Improving the Antibacterial Properties of Dental Bonding Materials Loaded with Silver Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
- Silver carbonate (SC) (Merck Life Science S.L., Madrid, Spain. Batch number: BCCB4406).
- Low molecular weight chitosan (CH) (50,000–190,000 Da) (Merck Life Science S.L., Madrid, Spain. Batch number: BCCD9853).
- Inorganic glass powder with encapsulated silver (Asepticae 013Ag) (Encapsulae S. L., Castelló, Spain).
2.2. Sample Preparation
- Control group: unmodified GIC powder and liquid were mixed according to the manufacturer’s instructions with a powder/liquid (P/L) ratio of 3.8/1.
- GIC + SC (0.5%, 1%, 2%): the GIC powder was modified by incorporating 0.5, 1, and 2% SC (w/w). Both powders were mixed and stirred, and, finally, the SC-modified GIC powder was mixed with the unmodified GIC liquid following the manufacturer’s instructions.
- GIC + inorganic powder with encapsulated silver (1%, 2.5%, 5%): the GIC powder was partially replaced with 1, 2.5, and 5% silver glass (w/w). Both powders were mixed and stirred, and, finally, the modified GIC powder was mixed with the unmodified GIC liquid according to the manufacturer’s instructions.
- GIC + chitosan (2.5%, 5%, 7.5%, 10%): a dispersion of 2% CH (w/v) in 0.3 N acetic acid was prepared and mixed with the commercial GIC liquid in different proportions to achieve the concentrations above. Finally, the unmodified GIC powder was mixed with the CH-modified GIC liquid following the manufacturer’s instructions.
- GIC + chitosan + SC: the CH was incorporated into the liquid part of the GIC in different concentrations, as indicated in the previous group (5% and 10%), and SC was added to the powder part of the GIC (0.5% and 1%). Both the modified liquids and powders were then used to prepare the samples.
2.3. Evaluation of Antibacterial Properties
2.3.1. Microorganisms and Growth Conditions
2.3.2. Minimum Bactericidal Concentration
2.3.3. Evaluation of Antibacterial Activity
2.4. Sample Characterization
2.5. Evaluation of Adhesion Properties (Shear Bond Strength)
2.6. Evaluation of the Colorimetric Properties
2.7. Statistical Analysis
3. Results
3.1. Antibacterial Properties
3.1.1. Minimum Bactericidal Concentration of Silver Carbonate
3.1.2. Antibacterial Activity
3.2. Sample Characterization
3.3. Shear Bond Strength
3.4. Colorimetric Properties
4. Discussion
5. Limitations of the Study
6. Conclusions
- The incorporation of silver compounds into glass ionomer cement improved its antibacterial capacity.
- Silver carbonate and inorganic glass with encapsulated silver were the compounds whose incorporation into glass ionomer cement resulted in a significant improvement in the antibacterial properties of the material.
- The incorporation of silver carbonate up to 1% and of inorganic glass with encapsulated silver up to 5% significantly improved the antibacterial capacity of the glass ionomer cement without compromising the shear bond strength.
- A slight variation in the color of the material was detected when silver carbonate compounds were incorporated, while this variation was not perceptible in the case of inorganic glass with encapsulated silver.
