Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of β-Lactamase-Producing Enterobacterales
2.2. Antibiotic Susceptibility Patterns
2.3. Antibiotic Resistance Genotype Profile
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Isolation and Characterization of Isolates
4.3. Antibiotic Susceptibility Testing of Isolates
4.4. Antibiotic Resistance Gene Detection
Target Gene | Sequence | Conditions | Reference |
---|---|---|---|
blaTEM | 5′-TTAACTGGCGAACTACTTAC-3′ 5′-GTCTATTTCGTTCATCCATA-3′ | 94 °C 15 min (1 cycle); 94 °C 1 min, 55 °C 1 min (36 cycles); 72 °C 1 min; 72 °C 10 min (elongation) | Kozak et al. (2009) [69] |
blaSHV | 5′-AGGATTGACTGCCTTTTTG-3′ 5′-ATTTGCTGATTTCGCTCG-3′ | ||
blaCMY-2 | 5′-GACAGCCTCTTTCTCCACA-3′ 5′-TGGACACGAAGGCTACGTA-3′ | ||
blaKPC | 5′-CGTCTAGTTCTGCTGTCTTG-3′ 5′-CTTGTCATCCTTGTTAGGCG-3′ | 94 °C 10 min (1 cycle); 94 °C 30 s, 55 °C 40 s (36 cycles); 72 °C 55 s; 72 °C 5 min (elongation) | Poirel et al. (2011) [70] |
blaOXA-48 | 5′-GCGTGGTTAAGGATGAACAC-3′ 5′-CATCAAGTTCAACCCAACCG-3′ | ||
blaIMP | 5′-GGAATAGAGTGGCTTAAYTCTC-3′ 5′-GGTTTAAYAAAACAACCACC-3′ | ||
blaVIM | 5′-GATGGTGTTTGGTCGCATA-3′ 5′-CGAATGCGCAGCACCAG-3′ |
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020. 2022. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Health-burden-infections-antibiotic-resistant-bacteria.pdf (accessed on 23 December 2022).
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2021. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021 (accessed on 23 December 2022).
- CDC. Antibiotic Resistance Threats in the United States. Department of Health and Human Services, CDC 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 23 December 2022).
- European Centre for Disease Prevention and Control and World Health Organization Surveillance of Antimicrobial Resistance in Europe, 2021 Data. Executive Summary. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2021-data (accessed on 23 December 2022).
- Al Atrouni, A.; Hamze, M.; Rafei, R.; Eveillard, M.; Joly-Guillou, M.-L.; Kempf, M. Diversity of Acinetobacter species isolated from different environments in Lebanon: A nationwide study. Future Microbiol. 2016, 11, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, Q.; Abu Laila, S.; Jaradat, Z. Prevalence, genetic diversity, antibiotic resistance and biofilm formation of Acinetobacter baumannii isolated from urban environments. J. Appl. Microbiol. 2022, 133, 3617–3633. [Google Scholar] [CrossRef] [PubMed]
- Amudhan, M.S.; Sekar, U.; Kamalanathan, A.; Balaraman, S. bla(IMP) and bla(VIM) mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J. Infect. Dev. Ctries. 2012, 6, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Dortet, L.; Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm! Trends Mol. Med. 2012, 18, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Taggar, G.; Rehman, M.A.; Boerlin, P.; Diarra, M. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment. Antibiotics 2020, 9, 693. [Google Scholar] [CrossRef]
- Blaak, H.; van Hoek, A.H.; Veenman, C.; van Leeuwen, A.E.D.; Lynch, G.; van Overbeek, W.M.; de Roda Husman, A.M. Extended spectrum β-lactamase-and constitutively AmpC-producing Enterobacteriaceae on fresh produce and in the agricultural environment. Int. J. Food Microbiol. 2014, 168, 8–16. [Google Scholar] [CrossRef]
- Colosi, I.A.; Baciu, A.M.; Opriș, R.V.; Peca, L.; Gudat, T.; Simon, L.M.; Colosi, H.A.; Costache, C. Prevalence of ESBL, AmpC and Carbapenemase-Producing Enterobacterales Isolated from Raw Vegetables Retailed in Romania. Foods 2020, 9, 1726. [Google Scholar] [CrossRef]
- Pishtiwan, A.H.; Khadija, K.M. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019041. [Google Scholar] [CrossRef]
- European Commission. A European One Health Action Plan Against Antimicrobial Resistance (AMR). 2017. Available online: https://health.ec.europa.eu/system/files/2020-01/amr_2017_action-plan_0.pdf (accessed on 23 December 2022).
