, 542–553. [Google Scholar] [CrossRef]
- Baos, R.; Jovani, R.; Serrano, D.; Tella, J.L.; Hiraldo, F. Developmental exposure to a toxic spill compromises long-term reproductive performance in a wild, long-lived bird: The white stork (Ciconia ciconia). PLoS ONE 2012, 7, e34716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Casa-Resino, I.; Hernández-Moreno, D.; Castellano, A.; Pérez-López, M.; Soler, F. Breeding near a landfill may influence blood metals (Cd, Pb, Hg, Fe, Zn) and metalloids (Se, As) in white stork (Ciconia ciconia) nestlings. Ecotoxicology 2014, 23, 1377–1386. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, B.; Kamiński, P.; Andrzejewska, M.; Śpica, D.; Kartanas, E.; Ulrich, W.; Klawe, J.J. Prevalence, virulence, and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli in white stork Ciconia ciconia in Poland. Foodborne Pathog. Dis. 2015, 12, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Höfle, U.; Gonzalez-Lopez, J.J.; Camacho, M.C.; Solá-Ginés, M.; Moreno-Mingorance, A.; Hernández, J.M.; De La Puente, J.; Pineda-Pampliega, J.; Aguirre, J.I.; Torres-Medina, F.; et al. Foraging at solid urban waste disposal sites as risk factor for cephalosporin and colistin resistant Escherichia coli carriage in white storks (Ciconia ciconia). Front. Microbiol. 2020, 11, 1397. [Google Scholar] [CrossRef] [PubMed]
- Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Sánchez, M.I.; Alonso, E. Development and validation of a highly effective analytical method for the evaluation of the exposure of migratory birds to antibiotics and their metabolites by faeces analysis. Anal. Bioanal. Chem. 2022, 414, 3373–3386. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Sergio, F.; Frías, Ó.; Salinas, P.; Tanferna, A.; Hiraldo, F.; Barceló, D.; Eljarrat, E. Integrating population connectivity into pollution assessment: Overwintering mixing reveals flame retardant contamination in breeding areas in a migratory raptor. Environ. Res. 2018, 166, 553–561. [Google Scholar] [CrossRef]
- Pitarch, A.; Diéguez-Uribeondo, J.; Martín-Torrijos, L.; Sergio, F.; Blanco, G. Fungal signatures of oral disease reflect environmental degradation in a facultative avian scavenger. Sci. Total Environ. 2022, 837, 155397. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, S.; Muñoz, M.J.; de la Torre, A.; Roset, J.; de la Peña, E.; Carballo, M. Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents. Sci. Total Environ. 2004, 328, 69–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Santiago-Martín, A.; Meffe, R.; Teijon, G.; Hernández, V.M.; Lopez-Heras, I.; Alonso, C.A.; Arenas Romasanta, M.; de Bustamante, I. Pharmaceuticals and trace metals in the surface water used for crop irrigation: Risk to health or natural attenuation? Sci. Total Environ. 2020, 705, 135825. [Google Scholar] [CrossRef]
- Eljarrat, E.; Aznar-Alemany, Ò.; Sala, B.; Frías, Ó.; Blanco, G. Decreasing but still high levels of halogenated flame retardants in wetland birds in central Spain. Chemosphere 2019, 228, 83–92. [Google Scholar] [CrossRef]
- Albero, B.; Pérez, R.A.; Sánchez-Brunete, C.; Tadeo, J.L. Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain). J. Hazard. Mater. 2012, 239, 48–55. [Google Scholar] [CrossRef]
- Fernández, M.; Cuesta, S.; Jiménez, O.; Garcıa, M.A.; Hernández, L.M.; Marina, M.L.; González, M.J. Organochlorine and heavy metal residues in the water/sediment system of the southeast Regional Park in Madrid, Spain. Chemosphere 2000, 41, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel, Y.; Alonso, S.G.; Rodríguez-Gil, J.L.; Gil, A.; Catalá, M. Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid Region (Spain) and potential ecotoxicological risk. Chemosphere 2011, 84, 1336–1348. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Jimenez, B.; Frıas, O.; Millan, J.; Davila, J.A. Contamination with nonessential metals from a solid-waste incinerator correlates with nutritional and immunological stress in prefledgling black kites (Milvus migrans). Environ. Res. 2004, 94, 94–101. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, A.; Mariottini, M.; Fanello, E.L.; Blanco, G.; Focardi, S.E.; Guerranti, C.; Perra, G. Evaluating contamination in the red-billed chough Pyrrhocorax pyrrhocorax through non-invasive sampling. Microchem. J. 2013, 107, 70–75. [Google Scholar] [CrossRef]
- Hernández-Brito, D.; Blanco, G.; Tella, J.L.; Carrete, M. A protective nesting association with native species counteracts biotic resistance for the spread of an invasive parakeet from urban into rural habitats. Front. Zool. 2020, 17, 13. [Google Scholar] [CrossRef]
- Negro, J.J.; Tella, J.L.; Blanco, G.; Forero, M.G.; Garrido-Fernández, J. Diet explains interpopulation variation of plasma carotenoids and skin pigmentation in nestling white storks. Physiol. Biochem. Zool. 2000, 73, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission Regulation (EU). Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin 2010; 2010. Available online: https://eur-lex.europa.eu/eli/reg/2010/37(1)/oj (accessed on 2 May 2020).
