Antibiotic Resistance and Biofilm Infections in the NICUs and Methods to Combat It
Abstract
:1. Introduction
2. Methods
3. The Unique Characteristics of the Neonatal Population and NICUs
4. Prevention and Control of Infection
5. Diagnosis of Neonatal Sepsis
6. Prudent Antibiotic Treatment
7. De-Escalation of Therapy
8. Treatment Duration and Prompt Discontinuation of Therapy
9. Fighting Biofilm Infections
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weston, E.J.; Pondo, T.; Lewis, M.M.; Martell-Cleary, P.; Morin, C.; Jewell, B.; Daily, P.; Apostol, M.; Petit, S.; Farley, M.; et al. The burden of invasive early-onset neonatal sepsis in the United States, 2005–2008. Pediatr. Infect. Dis. J. 2011, 30, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Sánchez, P.J.; Faix, R.G.; Poindexter, B.B.; Van Meurs, K.P.; Bizzarro, M.J.; Goldberg, R.N.; Frantz, I.D., 3rd; Hale, E.C.; et al. Early onset neonatal sepsis: The burden of group B Streptococcal and E. coli disease continues. Pediatrics 2011, 127, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000-15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 2 February 2023).
- von Wintersdorff, C.J.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.; Wolffs, P.F. Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef]
- Versporten, A.; Bielicki, J.; Drapier, N.; Sharland, M.; Goossens, H. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: Developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 2016, 71, 1106–1117. [Google Scholar] [CrossRef]
- Zou, H.; Jia, X.; He, X.; Su, Y.; Zhou, L.; Shen, Y.; Sheng, C.; Liao, A.; Li, C.; Li, Q. Emerging Threat of Multidrug Resistant Pathogens From Neonatal Sepsis. Front. Cell Infect. Microbiol. 2021, 11, 694093. [Google Scholar] [CrossRef]
- Agarwal, R.; Sankar, J. Characterisation and antimicrobial resistance of sepsis pathogens in neonates born in tertiary care centres in Delhi, India: A cohort study. Lancet Glob. Health 2016, 4, e752–e760. [Google Scholar] [CrossRef]
- Bandyopadhyay, T.; Kumar, A.; Saili, A.; Randhawa, V.S. Distribution, antimicrobial resistance and predictors of mortality in neonatal sepsis. J. Neonatal. Perinatal. Med. 2018, 11, 145–153. [Google Scholar] [CrossRef]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Health Care Settings. Am. J. Infect. Control. 2007, 35, S65–S164. [Google Scholar] [CrossRef]
- Gkentzi, D.; Dimitriou, G. Antimicrobial Stewardship in the Neonatal Intensive Care Unit: An Update. Curr. Pediatr. Rev. 2019, 15, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Bekhof, J.; Reitsma, J.B.; Kok, J.H.; Van Straaten, I.H. Clinical signs to identify late-onset sepsis in preterm infants. Eur. J. Pediatr. 2013, 172, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.E. Physicians’ ability to diagnose sepsis in newborns and critically ill children. Pediatr. Crit. Care Med. 2005, 6, S120–S125. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, A.S.; Cadet, C.T.; Perez, R.; DeLorenzo, E.; Holzman, I.R.; Stroustrup, A. Antibiotic use in newborns with transient tachypnea of the newborn. Neonatology 2013, 103, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Shani, L.; Weitzman, D.; Melamed, R.; Zmora, E.; Marks, K. Risk factors for early sepsis in very low birth weight neonates with respiratory distress syndrome. Acta Paediatr. 2008, 97, 12–15. [Google Scholar] [CrossRef]