- Sung, G.-H.; Kim, S.H.; Park, E.H.; Hwang, S.N.; Kim, J.-D.; Kim, G.R.; Kim, E.-Y.; Jeong, J.; Kim, S.; Shin, J.H. Association of Carbapenemase-Producing Enterobacterales Detected in Stream and Clinical Samples. Front. Microbiol. 2022, 13, 923979. [Google Scholar] [CrossRef]
- Wang, F.; Fu, Y.-H.; Sheng, H.-J.; Topp, E.; Jiang, X.; Zhu, Y.-G.; Tiedje, J.M. Antibiotic resistance in the soil ecosystem: A One Health perspective. Curr. Opin. Environ. Sci. Health 2021, 20, 100230. [Google Scholar] [CrossRef]
- Rahman, M.; Alam, M.-U.; Luies, S.K.; Kamal, A.; Ferdous, S.; Lin, A.; Sharior, F.; Khan, R.; Rahman, Z.; Parvez, S.M.; et al. Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 360. [Google Scholar] [CrossRef]
- Liu, B.-T.; Zhang, X.-Y.; Wan, S.-W.; Hao, J.-J.; Jiang, R.-D.; Song, F.-J. Characteristics of Carbapenem-Resistant Enterobacteriaceae in Ready-to-Eat Vegetables in China. Front. Microbiol. 2018, 9, 1147. [Google Scholar] [CrossRef]
- Machado-Moreira, B.; Richards, K.; Brennan, F.; Abram, F.; Burgess, C.M. Microbial Contamination of Fresh Produce: What, Where, and How? Compr. Rev. Food Sci. Food Saf. 2019, 18, 1727–1750. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2016. EFSA J. 2018, 16, e05182. [Google Scholar] [CrossRef]
- European Union (EU). Legislation for the Organics Sectors. 2019. Available online: https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming/legislation_en (accessed on 23 December 2022).
- Mie, A.; Andersen, H.R.; Gunnarsson, S.; Kahl, J.; Kesse-Guyot, E.; Rembiałkowska, E.; Quaglio, G.; Grandjean, P. Human health implications of organic food and organic agriculture: A comprehensive review. Environ. Health 2017, 16, 111. [Google Scholar] [CrossRef] [PubMed]
- Research Institute of Organic Agriculture FIBL, IFOAM-Organics International. The World of Organic Agriculture Statistics and Emerging Trends 2022; Willer, H., Trávníček, J., Meier, C., Schlatter, B., Eds.; Druckerei Hachenburg: Hachenburg, Germany, 2022; Available online: https://www.fibl.org/fileadmin/documents/shop/1344-organic-world-2022.pdf (accessed on 23 December 2022).
- CAECV. Informe del Sector Ecológico de la Comunitat Valenciana. 2020. Available online: https://www.caecv.com/wp-content/uploads/2021/05/Informe.pdf (accessed on 23 December 2022).