- The modification of the material did not lead to an alteration of the structure, although the silver structures were organized in heterogeneously distributed clusters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Welch, K.; Cai, Y.; Engqvist, H.; Strømme, M. Dental adhesives with bioactive and on-demand bactericidal properties. Dent. Mater. 2010, 26, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.J.; Lim, B.S.; Lee, S.J. Surface characteristics of orthodontic adhesives and effects on streptococcal adhesion. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Eslamian, L.; Borzabadi-Farahani, A.; Karimi, S.; Saadat, S.; Reza Badiee, M. Evaluation of the shear bond strength and antibacterial activity of orthodontic adhesive containing silver nanoparticle, an in-vitro study. Nanomaterials 2020, 10, 1466. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Weir, M.D.; Chen, J.; Xu, H.H. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent. Mater. 2013, 29, 450461. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, W.; Gizani, S.; Nassika, M.; Kontou, E.; Nakou, M. Adhesion of Streptococcus mutans to different types of brackets. Angle Orthod. 2007, 77, 1090–1095. [Google Scholar] [CrossRef]
- Ahn, S.J.; Lee, S.J.; Kook, J.K.; Lim, B.S. Experimental antimicrobial orthodontic adhesives using nanofillers and silver nanoparticles. Dent. Mater. 2009, 25, 206–213. [Google Scholar] [CrossRef]
- Chambers, C.; Stewart, S.B.; Su, B.; Jenkinson, H.F.; Sandy, J.R.; Ireland, A.J. Silver doped titanium dioxide nanoparticles as antimicrobial additives to dental polymers. Dent. Mater. 2017, 33, e115–e123. [Google Scholar] [CrossRef]
- Degrazia, F.W.; Leitune, V.C.; Garcia, I.M.; Arthur, R.A.; Samuel, S.M.; Collares, F.M. Effect of silver nanoparticles on the physicochemical and antimicrobial properties of an orthodontic adhesive. J. Appl. Oral Sci. 2016, 24, 404–410. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Niu, L.N.; Yu, T.; Xu, H.H.K.; Weir, M.D.; Oates, T.W.; Tay, F.R.; Chen, J.-H. Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J. Dent. 2018, 72, 53–63. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Wang, Y. Antibacterial orthodontic cement to combat biofilm and white spot lesions. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 974–981. [Google Scholar] [CrossRef]
- Knosel, M.; Alvarez, R.V.; Blanck-Lubarsch, M.; Helms, H.J. Comparison of potential long-term costs for preventive dentistry treatment of post-orthodontic labial versus lingual enamel cavitations and esthetically relevant white-spot lesions: A simulation study with different scenarios. Head Face Med. 2019, 15, 22. [Google Scholar] [CrossRef] [PubMed]
- Sharon, E.; Sharabi, R.; Eden, A.; Zabrovsky, A.; Ben-Gal, G.; Sharon, E.; Pietrokovski, Y.; Houri-Haddad, Y.; Beyth, N. Antibacterial Activity of Orthodontic Cement Containing Quaternary Ammonium Polyethylenimine Nanoparticles Adjacent to Orthodontic Brackets. Int. J. Environ. Res. Public Health 2018, 15, 606. [Google Scholar] [CrossRef]
- Melo, M.A.; Wu, J.; Weir, M.D.; Xu, H.H. Novel antibacterial orthodontic cement containing quaternary ammonium monomer dimethylaminododecyl methacrylate. J. Dent. 2014, 42, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Weir, M.D.; Xu, H.H.; Antonucci, J.M.; Kraigsley, A.M.; Lin, N.J.; Lin-Gibson, S.; Zhou, X. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent. Mater. 2012, 28, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Hojati, S.T.; Alaghemand, H.; Hamze, F.; Babaki, F.A.; Rajab-Nia, R.; Rezvani, M.B.; Kaviani, M.; Atai, M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent. Mater. 2013, 29, 495–505. [Google Scholar] [CrossRef]