- CIMA-VET. Centro de Información online de Medicamentos Veterinarios de la AEMPS; CIMA-VET. 2020. Available online: https://cimavet.aemps.es/cimavet/publico/home.html (accessed on 22 August 2022).
- AEMPS. Quinolonas y Fluoroquinolonas de Administración Sistémica: Nuevas Restricciones de uso. 2018. Available online: https://www.aemps.gob.es/informa/notasInformativas/medicamentosUsoHumano/seguridad/2018/docs/NI_MUH_FV-14-2018-quinolonas-fluoroquinolonas.pdf?x55250 (accessed on 22 August 2022).
- Blanco, G.; Junza, A.; Barrón, D. Occurrence of veterinary pharmaceuticals in golden eagle nestlings: Unnoticed scavenging on livestock carcasses and other potential exposure routes. Sci. Total Environ. 2017, 586, 355–361. [Google Scholar] [CrossRef]
- Rial-Berriel, C.; Acosta-Dacal, A.; Zumbado, M.; Luzardo, O.P. Micro QuEChERS-based method for the simultaneous biomonitoring in whole blood of 360 toxicologically relevant pollutants for wildlife. Sci. Total Environ. 2020, 736, 139444. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Gao, L.; Liu, J.; Cai, Y. Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere 2012, 89, 1307–1315. [Google Scholar]
- Bean, T.G.; Rattner, B.A.; Lazarus, R.S.; Day, D.D.; Burket, S.R.; Brooks, B.W.; Haddad, S.P.; Bowerman, W.W. Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay. Environ. Pollut. 2018, 232, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Dorival-García, N.; Zafra-Gómez, A.; Cantarero, S.; Navalón, A.; Vílchez, J.L. Simultaneous determination of 13 quinolone antibiotic derivatives in wastewater samples using solid-phase extraction and ultra performance liquid chromatography–tandem mass spectrometry. Microchem. J. 2013, 106, 323–333. [Google Scholar] [CrossRef]
- Vogler, S.; Leopold, C.; Zuidberg, C.; Habl, C. Medicines discarded in household garbage: Analysis of a pharmaceutical waste sample in Vienna. J. Pharm. Policy Pract. 2014, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorpas, A.A.; Dimitriou, M.; Voukkali, I. Disposal of household pharmaceuticals in insular communities: Social attitude, behaviour evaluation and prevention activities. Environ. Sci. Pollut. Res. 2018, 25, 26725–26735. [Google Scholar] [CrossRef] [PubMed]
- Constantino, V.M.; Fregonesi, B.M.; Tonani KA, D.A.; Zagui, G.S.; Toninato AP, C.; Nonose ER, D.S.; Fabriz, L.A.; Segura-Muñoz, S.I. Storage and disposal of pharmaceuticals at home: A systematic review. Cienc. Saude Coletiva 2020, 25, 585–594. [Google Scholar]
- Pineda-Pampliega, J.; Ramiro, Y.; Herrera-Dueñas, A.; Martinez-Haro, M.; Hernández, J.M.; Aguirre, J.I.; Höfle, U. A multidisciplinary approach to the evaluation of the effects of foraging on landfills on white stork nestlings. Sci. Total Environ. 2021, 775, 145197. [Google Scholar] [CrossRef] [PubMed]
- Peris, S.J. Feeding in urban refuse dumps: Ingestion of plastic objects by the White Stork (Ciconia ciconia). Ardeola 2003, 50, 81–84. [Google Scholar]
- Henry, P.Y.; Wey, G.; Balança, G. Rubber band ingestion by a rubbish dump dweller, the White Stork (Ciconia ciconia). Waterbirds 2011, 34, 504–508. [Google Scholar] [CrossRef]
- Brown, S.A. Fluoroquinolones in animal health. J. Vet. Pharmacol. Ther. 1996, 19, 1–14. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado. Real Decreto 1749/1998, de 31 de Julio, por el que se establecen las medidas de control aplicables a determinadas sustancias y sus residuos en los animales vivos y sus productos. Boletín Of. Estado 1998, 188, 26910–26927. [Google Scholar]
- MAPA (Ministerio de Agricultura, Pesca y Alimentación). Plan Nacional de Investigación de Residuos. 2022. Available online: https://www.mapa.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/Higiene-de-la-produccion-primaria-ganadera/plan-nacional-de-investigacion-de-residuos-pnir/default.aspx (accessed on 22 August 2022).