- Nguyen-The, C.; Bardin, M.; Berard, A.; Berge, O.; Brillard, J.; Broussolle, V.; Carlin, F.; Renault, P.; Tchamitchian, M.; Morris, C.E. Agrifood systems and the microbial safety of fresh produce: Trade-offs in the wake of increased sustainability. Sci. Total Environ. 2016, 562, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Rahube, T.O.; Marti, R.; Scott, A.; Tien, Y.-C.; Murray, R.; Sabourin, L.; Zhang, Y.; Duenk, P.; Lapen, D.R.; Topp, E. Impact of Fertilizing with Raw or Anaerobically Digested Sewage Sludge on the Abundance of Antibiotic-Resistant Coliforms, Antibiotic Resistance Genes, and Pathogenic Bacteria in Soil and on Vegetables at Harvest. Appl. Environ. Microbiol. 2014, 80, 6898–6907. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Reynnells, R. Importance of Soil Amendments: Survival of Bacterial Pathogens in Manure and Compost Used as Organic Fertilizers. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Salmanov, A.G.; Ushkalov, V.O.; Shunko, Y.Y.; Piven, N.; Vygovska, L.M.; Verner, O.M.; Kushnirenko, S. One health: Antibiotic-resistant bacteria contamination in fresh vegetables sold at a retail markets in Kyiv, Ukraine. Wiad. Lek. 2021, 74, 83–89. [Google Scholar] [CrossRef]
- Marano, R.B.; Zolti, A.; Jurkevitch, E.; Cytryn, E. Antibiotic resistance and class 1 integron gene dynamics along effluent, reclaimed wastewater irrigated soil, crop continua: Elucidating potential risks and ecological constraints. Water Res. 2019, 164, 114906. [Google Scholar] [CrossRef]
- Li, H.; Zheng, X.; Tan, L.; Shao, Z.; Cao, H.; Xu, Y. The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. Environ. Res. 2022, 203, 111884. [Google Scholar] [CrossRef] [PubMed]
- Ruimy, R.; Brisabois, A.; Bernede, C.; Skurnik, D.; Barnat, S.; Arlet, G.; Momcilovic, S.; Elbaz, S.; Moury, F.; Vibet, M.-A.; et al. Organic and conventional fruits and vegetables contain equivalent counts of Gram-negative bacteria expressing resistance to antibacterial agents. Environ. Microbiol. 2010, 12, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Marti, R.; Scott, A.; Tien, Y.-C.; Murray, R.; Sabourin, L.; Zhang, Y.; Topp, E. Impact of Manure Fertilization on the Abundance of Antibiotic-Resistant Bacteria and Frequency of Detection of Antibiotic Resistance Genes in Soil and on Vegetables at Harvest. Appl. Environ. Microbiol. 2013, 79, 5701–5709. [Google Scholar] [CrossRef] [PubMed]
- van Hoek, A.H.; Veenman, C.; van Overbeek, W.M.; Lynch, G.; de Roda Husman, A.M.; Blaak, H. Prevalence and characterization of ESBL- and AmpC-producing Enterobacteriaceae on retail vegetables. Int. J. Food Microbiol. 2015, 204, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guarddon, M.; Miranda, J.M.; Vázquez, B.I.; Cepeda, A.; Franco, C.M. Assessment of Tetracyclines Residues and Tetracycline Resistant Bacteria in Conventional and Organic Baby Foods. Foods 2015, 4, 306–317. [Google Scholar] [CrossRef]
- Rico, H.; Falomir, P. Comparison of the Antibiotic-Resistant Enterobacteriaceae Content in Conventional, Organic and Fresh-Cut Vegetables Sold in Valencia (Spain). AIMS Agric. Food 2020, 5, 233–244. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Hu, H.-W.; Chen, Q.L.; Yan, H.; Wang, J.-T.; Chen, D.; He, J.-Z. Manure Application Did Not Enrich Antibiotic Resistance Genes in Root Endophytic Bacterial Microbiota of Cherry Radish Plants. Appl. Environ. Microbiol. 2020, 86, e02106–e02119. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, Q.; Chen, S.; Zhu, Y.-G. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced? Environ. Int. 2017, 98, 152–159. [Google Scholar] [CrossRef]