- Ai, M.; Du, Z.; Zhu, S.; Geng, H.; Zhang, X.; Cai, Q.; Yang, X. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent. Mater. 2017, 33, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Debnath, A.; Kesavappa, S.B.; Singh, G.P.; Eshwar, S.; Jain, V.; Swamy, M.; Shetty, P. Comparative evaluation of antibacterial and adhesive properties of chitosan modified glass ionomer cement and conventional glass ionomer cement: An in vitro study. J. Clin. Diagn. Res. 2017, 11, ZC75–ZC78. [Google Scholar] [CrossRef]
- Porter, G.C.; Tompkins, G.R.; Schwass, D.R.; Li, K.C.; Waddell, J.N.; Meledandri, C.J. Anti-biofilm activity of silver nanoparticle-containing glass ionomer cements. Dent. Mater. 2020, 36, 1096–1107. [Google Scholar] [CrossRef]
- Sodagar, A.; Akhoundi, M.S.A.; Bahador, A.; Jalali, Y.F.; Behzadi, Z.; Elhaminejad, F.; Mirhashemi, A.H. Effect of TiO2 nanoparticles incorporation on antibacterial properties and shear bond strength of dental composite used in Orthodontics. Dent. Press J. Orthod. 2017, 22, 67–74. [Google Scholar] [CrossRef]
- Garcia, P.P.N.S.; Cardia, M.F.B.; Francisconi, R.S.; Dovigo, L.N.; Spolidório, D.M.P.; de Souza Rastelli, A.N.; Botta, A.C. Antibacterial activity of glass ionomer cement modified by zinc oxide nanoparticles. Microsc. Res. Tech. 2017, 80, 456–461. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Ferrando-Magraner, E.; Bellot-Arcís, C.; Paredes-Gallardo, V.; Almerich-Silla, J.M.; García-Sanz, V.; Fernández-Alonso, M.; Montiel-Company, J.M. Antibacterial Properties of Nanoparticles in Dental Restorative Materials. A Systematic Review and Meta-Analysis. Medicina 2020, 56, 55. [Google Scholar] [CrossRef] [PubMed]
- Allaker, R.P.; Memarzadeh, K. Nanoparticles and the control of oral infections. Int. J. Antimicrob. Agents 2014, 43, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Contreras, R.; Scougall-Vilchis, R.J.; Contreras-Bulnes, R.; Sakagami, H.; Morales-Luckie, R.A.; Nakajima, H. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement. J. Appl. Oral Sci. 2015, 23, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Andrade, V.; Martínez, A.; Rojas, N.; Bello-Toledo, H.; Flores, P.; Sánchez-Sanhueza, G.; Catalán, A. Antibacterial activity against Streptococcus mutans and diametrical tensile strength of an interim cement modified with zinc oxide nanoparticles and terpenes: An in vitro study. J. Prosthet. Dent. 2018, 119, 862.e1–862.e7. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Li, X.; Xing, Z.; Liu, X.; Bai, X.; Yang, Y.; Guo, D.; Xia, X.; Zhang, C.; Shi, C. Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control. 2022, 135, 108775. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Neo, J.; Esguerra, R.J.; Fawzy, A.S. Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement. J. Biomater. Appl. 2015, 30, 409–419. [Google Scholar] [CrossRef]
- Paiva, L.; Fidalgo, T.K.S.; da Costa, L.P.; Maia, L.C.; Balan, L.; Anselme, K.; Ploux, L.; Thiré, R.M.S. Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J. Dent. 2018, 69, 102–109. [Google Scholar] [CrossRef]
- Chen, H.; Gu, L.; Liao, B.; Zhou, X.; Cheng, L.; Ren, B. Advances of Anti-Caries Nanomaterials. Molecules 2020, 25, 5047. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Priyadarshini, B.M.; Neo, J.; Fawzy, A.S. Characterization of Chitosan/TiO2Nano-Powder Modified Glass-Ionomer Cement for Restorative Dental Applications. J. Esthet. Restor. Dent. 2017, 29, 146–156. [Google Scholar] [CrossRef]
- 3M Espe. 3MTM ESPETM KetacTM Cem; Cemento de Ionómero de Vidrio—Perfil Técnico del Producto. Available online: https://multimedia.3m.com/mws/media/186036O/ketac-cem-technical-profile.pdf (accessed on 3 May 2022).