- Klingenberg, C.; Kornelisse, R.F.; Buonocore, G.; Maier, R.F.; Stocker, M. Culture-Negative Early-Onset Neonatal Sepsis—At the Crossroad Between Efficient Sepsis Care and Antimicrobial Stewardship. Front. Pediatr. 2018, 6, 285. [Google Scholar] [CrossRef]
- Branstetter, J.W.; Barker, L.; Yarbrough, A.; Ross, S.; Stultz, J.S. Challenges of Antibiotic Stewardship in the Pediatric and Neonatal Intensive Care Units. J. Pediatr. Pharmacol. Ther. 2021, 26, 659–668. [Google Scholar] [CrossRef]
- Zervou, F.N.; Zacharioudakis, I.M.; Ziakas, P.D.; Mylonakis, E. MRSA colonization and risk of infection in the neonatal and pediatric ICU: A meta-analysis. Pediatrics 2014, 133, e1015–e1023. [Google Scholar] [CrossRef]
- Gilmartin, H.M.; Hessels, A. Journal Club: Commentary on “Risk factors for MRSA colonization in the neonatal ICU: A systematic review and meta-analysis”. Am. J. Infect. Control. 2017, 45, 1405–1406. [Google Scholar] [CrossRef]
- Ramirez, C.B.; Cantey, J.B. Antibiotic Resistance in the Neonatal Intensive Care Unit. Neoreviews 2019, 20, e135–e144. [Google Scholar] [CrossRef]
- Lambe, K.A.; Lydon, S.; Madden, C.; Vellinga, A.; Hehir, A.; Walsh, M.; O’Connor, P. Hand Hygiene Compliance in the ICU: A Systematic Review. Crit. Care Med. 2019, 47, 1251–1257. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Late-onset sepsis in very low birth weight neonates: The experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Pronovost, P.; Needham, D.; Berenholtz, S.; Sinopoli, D.; Chu, H.; Cosgrove, S.; Sexton, B.; Hyzy, R.; Welsh, R.; Roth, G.; et al. An intervention to decrease catheter-related bloodstream infections in the ICU. N. Engl. J. Med. 2006, 355, 2725–2732. [Google Scholar] [CrossRef]
- Wirtschafter, D.D.; Pettit, J.; Kurtin, P.; Dalsey, M.; Chance, K.; Morrow, H.W.; Seid, M.; Byczkowski, T.L.; Huber, T.P.; Milstein, J.M.; et al. A statewide quality improvement collaborative to reduce neonatal central line-associated blood stream infections. J. Perinatol. 2010, 30, 170–181. [Google Scholar] [CrossRef]
- Powers, R.J.; Wirtschafter, D.W. Decreasing central line associated bloodstream infection in neonatal intensive care. Clin. Perinatol. 2010, 37, 247–272. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Schelonka, R.L.; Chai, M.K.; Yoder, B.A.; Hensley, D.; Brockett, R.M.; Ascher, D.P. Volume of blood required to detect common neonatal pathogens. J. Pediatr. 1996, 129, 275–278. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Banerjee, R.; Schwenk, H. Antibiotic Stewardship for the Neonatologist and Perinatologist. Clin. Perinatol. 2021, 48, 379–391. [Google Scholar] [CrossRef]
- Brown, J.V.E.; Meader, N.; Wright, K.; Cleminson, J.; McGuire, W. Assessment of C-Reactive Protein Diagnostic Test Accuracy for Late-Onset Infection in Newborn Infants: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 260–268. [Google Scholar] [CrossRef]
- Ruan, L.; Chen, G.Y.; Liu, Z.; Zhao, Y.; Xu, G.Y.; Li, S.F.; Li, C.N.; Chen, L.S.; Tao, Z. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: A meta-analysis and systematic review. Crit. Care 2018, 22, 316. [Google Scholar] [CrossRef] [Green Version]