- Maffei, D.F.; Batalha, E.Y.; Landgraf, M.; Schaffner, D.W.; Franco, B.D. Microbiology of organic and conventionally grown fresh produce. Braz. J. Microbiol. 2016, 47, 99–105. [Google Scholar] [CrossRef]
- Sun, Y.; Qiu, T.; Gao, M.; Shi, M.; Zhang, H.; Wang, X. Inorganic and organic fertilizers application enhanced antibiotic resistome in greenhouse soils growing vegetables. Ecotoxicol. Environ. Saf. 2019, 179, 24–30. [Google Scholar] [CrossRef]
- Gudda, F.O.; Waigi, M.G.; Odinga, E.S.; Yang, B.; Carter, L.; Gao, Y. Antibiotic-contaminated wastewater irrigated vegetables pose resistance selection risks to the gut microbiome. Environ. Pollut. 2020, 264, 114752. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.P.; Verma, P. Determining Sample Size in Experimental Studies. In Determining Sample Size and Power in Research Studies; Verma, J.P., Verma, P., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Zurfluh, K.; Nüesch-Inderbinen, M.; Morach, M.; Zihler Berner, A.; Hächler, H.; Stephan, R. Extended-spectrum-β-lactamase-producing Enterobacteriaceae isolated from vegetables imported from the Dominican Republic, India, Thailand, and Vietnam. Appl. Environ. Microbiol. 2015, 81, 3115–3120. [Google Scholar] [CrossRef] [PubMed]
- Raphael, E.; Wong, L.K.; Riley, L.W. Extended-Spectrum Beta-Lactamase Gene Sequences in Gram-Negative Saprophytes on Retail Organic and Nonorganic Spinach. Appl. Environ. Microbiol. 2011, 77, 1601–1607. [Google Scholar] [CrossRef] [PubMed]
- Iseppi, R.; De Niederhäusern, S.; Bondi, M.; Messi, P.; Sabia, C. Extended-Spectrum β-Lactamase, AmpC, and MBL-Producing Gram-Negative Bacteria on Fresh Vegetables and Ready-to-Eat Salads Sold in Local Markets. Microb. Drug Resist. 2018, 24, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Reuland, E.A.; Al Naiemi, N.; Raadsen, S.A.; Savelkoul, P.H.M.; Kluytmans, J.A.J.W.; Vandenbroucke-Grauls, C.M.J.E. Prevalence of ESBL-producing Enterobacteriaceae in raw vegetables. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1843–1846. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.H.; Udaondo, Z.; Abram, K.Z.; Li, X.; Yang, X.; DiCaprio, E.L.; Jun, S.-R.; Huang, E. Isolation of AmpC- and extended spectrum β-lactamase-producing Enterobacterales from fresh vegetables in the United States. Food Control. 2022, 132, 108559. [Google Scholar] [CrossRef]
- Richter, L.; Du Plessis, E.M.; Duvenage, S.; Korsten, L. Occurrence, Identification, and Antimicrobial Resistance Profiles of Extended-Spectrum and AmpC β-Lactamase-Producing Enterobacteriaceae from Fresh Vegetables Retailed in Gauteng Province, South Africa. Foodborne Pathog. Dis. 2019, 16, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Appel, T.M.; Quijano-Martínez, N.; De La Cadena, E.; Mojica, M.F.; Villegas, M.V. Microbiological and Clinical Aspects of Raoultella spp. Front. Public Health 2021, 9, 686789. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Berglund, B.; Wang, S.; Zhou, Z.; Gu, C.; Zhao, L.; Meng, C.; Li, X. Emergence of blaNDM-1, blaNDM-5, blaKPC-2 and blaIMP-4 carrying plasmids in Raoultella spp. in the environment. Environ. Pollut. 2022, 306, 119437. [Google Scholar] [CrossRef] [PubMed]
- Ababneh, Q.; Al-Rousan, E.; Jaradat, Z. Fresh produce as a potential vehicle for transmission of Acinetobacter baumannii. Int. J. Food Contam. 2022, 9, 5. [Google Scholar] [CrossRef]
- Hou, C.; Yang, F. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. Int. J. Clin. Exp. Med. 2015, 8, 13859–13863. [Google Scholar]
- Rafei, R.; Hamze, M.; Pailhoriès, H.; Eveillard, M.; Marsollier, L.; Joly-Guillou, M.-L.; Dabboussi, F.; Kempf, M. Extrahuman Epidemiology of Acinetobacter baumannii in Lebanon. Appl. Environ. Microbiol. 2015, 81, 2359–2367. [Google Scholar] [CrossRef] [PubMed]
