Prevalence of Antibiotic Residues in Pork in Kenya and the Potential of Using Gross Pathological Lesions as a Risk-Based Approach to Predict Residues in Meat
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Ethical Approval
4.2. Study Site and Data Collection Procedure
4.3. Antibiotic Residue Testing
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World Population Stabilization Unlikely This Century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, W.; Thomas, L.; Coyne, L.; Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 2021, 15, 100123. [Google Scholar] [CrossRef]
- Aidara-Kane, A.; the WHO Guideline Development Group; Angulo, F.J.; Conly, J.M.; Minato, Y.; Silbergeld, E.K.; McEwen, S.A.; Collignon, P.J. World Health Organization (WHO) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob. Resist. Infect. Control 2018, 7, 234–237. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. Atabe The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 100123. [Google Scholar] [CrossRef]
- Mitema, E.S.; Kikuvi, G.M.; Wegener, H.C.; Stohr, K. An assessment of antimicrobial consumption in food producing animals in Kenya. J. Vet. Pharmacol. Ther. 2001, 24, 385–390. Available online: http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203 (accessed on 12 January 2023). [CrossRef]
- Agmas, B.; Adugna, M. Antimicrobial residue occurrence and its public health risk of beef meat in Debre Tabor and Bahir Dar, Northwest Ethiopia. Vet. World 2018, 11, 902–908. [Google Scholar] [CrossRef] [Green Version]
- More, S.J. European perspectives on efforts to reduce antimicrobial usage in food animal production. Ir. Vet. J. 2020, 73, 2. [Google Scholar] [CrossRef] [Green Version]
- Nisha, A.R. Antibiotic residues—A global health hazard. Vet. World 2008, 1, 375–377. [Google Scholar] [CrossRef]
- Muloi, D.; Fèvre, E.M.; Bettridge, J.; Rono, R.; Ong’Are, D.; Hassell, J.M.; Karani, M.K.; Muinde, P.; van Bunnik, B.; Street, A.; et al. A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. J. Glob. Health 2019, 9, 010412. [Google Scholar] [CrossRef]
- Kemp, S.A.; Pinchbeck, G.L.; Fèvre, E.M.; Williams, N.J. A Cross-Sectional Survey of the Knowledge, Attitudes & Practices of Antimicrobial Users and Providers in an Area of High-Density Livestock-Human Population in Western Kenya Abstract Background. Front. Vet. Sci. 2021, 8, 1070. [Google Scholar] [CrossRef]
- FAO, OMS, and CODEX. Maximun Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for residues of veterinary drugs in foods CAC/MRL 2-2015. 2015. Available online: https://www.fao.org/input/download/standards/45/MRL2_2015e (accessed on 12 January 2023).
- Alban, L.; Rugbjerg, H.; Petersen, J.V.; Nielsen, L.R. Nielsen Comparison of risk-based versus random sampling in the monitoring of antimicrobial residues in Danish finishing pigs. Prev. Vet. Med. 2016, 128, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Government of Kenya Meat Control Act. Natl. Counc. Law Report. 2016, 356, 1–83. Available online: http://kenyalaw.org:8181/exist/kenyalex/actview.xql?actid=CAP (accessed on 12 January 2023).
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.G.; Matee, M.I.N. Matee Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Presi, P.; Stärk, K.D.C.; Knopf, L.; Breidenbach, E.; Sanaa, M.; Frey, J.; Regula, G. Efficiency of risk-based vs. random sampling for the monitoring of tetracycline residues in slaughtered calves in Switzerland. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess 2008, 25, 566–573. [Google Scholar] [CrossRef]
- Alban, L.; Pacheco, G.; Petersen, J.V. Petersen Risk-based surveillance of antimicrobial residues in pigs—Identification of potential risk indicators. Prev. Vet. Med. 2014, 114, 88–95. [Google Scholar] [CrossRef]
- Hoinville, L.J.; Alban, L.; Drewe, J.; Gibbens, J.; Gustafson, L.; Häsler, B.; Saegerman, C.; Salman, M.; Stärk, K. Proposed terms and concepts for describing and evaluating animal-health surveillance systems. Prev. Vet. Med. 2013, 112, 1–12. [Google Scholar] [CrossRef]