- Chin, M.Y.; Sandham, A.; Rumachik, E.N.; Ruben, J.L.; Huysmans, M.C. Fluoride release and cariostatic potential of orthodontic adhesives with and without daily fluoride rinsing. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 547–553. [Google Scholar] [CrossRef]
- Dziuk, Y.; Chhatwani, S.; Möhlhenrich, S.C.; Tulka, S.; Naumova, E.A.; Danesh, G. Fluoride release from two types of fluoride containing orthodontic adhesives: Conventional versus resin-modified glass ionomer cements—An in vitro study. PLoS ONE 2021, 16, e0247716. [Google Scholar] [CrossRef]
- Reynolds, I.R. A Review of Direct Orthodontic Bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
Powder Composition | Liquid Composition | |
---|---|---|
B | Nonmodified glass powder | Nonmodified GIC liquid |
SC0.5 | Glass powder modified with 0.5% SC | Nonmodified GIC liquid |
SC1 | Glass powder modified with 1% SC | Nonmodified GIC liquid |
SC2 | Glass powder modified with 2% SC | Nonmodified GIC liquid |
V1 | Glass powder modified with 1% of encapsulated silver | Nonmodified GIC liquid |
V2.5 | Glass powder modified with 2.5% of encapsulated silver | Nonmodified GIC liquid |
V5 | Glass powder modified with 5% of encapsulated silver | Nonmodified GIC liquid |
CH2.5 | Nonmodified glass powder | GIC liquid modified with 2.5% CH |
CH5 | Nonmodified glass powder | GIC liquid modified with 5% CH |
CH7.5 | Nonmodified glass powder | GIC liquid modified with 7.5% CH |
CH10 | Nonmodified glass powder | GIC liquid modified with 10% CH |
CH5-SC0.5 | Glass powder modified with 0.5% SC | GIC liquid modified with 5% CH |
CH5-SC1 | Glass powder modified with 1% SC | GIC liquid modified with 5% CH |
CH10-SC0.5 | Glass powder modified with 0.5% SC | GIC liquid modified with 10% CH |
CH10-SC1 | Glass powder modified with 1% SC | GIC liquid modified with 10% CH |
L. acidophilus | S. mutans | |||
---|---|---|---|---|
ppm SC | CFU/mL | % Reduction | CFU/mL | % Reduction |
2000 | 0 | 100 | 0 | 100 |
1000 | 0 | 100 | 0 | 100 |
500 | 0 | 100 | 8.0 × 102 | 99.9 |
250 | 0 | 100 | 9.7 × 102 | 99.9 |
100 | 0 | 100 | 1.8 × 105 | 91.9 |
50 | 0 | 100 | 9.6 × 105 | 57.5 |
25 | 3.4 × 105 | 85.4 | 1.1 × 106 | 49.9 |
10 | 9.9 × 105 | 57.3 | 1.6 × 106 | 29.2 |
Group | Shear Strength | |||
---|---|---|---|---|
Test 1 (MPa) | Test 2 (MPa) | Test 3 (MPa) | Mean (MPa) | |
B | 8.68 | 8.22 | 8.97 | 8.62 g |
SC0.5 | 8.33 | 8.53 | 8.60 | 8.49 g |
SC1 | 7.92 | 8.14 | 8.37 | 8.14 fg |
SC2 | 7.99 | 8.01 | 7.73 | 7.91 f |
V1 | 7.82 | 9.24 | 8.39 | 8.48 g |
V2.5 | 8.80 | 8.36 | 7.82 | 8.33 fg |
V5 | 7.95 | 8.43 | 8.27 | 8.22 fg |