- Carvalheira, A.; Silva, J.; Teixeira, P. Lettuce and fruits as a source of multidrug resistant Acinetobacter spp. Food Microbiol. 2017, 64, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Allydice-Francis, K.; Brown, P.D. Diversity of Antimicrobial Resistance and Virulence Determinants in Pseudomonas aeru-ginosa Associated with Fresh Vegetables. Int. J. Microbiol. 2012, 2012, 426241. [Google Scholar] [CrossRef] [PubMed]
- Mojica, M.F.; Humphries, R.; Lipuma, J.J.; Mathers, A.J.; Rao, G.G.; Shelburne, S.A.; Fouts, D.E.; Van Duin, D.; Bonomo, R.A. Clinical challenges treating Stenotrophomonas maltophilia infections: An update. JAC-Antimicrob. Resist. 2022, 4, dlac040. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yao, X.; Luo, J.; Lv, L.; Zeng, Z.; Liu, J.H. Emergence of Escherichia coli coproducing NDM-1 and KPC-2 carbapenemases from a retail vegetable, China. J. Antimicrob. Chemother. 2018, 73, 252–254. [Google Scholar] [CrossRef]
- Evans, B.; Amyes, S.G.B. OXA β-Lactamases. Clin. Microbiol. Rev. 2014, 27, 241–263. [Google Scholar] [CrossRef]
- Karumathil, D.P.; Yin, H.-B.; Kollanoor-Johny, A.; Venkitanarayanan, K. Prevalence of Multidrug-Resistant Bacteria on Fresh Vegetables Collected from Farmers’ Markets in Connecticut. J. Food Prot. 2016, 79, 1446–1451. [Google Scholar] [CrossRef]
- Hölzel, C.S.; Tetens, J.L.; Schwaiger, K. Unraveling the Role of Vegetables in Spreading Antimicrobial-Resistant Bacteria: A Need for Quantitative Risk Assessment. Foodborne Pathog. Dis. 2018, 15, 671–688. [Google Scholar] [CrossRef] [Green Version]
- Cherif-Antar, A.; Moussa–Boudjemâa, B.; Didouh, N.; Medjahdi, K.; Mayo, B.; Flórez, A.B. Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant. Dairy Sci. Technol. 2016, 96, 27–38. [Google Scholar] [CrossRef]
- Khosravi, A.D.; Sadeghi, P.; Shahraki, A.H.; Heidarieh, P.; Sheikhi, N. Molecular Methods for Identi fi cation of Acinetobacter Species by Partial Sequencing of the rpoB and 16S rRNA Genes. J. Clin. Diagn. Res. 2015, 9, DC09–DC13. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. In Twenty-Fifth Informational Supplement; CLSI Document M100-S25; Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2015. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- EUCAST. EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12.0. Available online: http://www.eucast.org (accessed on 21 November 2022).
- EUCAST. New Definitions of S, I and R from 2019. Available online: https://www.eucast.org/newsiandr (accessed on 23 January 2023).
- Mateos, M.; Hernández-García, M.; del Campo, R.; Martínez-García, L.; Gijón, D.; Morosini, M.I.; Ruiz-Garbajosa, P.; Cantón, R. Emergence and Persistence over Time of Carbapenemase-Producing Enterobacter Isolates in a Spanish University Hospital in Madrid, Spain (2005–2018). Microb. Drug Resist. 2021, 27, 895–903. [Google Scholar] [CrossRef] [PubMed]
- González, D.; Gallagher, E.; Zúñiga, T.; Leiva, J.; Vitas, A.I. Prevalence and characterization of β-lactamase-producing Enterobacteriaceae in healthy human carriers. Int. Microbiol. 2020, 23, 171–177. [Google Scholar] [CrossRef]
- Pérez, C.D.-A.; López-Fresneña, N.; Carlavilla, A.L.R.; Garcia, M.H.; Ruiz-Garbajosa, P.; Aranaz-Andrés, J.M.; Maechler, F.; Gastmeier, P.; Bonten, M.J.M.; Canton, R. Local prevalence of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae intestinal carriers at admission and co-expression of ESBL and OXA-48 carbapenemase in Klebsiella pneumoniae: A prevalence survey in a Spanish University Hospital. BMJ Open 2019, 9, e024879. [Google Scholar] [CrossRef]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial Resistance in Escherichia coli Isolates from Swine and Wild Small Mammals in the Proximity of Swine Farms and in Natural Environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