- Stocker, M.; Fontana, M.; El Helou, S.; Wegscheider, K.; Berger, T.M. Use of procalcitonin-guided decision-making to shorten antibiotic therapy in suspected neonatal early-onset sepsis: Prospective randomized intervention trial. Neonatology 2010, 97, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Stocker, M.; van Herk, W.; El Helou, S.; Dutta, S.; Fontana, M.S.; Schuerman, F.; van den Tooren-de Groot, R.K.; Wieringa, J.W.; Janota, J.; van der Meer-Kappelle, L.H.; et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: A multicentre, randomised controlled trial (NeoPIns). Lancet 2017, 390, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Eichberger, J.; Resch, B. Reliability of Interleukin-6 Alone and in Combination for Diagnosis of Early Onset Neonatal Sepsis: Systematic Review. Front. Pediatr. 2022, 10, 840778. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Zhang, L.; Tong, Y.; Qu, Y.; Wang, H.; Mu, D. Interleukin-6 for early diagnosis of neonatal sepsis with premature rupture of the membranes: A meta-analysis. Medicine 2018, 97, e13146. [Google Scholar] [CrossRef] [PubMed]
- Escobar, G.J.; Puopolo, K.M.; Wi, S.; Turk, B.J.; Kuzniewicz, M.W.; Walsh, E.M.; Newman, T.B.; Zupancic, J.; Lieberman, E.; Draper, D. Stratification of risk of early-onset sepsis in newborns ≥ 34 weeks’ gestation. Pediatrics 2014, 133, 30–36. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Draper, D.; Wi, S.; Newman, T.B.; Zupancic, J.; Lieberman, E.; Smith, M.; Escobar, G.J. Estimating the probability of neonatal early-onset infection on the basis of maternal risk factors. Pediatrics 2011, 128, e1155–e1163. [Google Scholar] [CrossRef]
- Achten, N.B.; Klingenberg, C.; Benitz, W.E.; Stocker, M.; Schlapbach, L.J.; Giannoni, E.; Bokelaar, R.; Driessen, G.J.A.; Brodin, P.; Uthaya, S.; et al. Association of Use of the Neonatal Early-Onset Sepsis Calculator With Reduction in Antibiotic Therapy and Safety: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 1032–1040. [Google Scholar] [CrossRef]
- Rallis, D.; Balomenou, F.; Karantanou, K.; Kappatou, K.; Tzoufi, M.; Giapros, V. A comparison between risk-factor guidance for neonatal early-onset sepsis and Kaiser Permanente sepsis risk calculator in a Greek cohort. Early Hum. Dev. 2021, 155, 105331. [Google Scholar] [CrossRef]
- Mithal, L.B.; Yogev, R.; Palac, H.L.; Kaminsky, D.; Gur, I.; Mestan, K.K. Vital signs analysis algorithm detects inflammatory response in premature infants with late onset sepsis and necrotizing enterocolitis. Early Hum. Dev. 2018, 117, 83–89. [Google Scholar] [CrossRef]
- Gur, I.; Riskin, A.; Markel, G.; Bader, D.; Nave, Y.; Barzilay, B.; Eyal, F.G.; Eisenkraft, A. Pilot study of a new mathematical algorithm for early detection of late-onset sepsis in very low-birth-weight infants. Am. J. Perinatol. 2015, 32, 321–330. [Google Scholar] [CrossRef]
- Sofouli, G.A.; Kanellopoulou, A.; Vervenioti, A.; Dimitriou, G.; Gkentzi, D. Predictive Scores for Late-Onset Neonatal Sepsis as an Early Diagnostic and Antimicrobial Stewardship Tool: What Have We Done So Far? Antibiotics 2022, 11, 928. [Google Scholar] [CrossRef] [PubMed]
- Mahieu, L.M.; De Dooy, J.J.; Cossey, V.R.; Goossens, L.L.; Vrancken, S.L.; Jespers, A.Y.; Vandeputte, C.T.; De Muynck, A.O. Internal and external validation of the NOSEP prediction score for nosocomial sepsis in neonates. Crit. Care Med. 2002, 30, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- Okascharoen, C.; Sirinavin, S.; Thakkinstian, A.; Kitayaporn, D.; Supapanachart, S. A bedside prediction-scoring model for late-onset neonatal sepsis. J. Perinatol. 2005, 25, 778–783. [Google Scholar] [CrossRef] [PubMed]
- Okascharoen, C.; Hui, C.; Cairnie, J.; Morris, A.M.; Kirpalani, H. External validation of bedside prediction score for diagnosis of late-onset neonatal sepsis. J. Perinatol. 2007, 27, 496–501. [Google Scholar] [CrossRef]