CH2.5 | 7.29 | 6.76 | 6.79 | 6.95 de |
CH5 | 6.58 | 6.85 | 6.81 | 6.75 d |
CH7.5 | 5.04 | 5.56 | 5.26 | 5.29 ab |
CH10 | 5.26 | 4.98 | 5.02 | 5.09 a |
CH5-SC0.5 | 7.08 | 7.34 | 7.59 | 7.34 e |
CH5-SC1 | 6.89 | 6.98 | 7.20 | 7.02 de |
CH10-SC0.5 | 6.19 | 5.96 | 6.08 | 6.08 c |
CH10-SC1 | 5.66 | 5.62 | 6.09 | 5.79 bc |
Group | Cases | Mean | Homogeneous Groups |
---|---|---|---|
CH10 | 3 | 5.08667 | X |
CH7.5 | 3 | 5.28667 | XX |
CH10-SC1 | 3 | 5.79 | XX |
CH10-SC0.5 | 3 | 6.07667 | X |
CH5 | 3 | 6.74667 | X |
CH2.5 | 3 | 6.94667 | XX |
CH5-SC1 | 3 | 7.02333 | XX |
CH5-SC0.5 | 3 | 7.33667 | X |
SC2 | 3 | 7.91 | X |
SC1 | 3 | 8.14333 | XX |
V5 | 3 | 8.21667 | XX |
V2.5 | 3 | 8.32667 | XX |
V1 | 3 | 8.48333 | X |
SC0.5 | 3 | 8.48667 | X |
B | 3 | 8.62333 | X |
Group | Color Characterization (cie L*a*b*) | ||
---|---|---|---|
L* | a* | b* | |
B | 83.2 | −0.7 | 36.6 |
SC0.5 | 66.1 | 2.2 | 28.9 |
SC1 | 56.1 | 5.2 | 23.8 |
SC2 | 52.4 | 5.4 | 23.2 |
V1 | 79.2 | −0.1 | 31.2 |
V2.5 | 77.7 | −0.1 | 31.4 |
V5 | 74.0 | 0.9 | 31.8 |
CH2.5 | 85.5 | −1.3 | 38.9 |
CH5 | 82.8 | −1.4 | 38.1 |
CH7.5 | 81.6 | −0.9 | 35.4 |
CH10 | 79.9 | −0.9 | 38.0 |
CH5-SC0.5 | 78.8 | 0.1 | 36.6 |
CH5-SC1 | 71.3 | 1.1 | 33.5 |
CH10-SC0.5 | 78.4 | 0.2 | 35.0 |
CH10-SC1 | 70.8 | 1.9 | 32.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrando-Magraner, E.; García-Sanz, V.; Bellot-Arcís, C.; Marín-Gozalbo, A.; Cabedo-Mas, L.; Mínguez-Vega, G.; Paredes-Gallardo, V. Improving the Antibacterial Properties of Dental Bonding Materials Loaded with Silver Compounds. Antibiotics 2023, 12, 1721. https://doi.org/10.3390/antibiotics12121721
Ferrando-Magraner E, García-Sanz V, Bellot-Arcís C, Marín-Gozalbo A, Cabedo-Mas L, Mínguez-Vega G, Paredes-Gallardo V. Improving the Antibacterial Properties of Dental Bonding Materials Loaded with Silver Compounds. Antibiotics. 2023; 12(12):1721. https://doi.org/10.3390/antibiotics12121721
Chicago/Turabian StyleFerrando-Magraner, Elena, Verónica García-Sanz, Carlos Bellot-Arcís, Anna Marín-Gozalbo, Luís Cabedo-Mas, Gladys Mínguez-Vega, and Vanessa Paredes-Gallardo. 2023. "Improving the Antibacterial Properties of Dental Bonding Materials Loaded with Silver Compounds" Antibiotics 12, no. 12: 1721. https://doi.org/10.3390/antibiotics12121721
APA StyleFerrando-Magraner, E., García-Sanz, V., Bellot-Arcís, C., Marín-Gozalbo, A., Cabedo-Mas, L., Mínguez-Vega, G., & Paredes-Gallardo, V. (2023). Improving the Antibacterial Properties of Dental Bonding Materials Loaded with Silver Compounds. Antibiotics, 12(12), 1721. https://doi.org/10.3390/antibiotics12121721