Number of Isolates | |||||
---|---|---|---|---|---|
Identification | Lettuce | Spinach | Cabbage | Strawberry | Total |
Enterobacteriaceae | 6 | 15 | 4 | 4 | 29 |
Acinetobacter sp. | 5 | 5 | 3 | 2 | 15 |
Non-fermenters | 22 | 32 | 52 | 11 | 117 |
Total | 33 (20%) | 52 (32%) | 59 (26.6%) | 17 (11.1%) |
Number of Resistant Isolates | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vegetable | No. Tested Isolates | AMP | AMC | CTX | CRO | CAZ | IPM | MEM | NA | LEV | CIP | CN | TE |
Lettuce | 33 | 29 | 29 | 19 | 16 | 2 | 7 | 1 | 7 | 1 | 3 | 1 | 1 |
Spinach | 52 | 51 | 50 | 36 | 29 | 15 | 11 | 8 | 7 | 0 | 3 | 7 | 11 |
Cabbage | 59 | 53 | 58 | 35 | 18 | 11 | 7 | 6 | 13 | 2 | 4 | 8 | 5 |
Strawberries | 17 | 15 | 17 | 9 | 7 | 6 | 1 | 4 | 0 | 0 | 2 | 1 | 2 |
Total | 161 | 148 | 154 | 99 | 70 | 34 | 26 | 19 | 27 | 3 | 12 | 17 | 19 |
% of resistant isolates | 91.9 | 95.7 | 61.5 | 43.5 | 21.1 | 16.1 | 11.8 | 16.8 | 1.9 | 7.5 | 10.6 | 11.8 |
No. Isolates (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Vegetables | Bacterial Groups | |||||||
Patterns | Lettuce (n = 33) | Spinach (n = 52) | Cabbage (n = 59) | Acinetobacter spp. (n = 15) | Enterobacteriaceae (n = 29) | Pseudomonas spp. (n = 72) | Stenotrophomonas spp. (n = 28) | Other Non-Fermentative (n = 17) |
P-CP-CB | 5 (15.1) | 3 (5.7) | 1 (3.4) | 7 (25.0) | ||||
P-CP-Q | 4 (12.1) | 3 (5.7) | 3 (10.7) | 4 (23.5) | ||||
P-CP-CN | 1 (1.7) | 1 (5.9) | ||||||
P-CP-TE | 1 (1.7) | 1 (5.9) | ||||||
P-Q-TE | 1 (1.9) | 1 (3.6) | ||||||
P-CP-CB-CN | 1 (1.7) | 1 (1.4) | ||||||
P-CP-CB-Q | 1 (1.7) | 1 (1.4) | ||||||
P-CP-Q-CN | 1 (1.7) | 1 (6.7) | ||||||
P-CP-Q-TE | 3 (5.1) | 3 (4.2) | ||||||
P-CP-CB-CN-TE | 5 (9.6) | 1 (1.7) | 1 (1.4) | 3 (10.7) | 2 (11.8) | |||
P-CP-CB-Q-CN | 1 (3.0) | 3 (5.1) | 3 (20.0) | 1 (3.6) | ||||
P-CP-CB-Q-TE | 1 (3.0) | 1 (1.4) | ||||||
P-CP-CB-Q-CN-TE | 1 (1.9) | 1 (1.4) | ||||||
Total | 11 (33.3) | 13 (25) | 12 (20.3) | 4 (26.7) | 1 (3.4) | 8 (11.1) | 15 (53.6) | 8 (47.1) |
Number of Isolates | |||||||
---|---|---|---|---|---|---|---|
Vegetable | blaTEM | blaSHV | blaCMY-2 | blaKPC | blaOXA-48 | blaIMP | blaVIM |
Lettuce | 3 | 0 | 0 | 0 | 12 | 8 | 14 |
Spinach | 9 | 15 | 5 | 0 | 9 | 22 | 21 |
Cabbage | 13 | 4 | 5 | 3 | 4 | 4 | 8 |
Strawberries | 8 | 1 | 3 | 4 | 3 | 4 | 0 |
Total (%) | 33 (20.5) | 20 (12.4) | 13 (8.1) | 7 (4.3) | 28 (17.4) | 38 (23.6) | 43 (26.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Belenguer, A.I.; Ferrús, M.A.; Hernández, M.; García-Hernández, J.; Moreno, Y.; Castillo, M.Á. Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics 2023, 12, 387. https://doi.org/10.3390/antibiotics12020387
Jiménez-Belenguer AI, Ferrús MA, Hernández M, García-Hernández J, Moreno Y, Castillo MÁ. Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics. 2023; 12(2):387. https://doi.org/10.3390/antibiotics12020387
Chicago/Turabian StyleJiménez-Belenguer, Ana Isabel, Maria Antonia Ferrús, Manuel Hernández, Jorge García-Hernández, Yolanda Moreno, and María Ángeles Castillo. 2023. "Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain" Antibiotics 12, no. 2: 387. https://doi.org/10.3390/antibiotics12020387
APA StyleJiménez-Belenguer, A. I., Ferrús, M. A., Hernández, M., García-Hernández, J., Moreno, Y., & Castillo, M. Á. (2023). Prevalence and Characterization of Beta-Lactam and Carbapenem-Resistant Bacteria Isolated from Organic Fresh Produce Retailed in Eastern Spain. Antibiotics, 12(2), 387. https://doi.org/10.3390/antibiotics12020387