- Sentamu, D.N.; Onono, J.O.; Muinde, P.; Bor, N.; Chepyatich, D.; Thomas, L.F. Thomas Prevalence of gross lesions and handling practices in pigs and their association with pork quality, Kiambu, Kenya. PLoS ONE 2022, 17, e0272951. [Google Scholar] [CrossRef]
- Shaltout, F. Impacts of Different Types of Cooking and Freezing on Antibiotic Residues in Chicken Meat. Food Sci. Nutr. 2019, 5, 45. [Google Scholar] [CrossRef]
- Kožárová, I.; Juščáková, D.; Šimková, J.; Milkovičová, M.; Kožár, M. Effective screening of antibiotic and coccidiostat residues in food of animal origin by reliable broad-spectrum residue screening tests. Ital. J. Anim. Sci. 2020, 19, 487–501. [Google Scholar] [CrossRef]
- Okerman, L.; Croubels, S.; Cherlet, M.; De Wasch, K.; De Backer, P.; Van Hoof, J. Evaluation and establishing the performance of different screening tests for tetracycline residues in animal tissues. Food Addit. Contam. 2004, 21, 145–153. [Google Scholar] [CrossRef]
- Pikkemaat, M.G.; Rapallini, M.L.; Dijk, S.O.-V.; Elferink, J.A. Comparison of three microbial screening methods for antibiotics using routine monitoring samples. Anal. Chim. Acta 2009, 637, 298–304. [Google Scholar] [CrossRef]
- Pikkemaat, M.G.; Mulder, P.P.J.; Elferink, J.W.A.; De Cocq, A.; Nielen, M.W.F.; Van Egmond, H.J. Improved microbial screening assay for the detection of quinolone residues in poultry and eggs. Food Addit. Contam. 2007, 24, 842–850. [Google Scholar] [CrossRef]
- Monir, H.H.; Fayez, Y.M.; Nessim, C.K.; Michael, A.M. When is it safe to eat different broiler chicken tissues after administration of doxycycline and tylosin mixture? J. Food Sci. 2021, 86, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.; Mugoh, M.; Call, D.R.; Omulo, S. Antibiotic residues and antibiotic-resistant bacteria detected in milk marketed for human consumption in Kibera, Nairobi. PLoS ONE 2020, 15, e0233413. [Google Scholar] [CrossRef]
- Ministry of Health of Kenya. Government of Kenya National Policy for the Prevention and Containment of Antimicrobial Resistance, Nairobi, Kenya; Ministry of Health of Kenya: Nairobi, Kenya, 2017; pp. 1–42. Available online: www.health.go.ke (accessed on 12 January 2023).
- Otieno, D.J.; Ogutu, S.O. Consumer willingness to pay for chicken welfare attributes in Kenya. J. Int. Food Agribus. Mark. 2020, 32, 379–402. [Google Scholar] [CrossRef]
- Murungi, M.K.; Muloi, D.M.; Muinde, P.; Githigia, S.M.; Akoko, J.; Fèvre, E.M.; Rushton, J.; Alarcon, P. The Nairobi Pork Value Chain: Mapping and Assessment of Governance, Challenges, and Food Safety Issues. Front. Vet. Sci. 2021, 8, 581376. [Google Scholar] [CrossRef]
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Mujibi, F.D.; Okoth, E.; Cheruiyot, E.K.; Onzere, C.; Bishop, R.P.; Fevre, E.; Thomas, L.; Masembe, C.; Plastow, G.; Rothschild, M. Genetic diversity, breed composition and admixture of Kenyan domestic pigs. PLoS ONE 2018, 13, e0190080. [Google Scholar] [CrossRef]
- Holt, H.R.; Alarcon, P.; Velasova, M.; Pfeiffer, D.U.; Wieland, B. Wieland BPEX Pig Health Scheme: A useful monitoring system for respiratory disease control in pig farms? BMC Vet. Res. 2011, 7, 2005. [Google Scholar] [CrossRef] [Green Version]
- Rakotoharinome, M.; Pognon, D.; Randriamparany, T.; Ming, J.C.; Idoumbin, J.-P.; Cardinale, E.; Porphyre, V. Prevalence of antimicrobial residues in pork meat in Madagascar. Trop. Anim. Health Prod. 2014, 46, 49–55. [Google Scholar] [CrossRef]
- Chongsuvivatwong, V. Analysis of Epidemiological Data Using R and Epicalc; Epidemiology Unit Prince of Songkla University: Songkhla, Thailand, 2008. [Google Scholar]
- Gaudin, V.; Juhel-Gaugain, M.; Morétain, J.-P.; Sanders, P. AFNOR validation of Premi®Test, a microbiological-based screening tube-test for the detection of antimicrobial residues in animal muscle tissue. Food Addit. Contam.—Part A Chem. Anal. Control Expo. Risk Assess 2008, 25, 1451–1464. [Google Scholar] [CrossRef] [Green Version]
- Heinze, E.; Sinnwell, J.; Atkinson, E.; Tina Gunderson, T.; Dougherty, G.; Votruba, P.; Lennon, R.; Hanson, A.; Goergen, K.; Lundt, E.; et al. Package ‘arsenal’ R topics documented: 2022. Available online: https://cran.r-project.org/web/packages/arsenal/arsenal.pdf (accessed on 12 January 2023).
