Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory
Abstract
:1. Introduction
2. Ceftolozane-Tazobactam
2.1. Testing Ceftolozane-Tazobactam in the Clinical Laboratory
2.2. Expected Testing Results
3. Ceftazidime-Avibactam
3.1. Testing Ceftazidime-Avibactam Susceptibility in the Clinical Laboratory
3.2. Expected Testing Results
3.3. Combining CZA with Aztreonam
4. Meropenem-Vaborbactam
4.1. Testing Meropenem-Vaborbactam in the Clinical Laboratory
4.2. Expected Testing Results
5. Imipenem-Relebactam
5.1. Testing Imipenem-Relebactam in the Clinical Laboratory
5.2. Expected Testing Results
6. Cefiderocol
6.1. Testing Cefiderocol in the Clinical Laboratory
6.2. Expected Testing Results
7. Sulbactam-Durlobactam
Testing Sulbactam-Durlobactam in the Clinical Laboratory
8. Common Challenges When Testing Novel Βeta-Lactam Combination Agents and Cefiderocol
8.1. Test Availability
8.2. Breakpoints
8.3. Quality Assurance beyond Quality Control Testing
8.4. Discrepancy in Testing Methods
8.5. Training
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Gramatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New beta-Lactam-beta-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, e00115-20. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Cefiderocol: A Review in Serious Gram-Negative Bacterial Infections. Drugs 2021, 81, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Streling, A.P.; Al Obaidi, M.M.; Lainhart, W.D.; Zangeneh, T.; Khan, A.; Dinh, A.Q.; Hanson, B.; Arias, C.A.; Miller, W.R. Evolution of Cefiderocol Non-Susceptibility in Pseudomonas aeruginosa in a Patient Without Previous Exposure to the Antibiotic. Clin. Infect. Dis. 2021, 73, e4472–e4474. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Yang, S.; Hemarajata, P.; Ward, K.W.; Hindler, J.A.; Miller, S.A.; Gregson, A. First Report of Ceftazidime-Avibactam Resistance in a KPC-3-Expressing Klebsiella pneumoniae Isolate. Antimicrob. Agents Chemother. 2015, 59, 6605–6607. [Google Scholar] [CrossRef] [PubMed]
- Toda, A.; Ohki, H.; Yamanaka, T.; Murano, K.; Misumi, K.; Itoh, K.; Satoh, K.; Inoue, S. Synthesis and SAR of novel parenteral anti-pseudomonal cephalosporins: Discovery of FR264205. Bioorg. Med. Chem. Lett. 2008, 18, 4849–4852. [Google Scholar] [CrossRef] [PubMed]
- Lizza, B.D.; Betthauser, K.D.; Ritchie, D.J.; Micek, S.T.; Kollef, M.H. New Perspectives on Antimicrobial Agents: Ceftolozane-Tazobactam. Antimicrob. Agents Chemother. 2021, 65, e0231820. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; DeRyke, C.A.; Hilbert, D.W.; Wong, M.T.; Young, K.; Siddiqui, F.; Motyl, M.R.; Sahm, D.F. In Vitro Activity of Ceftolozane-Tazobactam, Imipenem-Relebactam, Ceftazidime-Avibactam, and Comparators against Pseudomonas aeruginosa Isolates Collected in United States Hospitals According to Results from the SMART Surveillance Program, 2018 to 2020. Antimicrob. Agents Chemother. 2022, 66, e0018922. [Google Scholar] [CrossRef]
- Shortridge, D.; Pfaller, M.A.; Castanheira, M.; Flamm, R.K. Antimicrobial Activity of Ceftolozane-Tazobactam Tested Against Enterobacteriaceae and Pseudomonas aeruginosa with Various Resistance Patterns Isolated in U.S. Hospitals (2013–2016) as Part of the Surveillance Program: Program to Assess Ceftolozane-Tazobactam Susceptibility. Microb. Drug Resist. 2018, 24, 563–577. [Google Scholar] [CrossRef]
- Lee, Y.L.; Ko, W.C.; Hsueh, P.R. In vitro activities of ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam and other comparators against Pseudomonas aeruginosa isolates with discrepant resistance to carbapenems: Data from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2012–2021. Int. J. Antimicrob. Agents 2023, 62, 106867. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Mack, A.R.; Taracila, M.A.; Bonomo, R.A. Resistance to Novel beta-Lactam-beta-Lactamase Inhibitor Combinations: The “Price of Progress”. Infect. Dis. Clin. N. Am. 2020, 34, 773–819. [Google Scholar] [CrossRef] [PubMed]
- Berrazeg, M.; Jeannot, K.; Ntsogo Enguene, V.Y.; Broutin, I.; Loeffert, S.; Fournier, D.; Plesiat, P. Mutations in beta-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrob. Agents Chemother. 2015, 59, 6248–6255. [Google Scholar] [CrossRef] [PubMed]
- Fournier, D.; Carriere, R.; Bour, M.; Grisot, E.; Triponney, P.; Muller, C.; Lemoine, J.; Jeannot, K.; Plesiat, P.; GERPA Study Group. Mechanisms of Resistance to Ceftolozane/Tazobactam in Pseudomonas aeruginosa: Results of the GERPA Multicenter Study. Antimicrob. Agents Chemother. 2021, 65, e01117-20. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI supplement M100; CLSI: Wayne, PA, USA, 2023. [Google Scholar]
- U.S. Food and Drug Administration. Antibacterial Susceptibility Test Interpretive Criteria. Available online: https://www.fda.gov/drugs/development-resources/fda-recognized-antimicrobial-susceptibility-test-interpretive-criteria (accessed on 28 October 2023).