- Davis, N.L.; Akinmboni, T.O.; Mooney, S.M. Quantifying Medication Exposure in Very Low Birth Weight Neonates. Am. J. Perinatol. 2021, 38, 383–391. [Google Scholar] [CrossRef]
- Hsieh, E.M.; Hornik, C.P.; Clark, R.H.; Laughon, M.M.; Benjamin, D.K., Jr.; Smith, P.B. Medication use in the neonatal intensive care unit. Am. J. Perinatol. 2014, 31, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Polin, R.A.; Committee on Fetus and Newborn. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics 2012, 129, 1006–1015. [Google Scholar] [CrossRef]
- Liem, T.B.; Krediet, T.G.; Fleer, A.; Egberts, T.C.; Rademaker, C.M. Variation in antibiotic use in neonatal intensive care units in the Netherlands. J. Antimicrob. Chemother. 2010, 65, 1270–1275. [Google Scholar] [CrossRef]
- Gkentzi, D.; Kortsalioudaki, C.; Cailes, B.C.; Zaoutis, T.; Kopsidas, J.; Tsolia, M.; Spyridis, N.; Siahanidou, S.; Sarafidis, K.; Heath, P.T.; et al. Epidemiology of infections and antimicrobial use in Greek Neonatal Units. Arch. Dis. Child. Fetal. Neonatal. Ed. 2019, 104, F293–F297. [Google Scholar] [CrossRef]
- Osowicki, J.; Gwee, A.; Noronha, J.; Britton, P.N.; Isaacs, D.; Lai, T.B.; Nourse, C.; Avent, M.; Moriarty, P.; Francis, J.R.; et al. Australia-wide Point Prevalence Survey of Antimicrobial Prescribing in Neonatal Units: How Much and How Good? Pediatr. Infect. Dis. J. 2015, 34, e185–e190. [Google Scholar] [CrossRef]
- Lutsar, I.; Chazallon, C.; Carducci, F.I.; Trafojer, U.; Abdelkader, B.; de Cabre, V.M.; Esposito, S.; Giaquinto, C.; Heath, P.T.; Ilmoja, M.L.; et al. Current management of late onset neonatal bacterial sepsis in five European countries. Eur. J. Pediatr. 2014, 173, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Cantey, J.B.; Wozniak, P.S.; Sánchez, P.J. Prospective surveillance of antibiotic use in the neonatal intensive care unit: Results from the SCOUT study. Pediatr. Infect. Dis. J. 2015, 34, 267–272. [Google Scholar] [CrossRef]
- de Man, P.; Verhoeven, B.A.; Verbrugh, H.A.; Vos, M.C.; van den Anker, J.N. An antibiotic policy to prevent emergence of resistant bacilli. Lancet 2000, 355, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Cotten, C.M.; McDonald, S.; Stoll, B.; Goldberg, R.N.; Poole, K.; Benjamin, D.K., Jr. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics 2006, 118, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.H.; Michelow, I.C.; Cronin, J.; Ringer, S.A.; Ferris, T.G.; Puopolo, K.M. Effectiveness of a guideline to reduce vancomycin use in the neonatal intensive care unit. Pediatr. Infect. Dis. J. 2011, 30, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, P.; Mostert, M.; Castagnola, E. Update on the management of Candida infections in preterm neonates. Arch. Dis. Child. Fetal. Neonatal. Ed. 2015, 100, F454–F459. [Google Scholar] [CrossRef] [PubMed]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E. Management of Neonates Born at ≥35 0/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182894. [Google Scholar] [CrossRef]
- Blackwood, B.P.; Hunter, C.J.; Grabowski, J. Variability in Antibiotic Regimens for Surgical Necrotizing Enterocolitis Highlights the Need for New Guidelines. Surg. Infect. 2017, 18, 215–220. [Google Scholar] [CrossRef]
- Murphy, C.; Nair, J.; Wrotniak, B.; Polischuk, E.; Islam, S. Antibiotic Treatments and Patient Outcomes in Necrotizing Enterocolitis. Am. J. Perinatol. 2020, 37, 1250–1257. [Google Scholar] [CrossRef]