- Serrano, M.J.; Mata, L.; García-Gonzalo, D.; Antón, A.; Razquin, P.; Condón, S.; Pagán, R. Optimization and Validation of a New Microbial Inhibition Test for the Detection of Antimicrobial Residues in Living Animals Intended for Human Consumption. Foods 2021, 10, 1897. [Google Scholar] [CrossRef]
- Sathishkumar, P.; Meena RA, A.; Palanisami, T.; Ashokkumar, V.; Palvannan, T.; Gu, F.L. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota—A review. Sci. Total Environ. 2020, 698, 134057. [Google Scholar]
- García-Cambero, J.P.; Corpa, C.; Lucena, M.A.; Méndez, P.; Sierra, P.; Galán-Madruga, D.; Aguayo, S. Presence of diclofenac, estradiol, and ethinylestradiol in Manzanares River (Spain) and their toxicity to zebrafish embryo development. Environ. Sci. Pollut. Res. 2021, 28, 49921–49935. [Google Scholar] [CrossRef]
- Neirinckx, E.; Vervaet, C.; De Boever, S.; Remon, J.P.; Gommeren, K.; Daminet, S.; De Backer, P.; Croubels, S. Species comparison of oral bioavailability, first-pass metabolism and pharmacokinetics of acetaminophen. Res. Vet. Sci. 2010, 89, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; McDermott, P.; Walker, R. Pharmacology of the fluoroquinolones: A perspective for the use in domestic animals. Vet. J. 2006, 172, 10–28. [Google Scholar]
- Soh, H.Y.; Tan, P.X.Y.; Ng, T.T.M.; Chng, H.T.; Xie, S. A Critical Review of the pharmacokinetics, pharmacodynamics, and safety data of antibiotics in avian species. Antibiotics 2022, 11, 741. [Google Scholar] [CrossRef] [PubMed]
- Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Med. Chem. 2014, 6, 25–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramey, A.M.; Ahlstrom, C.A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 2020, 56, 1–15. [Google Scholar] [CrossRef] [PubMed]
Use | Potential Presence in: | |||||
---|---|---|---|---|---|---|
Compound | Veterinary | Human | Slaughterhouse Offal a | Household Waste b | Wastewater (ng L−1) c | Local Livestock |
Antibiotics | ||||||
Chlortetracycline | oral (feed), topical (skin, eyes) | topical (skin, eyes) | + | + | + | + |
Doxycycline | oral (feed/water), intramuscular, intravenous | oral, intravenous, periodontal | + | − | + | + |
Oxytetracycline | oral (feed/water), intramuscular, intravenous, intrauterine | topical (skin, eyes, ears) | + | + | + | + |
Tetracycline | oral (feed/water), intrauterine | oral | + | + | + (<23) | + |
Nalidixic acid d | oral (in non-food-producing animals) | oral | - | + | + | + |
Enrofloxacin | oral (feed/water), intramuscular, intravenous, subcutaneous | banned | + | − | + | + |
Ciprofloxacin | banned | oral, topical (skin, eyes, ears), intravenous | + e | + | + (<6) | + e |
Marbofloxacin | oral, intramuscular, intravenous, subcutaneous, topical (ears) | banned | + | − | + | + |
Trimethoprim | oral (feed/water), intramuscular, intravenous, subcutaneous | oral, intravenous, topical (ears) | + | + | + (447) | + |
Florfenicol | oral, intramuscular, subcutaneous | banned | + | − | + | + |
Lincomycin | oral (feed/water), intramuscular, intravenous, breast | oral, intramuscular, intravenous | + | + | + | + |
NSAIDs | ||||||
Tolfenamic acid | oral, intramuscular, intravenous, subcutaneous | banned | + | − | + | + |
Phenylbutazone | oral, intravenous (in non-food-producing animals) | topical (skin) | + | + | + | + |