- Bartoń, K. Package “MuMIn”: Multi-Model Inference, version 1.47.1. 2022. Available online: https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (accessed on 12 January 2023).
Variables | N * | Variable Observation | Residue Result | p Value | |
---|---|---|---|---|---|
Negative | Positive | ||||
Pleuropneumonia | 266 | 0.727 | |||
Absent | 125 | 61 | |||
Present | 52 | 28 | |||
Tail bites | 364 | 0.107 | |||
Absent | 233 | 116 | |||
Present | 13 | 2 | |||
Liver milk spots | 348 | 0.612 | |||
Absent | 220 | 107 | |||
Present | 13 | 8 | |||
Loin bruising | 364 | 0.423 | |||
Absent | 223 | 114 | |||
Present | 13 | 4 | |||
Hind limb bursitis | 364 | 0.111 | |||
Absent | 241 | 112 | |||
Present | 5 | 6 | |||
Tether lesions | 364 | 0.868 | |||
Absent | 239 | 115 | |||
Present | 7 | 3 | |||
Lung abscess | 266 | 0.480 | |||
Absent | 175 | 87 | |||
Present | 2 | 2 | |||
Lacerations | 364 | 0.961 | |||
Absent | 242 | 116 | |||
Present | 4 | 2 | |||
Cysts in the liver | 362 | 0.480 | |||
Absent | 243 | 118 | |||
Present | 1 | 0 | |||
Pleurisy | 266 | 0.593 | |||
Absent | 173 | 86 | |||
Present | 4 | 3 | |||
Husbandry type | 381 | 0.558 | |||
Housed | 247 | 122 | |||
Outdoor | 9 | 3 | |||
Sex | 384 | 0.084 | |||
Female | 143 | 58 | |||
Male | 115 | 68 | |||
Farm size | 381 | 0.72 | |||
<10 | 167 | 80 | |||
10 < 50 | 59 | 34 | |||
50 < 100 | 2 | 1 | |||
>100 | 28 | 10 | |||
Lung score | 266 | 0.642 | |||
Mean (SD) | 6.96 (13.40) | 7.78 (14.21) | |||
Range | 0.00–55.00 | 0.00–48.00 | |||
Live weight | 366 | 0.199 | |||
Mean (SD) | 60.996 (28.308) | 57.193 (22.257) | |||
Range | 13.0–230.0 | 27.0–157.0 | |||
County of origin | 383 | 0.558 | |||
Homabay | 1 | 0 | |||
Kajiado | 6 | 3 | |||
Kiambu | 200 | 103 | |||
Makueni | 0 | 0 | |||
Murang’a | 1 | 1 | |||
Nairobi | 39 | 16 | |||
Nakuru | 11 | 2 |
Variable | Estimate | Standard Error | Z Value | p Value |
---|---|---|---|---|
Intercept | −0.9020 | 0.1644 | −5.487 | 4.1 × 10−8 |
Sex male | 0.3761 | 0.2276 | 1.652 | 0.0985 |
Presence of tail bite | −1.292 | 0.7806 | −1.655 | 0.0979 |
Presence of hindlimb bursitis | 1.0651 | 0.6278 | 1.697 | 0.0898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bor, N.; Seguino, A.; Sentamu, D.N.; Chepyatich, D.; Akoko, J.M.; Muinde, P.; Thomas, L.F. Prevalence of Antibiotic Residues in Pork in Kenya and the Potential of Using Gross Pathological Lesions as a Risk-Based Approach to Predict Residues in Meat. Antibiotics 2023, 12, 492. https://doi.org/10.3390/antibiotics12030492
Bor N, Seguino A, Sentamu DN, Chepyatich D, Akoko JM, Muinde P, Thomas LF. Prevalence of Antibiotic Residues in Pork in Kenya and the Potential of Using Gross Pathological Lesions as a Risk-Based Approach to Predict Residues in Meat. Antibiotics. 2023; 12(3):492. https://doi.org/10.3390/antibiotics12030492
Chicago/Turabian StyleBor, Nicholas, Alessandro Seguino, Derrick Noah Sentamu, Dorcas Chepyatich, James M. Akoko, Patrick Muinde, and Lian F. Thomas. 2023. "Prevalence of Antibiotic Residues in Pork in Kenya and the Potential of Using Gross Pathological Lesions as a Risk-Based Approach to Predict Residues in Meat" Antibiotics 12, no. 3: 492. https://doi.org/10.3390/antibiotics12030492
APA StyleBor, N., Seguino, A., Sentamu, D. N., Chepyatich, D., Akoko, J. M., Muinde, P., & Thomas, L. F. (2023). Prevalence of Antibiotic Residues in Pork in Kenya and the Potential of Using Gross Pathological Lesions as a Risk-Based Approach to Predict Residues in Meat. Antibiotics, 12(3), 492. https://doi.org/10.3390/antibiotics12030492