- Lusk, L.A.; Brown, E.G.; Overcash, R.T.; Grogan, T.R.; Keller, R.L.; Kim, J.H.; Poulain, F.R.; Shew, S.B.; Uy, C.; DeUgarte, D.A. Multi-institutional practice patterns and outcomes in uncomplicated gastroschisis: A report from the University of California Fetal Consortium (UCfC). J. Pediatr. Surg. 2014, 49, 1782–1786. [Google Scholar] [CrossRef] [Green Version]
- Cotten, C.M.; Taylor, S.; Stoll, B.; Goldberg, R.N.; Hansen, N.I.; Sánchez, P.J.; Ambalavanan, N.; Benjamin, D.K., Jr. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics 2009, 123, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.J.; Green, N.; Clock, S.A.; Paul, D.A.; Perlman, J.M.; Zaoutis, T.; Ferng, Y.H.; Alba, L.; Jia, H.; Larson, E.L.; et al. Gram-Negative Bacilli in Infants Hospitalized in The Neonatal Intensive Care Unit. J. Pediatric. Infect. Dis. Soc. 2017, 6, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, S.; Di Pasquale, M.; Zanaboni, A.M.; Cosentini, R.; Brambilla, A.M.; Seghezzi, S.; Tarsia, P.; Mantero, M.; Blasi, F. Stratifying risk factors for multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia. Clin. Infect. Dis. 2012, 54, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.J.; Oshodi, A.; Prasad, P.; Delamora, P.; Larson, E.; Zaoutis, T.; Paul, D.A.; Saiman, L. Antibiotic use in neonatal intensive care units and adherence with Centers for Disease Control and Prevention 12 Step Campaign to Prevent Antimicrobial Resistance. Pediatr. Infect. Dis. J. 2009, 28, 1047–1051. [Google Scholar] [CrossRef]
- Masterton, R.G. Antibiotic de-escalation. Crit. Care Clin. 2011, 27, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Gutiérrez-Pizarraya, A.; Escoresca-Ortega, A.; Corcia-Palomo, Y.; Fernández-Delgado, E.; Herrera-Melero, I.; Ortiz-Leyba, C.; Márquez-Vácaro, J.A. De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med. 2014, 40, 32–40. [Google Scholar] [CrossRef]
- Weiss, S.L.; Peters, M.J.; Alhazzani, W.; Agus, M.S.D.; Flori, H.R.; Inwald, D.P.; Nadel, S.; Schlapbach, L.J.; Tasker, R.C.; Argent, A.C.; et al. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr. Crit. Care Med. 2020, 21, e52–e106. [Google Scholar] [CrossRef]
- Schulman, J.; Profit, J.; Lee, H.C.; Dueñas, G.; Bennett, M.V.; Parucha, J.; Jocson, M.A.L.; Gould, J.B. Variations in Neonatal Antibiotic Use. Pediatrics 2018, 142, e20180115. [Google Scholar] [CrossRef]
- Fjalstad, J.W.; Stensvold, H.J.; Bergseng, H.; Simonsen, G.S.; Salvesen, B.; Rønnestad, A.E.; Klingenberg, C. Early-onset Sepsis and Antibiotic Exposure in Term Infants: A Nationwide Population-based Study in Norway. Pediatr. Infect. Dis. J. 2016, 35, 1–6. [Google Scholar] [CrossRef]
- Kopsidas, I.; Tsopela, G.C.; Molocha, N.M.; Bouza, E.; Chorafa, E.; Chorianopoulou, E.; Giapros, V.; Gkentzi, D.; Gkouvas, T.; Kapetanaki, A.; et al. Reducing Duration of Antibiotic Use for Presumed Neonatal Early-Onset Sepsis in Greek NICUs. A “Low-Hanging Fruit” Approach. Antibiotics 2021, 10, 275. [Google Scholar] [CrossRef]
- Cantey, J.B.; Wozniak, P.S.; Pruszynski, J.E.; Sánchez, P.J. Reducing unnecessary antibiotic use in the neonatal intensive care unit (SCOUT): A prospective interrupted time-series study. Lancet Infect. Dis. 2016, 16, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Lance, C.; Bai, S.; Maples, H.; Khan, M.; Harik, N.; Li, J.; Weiss, D. Antibiotic Therapy in Patients with Necrotizing Enterocolitis in the Neonatal Intensive Care Unit: A Quality Improvement Project. Open Forum Infect. Dis. 2016, 3, 1934. [Google Scholar] [CrossRef]