Analgesics | ||||||
Acetaminophen | oral (water) | oral, intravenous, rectal | + | + | + | + |
White Storks | Other Bird Species | Reference | |||
---|---|---|---|---|---|
% of Detection | Mean ± SD Concentration (n) | % of Detection (n), Mean or Range Concentration (n); Species (Year of Sampling, Country) | |||
Compound | In Nestlings (n = 20) | In Nests (n = 10) | |||
Nalidixic acid | ND | ND | 3.5 (29), < LOQ; Gyps fulvus (2013–2015, Spain) | [32] | |
Tetracycline | ND | ND | 3.5 (29), 1.73 (1); Gyps fulvus (2013–2015, Spain) | [32] | |
Oxytetracycline | ND | ND | |||
Chlortetracycline | ND | ND | |||
Doxycycline | ND | ND | |||
Marbofloxacin | 5.0 | 10.0 | 7.21 (1) | 72.0 (25), 62.1 (9); Gyps fulvus (2013, Spain) 6.3 (16), 11.5 (1); Neophron percnopterus (2007–2015, Spain) | [29,30] |
Enrofloxacin | ND | ND | 56.0 (25), 13.4 (8); Gyps fulvus (2013, Spain) 69.0 (29), < LOQ; Gyps fulvus (2013–2015, Spain) 66.0 (106), < LOQ-3.83 (17); Gyps fulvus (2011–2012, Spain) 100 (14), 64.1 (14); Aegypius monachus (2007–2015, Spain) 37.5 (16), 43.2 (5); Neophron percnopterus (2007–2015, Spain) 71.4 (7), 49.9 (4); Aquila chrysaetos (2013–2015, Spain) 0.89 (112), 1.2 (1); Falco tinnunculus (2018–2019, Spain) 2.7 (36), 1.2 (1); Tyto alba (2018–2019, Spain) | [29,30,31,32,69,70] | |
Ciprofloxacin | ND | ND | 32.0 (25), < LOQ; Gyps fulvus (2013 Spain) 33.0 (106), < LOQ-0.237 (13); Gyps fulvus (2011–2012, Spain) 85.7 (14), 15.5 (8); Aegypius monachus (2007–2015, Spain) 28.6 (7), 9.2 (2); Aquila chrysaetos (2013–2015, Spain) not provided, 7.65 a (5); Ardeola bacchus (2008–2010, China) | [29,30,31,69,71] | |
Florfenicol | ND | ND | |||
Trimethoprim | ND | ND | 6.9 (29), < LOQ; Gyps fulvus (2013–2015, Spain) | [32] | |
Lincomycin | ND | ND | |||
Tolfenamic acid | ND | ND | 20.7 (29), 7.95–11.22 (6); Gyps fulvus (2013–2015, Spain) | [32] | |
Phenylbutazone | ND | ND | |||
Acetaminophen | 10.0 | 20.0 | 9.45 ± 0.06 (2) | 79.3 (29), <MDL-3.95 (23); Pandion haliaetus (2015, USA) | [72] |
Total | 15.0 | 30.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, G.; Gómez-Ramírez, P.; Espín, S.; Sánchez-Virosta, P.; Frías, Ó.; García-Fernández, A.J. Domestic Waste and Wastewaters as Potential Sources of Pharmaceuticals in Nestling White Storks (Ciconia ciconia). Antibiotics 2023, 12, 520. https://doi.org/10.3390/antibiotics12030520
Blanco G, Gómez-Ramírez P, Espín S, Sánchez-Virosta P, Frías Ó, García-Fernández AJ. Domestic Waste and Wastewaters as Potential Sources of Pharmaceuticals in Nestling White Storks (Ciconia ciconia). Antibiotics. 2023; 12(3):520. https://doi.org/10.3390/antibiotics12030520
Chicago/Turabian StyleBlanco, Guillermo, Pilar Gómez-Ramírez, Silvia Espín, Pablo Sánchez-Virosta, Óscar Frías, and Antonio J. García-Fernández. 2023. "Domestic Waste and Wastewaters as Potential Sources of Pharmaceuticals in Nestling White Storks (Ciconia ciconia)" Antibiotics 12, no. 3: 520. https://doi.org/10.3390/antibiotics12030520
APA StyleBlanco, G., Gómez-Ramírez, P., Espín, S., Sánchez-Virosta, P., Frías, Ó., & García-Fernández, A. J. (2023). Domestic Waste and Wastewaters as Potential Sources of Pharmaceuticals in Nestling White Storks (Ciconia ciconia). Antibiotics, 12(3), 520. https://doi.org/10.3390/antibiotics12030520