- Cotten, C.M. Antibiotic stewardship: Reassessment of guidelines for management of neonatal sepsis. Clin. Perinatol. 2015, 42, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Polin, R.A.; Watterberg, K.; Benitz, W.; Eichenwald, E. The conundrum of early-onset sepsis. Pediatrics 2014, 133, 1122–1123. [Google Scholar] [CrossRef]
- Engle, W.D.; Jackson, G.L.; Sendelbach, D.; Ford, D.; Olesen, B.; Burton, K.M.; Pritchard, M.A.; Frawley, W.H. Neonatal pneumonia: Comparison of 4 vs 7 days of antibiotic therapy in term and near-term infants. J. Perinatol. 2000, 20, 421–426. [Google Scholar] [CrossRef]
- Cordero, L.; Ayers, L.W. Duration of empiric antibiotics for suspected early-onset sepsis in extremely low birth weight infants. Infect. Control. Hosp. Epidemiol. 2003, 24, 662–666. [Google Scholar] [CrossRef]
- Spitzer, A.R.; Kirkby, S.; Kornhauser, M. Practice variation in suspected neonatal sepsis: A costly problem in neonatal intensive care. J. Perinatol. 2005, 25, 265–269. [Google Scholar] [CrossRef]
- Amadeo, B.; Zarb, P.; Muller, A.; Drapier, N.; Vankerckhoven, V.; Rogues, A.M.; Davey, P.; Goossens, H. European Surveillance of Antibiotic Consumption (ESAC) point prevalence survey 2008: Paediatric antimicrobial prescribing in 32 hospitals of 21 European countries. J. Antimicrob. Chemother. 2010, 65, 2247–2252. [Google Scholar] [CrossRef]
- Ravikumar, C.; Mitchell, I.C.; Cantey, J.B. Antibiotic Utilization and Infection Among Infants with Abdominal Wall Defects. Pediatr. Infect. Dis. J. 2020, 39, 1116–1120. [Google Scholar] [CrossRef]
- Laituri, C.; Arnold, M.A. A standardized guideline for antibiotic prophylaxis in surgical neonates. Semin. Pediatr. Surg. 2019, 28, 53–56. [Google Scholar] [CrossRef]
- Kostakioti, M.; Hadjifrangiskou, M.; Hultgren, S.J. Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. 2013, 3, a010306. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 2019, 8, 76. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Santhakumari, S.; Poonguzhali, P.; Geetha, M.; Dyavaiah, M.; Xiangmin, L. Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Front. Microbiol. 2021, 12, 676458. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Moser, C.; Wang, H.Z.; Høiby, N.; Song, Z.J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Muñoz-Egea, M.C.; García-Pedrazuela, M.; Mahillo-Fernandez, I.; Esteban, J. Effect of Antibiotics and Antibiofilm Agents in the Ultrastructure and Development of Biofilms Developed by Nonpigmented Rapidly Growing Mycobacteria. Microb. Drug Resist. 2016, 22, 1–6. [Google Scholar] [CrossRef]
- Muñoz-Egea, M.C.; García-Pedrazuela, M.; Mahillo, I.; Esteban, J. Effect of ciprofloxacin in the ultrastructure and development of biofilms formed by rapidly growing mycobacteria. BMC Microbiol. 2015, 15, 18. [Google Scholar] [CrossRef]
- Subhadra, B.; Kim, D.H.; Woo, K.; Surendran, S.; Choi, C.H. Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. Materials 2018, 11, 1676. [Google Scholar] [CrossRef] [Green Version]
- Dror, N.; Mandel, M.; Hazan, Z.; Lavie, G. Advances in microbial biofilm prevention on indwelling medical devices with emphasis on usage of acoustic energy. Sensors 2009, 9, 2538–2554. [Google Scholar] [CrossRef] [PubMed]
- Jansen, B.; Kohnen, W. Prevention of biofilm formation by polymer modification. J. Ind. Microbiol. 1995, 15, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Boelens, J.J.; Tan, W.F.; Dankert, J.; Zaat, S.A. Antibacterial activity of antibiotic-soaked polyvinylpyrrolidone-grafted silicon elastomer hydrocephalus shunts. J. Antimicrob. Chemother. 2000, 45, 221–224. [Google Scholar] [CrossRef] [PubMed]
- John, T.; Rajpurkar, A.; Smith, G.; Fairfax, M.; Triest, J. Antibiotic pretreatment of hydrogel ureteral stent. J. Endourol. 2007, 21, 1211–1216. [Google Scholar] [CrossRef]
- Falde, E.J.; Yohe, S.T.; Colson, Y.L.; Grinstaff, M.W. Superhydrophobic materials for biomedical applications. Biomaterials 2016, 104, 87–103. [Google Scholar] [CrossRef]
- Li, X.H.; Lee, J.H. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 2017, 55, 753–766. [Google Scholar] [CrossRef]
- Davies, D.G.; Marques, C.N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol. 2009, 191, 1393–1403. [Google Scholar] [CrossRef]
- Barraud, N.; Schleheck, D.; Klebensberger, J.; Webb, J.S.; Hassett, D.J.; Rice, S.A.; Kjelleberg, S. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 2009, 191, 7333–7342. [Google Scholar] [CrossRef]
- Chen, M.; Yu, Q.; Sun, H. Novel strategies for the prevention and treatment of biofilm related infections. Int. J. Mol. Sci. 2013, 14, 18488–18501. [Google Scholar] [CrossRef] [Green Version]
Prematurity |
Low birth weight |
Immature immune system |
Admission to NICU and need for invasive procedures |
Prolonged hospitalization |
Transferred to a tertiary NICU after birth |
Previous exposure to antibiotics (specifically vancomycin or carbapenems) |
Born to mothers colonized with MRSA |
Foreign bodies (central-line catheters, indwelling catheters), mechanical ventilation |
Condition | Most Common Pathogen | Antibiotic Regimen |
---|---|---|
EOS (age < 72 h) | Empiric therapy | Ampicillin plus aminoglycoside |
LOS (age ≥ 72 h) | Empiric therapy | Ampicillin plus aminoglycoside or Ampicillin plus cefepime |
Culture-proven sepsis | Group B streptococcus | Penicillin |
Escherichia coli | Ampicillin or expanded-spectrum cephalosporin in resistant strains | |
Gram (-) bacilli | Ampicillin and gentamicin or cefepime or piperacillin/tazobactam | |
Listeria monocytogenes | Ampicillin plus gentamicin | |
Coagulase negative Staphylococci | Antistaphylococcal penicillin * Vancomycin in resistant strains | |
Staphylococcus aureus | Nafcillin or oxacillin* Vancomycin in resistant strains | |
Candida spp. (invasive infection) | Amphotericin B or fluconazole |
Prevention of infection
|
Prompt diagnosis of sepsis
|
Wise antibiotic treatment
|
De-escalation of therapy with availability of culture results
|
Appropriate treatment duration |
Prompt discontinuation of therapy |
Traditional ways
|
Novel ways
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baltogianni, M.; Giapros, V.; Kosmeri, C. Antibiotic Resistance and Biofilm Infections in the NICUs and Methods to Combat It. Antibiotics 2023, 12, 352. https://doi.org/10.3390/antibiotics12020352
Baltogianni M, Giapros V, Kosmeri C. Antibiotic Resistance and Biofilm Infections in the NICUs and Methods to Combat It. Antibiotics. 2023; 12(2):352. https://doi.org/10.3390/antibiotics12020352
Chicago/Turabian StyleBaltogianni, Maria, Vasileios Giapros, and Chrysoula Kosmeri. 2023. "Antibiotic Resistance and Biofilm Infections in the NICUs and Methods to Combat It" Antibiotics 12, no. 2: 352. https://doi.org/10.3390/antibiotics12020352
APA StyleBaltogianni, M., Giapros, V., & Kosmeri, C. (2023). Antibiotic Resistance and Biofilm Infections in the NICUs and Methods to Combat It. Antibiotics, 12(2), 352. https://doi.org/10.3390/antibiotics12020352