- EUCAST. Breakpoin Tables for Interpretation of MICs and Zone Diameters, Version 13.1; EUCAST: Vaxjo, Sweden, 2023. [Google Scholar]
- Bailey, A.L.; Armstrong, T.; Dwivedi, H.P.; Denys, G.A.; Hindler, J.; Campeau, S.; Traczewski, M.; Humphries, R.; Burnham, C.A. Multicenter Evaluation of the Etest Gradient Diffusion Method for Ceftolozane-Tazobactam Susceptibility Testing of Enterobacteriaceae and Pseudomonas aeruginosa. J. Clin. Microbiol. 2018, 56, e00717-18. [Google Scholar] [CrossRef] [PubMed]
- Daragon, B.; Fournier, D.; Plesiat, P.; Jeannot, K. Performance of disc diffusion, MIC gradient tests and Vitek 2 for ceftolozane/tazobactam and ceftazidime/avibactam susceptibility testing of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2021, 76, 2586–2592. [Google Scholar] [CrossRef] [PubMed]
- Papadomanolaki, A.; Siopi, M.; Karakosta, P.; Vourli, S.; Pournaras, S. Comparative Evaluation of Vitek 2 and Etest versus Broth Microdilution for Ceftazidime/Avibactam and Ceftolozane/Tazobactam Susceptibility Testing of Enterobacterales and Pseudomonas aeruginosa. Antibiotics 2022, 11, 865. [Google Scholar] [CrossRef] [PubMed]
- Rivas, L.; Alcalde-Rico, M.; Martinez, J.R.W.; Moreno, M.V.; Rojas, P.; Wozniak, A.; Garcia, P.; Olivares-Pacheco, J.; Miller, W.R.; Arias, C.A.; et al. Real-World Performance of Susceptibility Testing for Ceftolozane/Tazobactam against Non-Carbapenemase-Producing Carbapenem-Resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2022, 66, e0165721. [Google Scholar] [CrossRef]
- Humphries, R.M.; Hindler, J.A.; Magnano, P.; Wong-Beringer, A.; Tibbetts, R.; Miller, S.A. Performance of Ceftolozane-Tazobactam Etest, MIC Test Strips, and Disk Diffusion Compared to Reference Broth Microdilution for beta-Lactam-Resistant Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2018, 56, e01633-17. [Google Scholar] [CrossRef]
- Ortiz de la Rosa, J.M.; Nordmann, P.; Poirel, L. ESBLs and resistance to ceftazidime/avibactam and ceftolozane/tazobactam combinations in Escherichia coli and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2019, 74, 1934–1939. [Google Scholar] [CrossRef]
- Buehrle, D.J.; Shields, R.K.; Chen, L.; Hao, B.; Press, E.G.; Alkrouk, A.; Potoski, B.A.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Evaluation of the In Vitro Activity of Ceftazidime-Avibactam and Ceftolozane-Tazobactam against Meropenem-Resistant Pseudomonas aeruginosa Isolates. Antimicrob. Agents Chemother. 2016, 60, 3227–3231. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Estabrook, M.; Jacoby, G.A.; Nichols, W.W.; Testa, R.T.; Bush, K. In vitro susceptibility of characterized beta-lactamase-producing strains tested with avibactam combinations. Antimicrob. Agents Chemother. 2015, 59, 1789–1793. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Deshpande, L.M.; Costello, A.; Davies, T.A.; Jones, R.N. Epidemiology and carbapenem resistance mechanisms of carbapenem-non-susceptible Pseudomonas aeruginosa collected during 2009-11 in 14 European and Mediterranean countries. J. Antimicrob. Chemother. 2014, 69, 1804–1814. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, Y.F.; Williams, B.J.; Blackwell, T.S.; Xie, C.M. Structure and function of OprD protein in Pseudomonas aeruginosa: From antibiotic resistance to novel therapies. Int. J. Med. Microbiol. 2012, 302, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, D.; Chen, K.; Xie, M.; Guo, J.; Chan, E.W.C.; Xie, L.; Wang, J.; Chen, E.; Chen, S.; et al. Epidemiological and Genetic Characteristics of Clinical Carbapenem-Resistant Pseudomonas aeruginosa Strains in Guangdong Province, China. Microbiol. Spectr. 2023, 11, e0426122. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Hindler, J.A.; Wong-Beringer, A.; Miller, S.A. Activity of Ceftolozane-Tazobactam and Ceftazidime-Avibactam against Beta-Lactam-Resistant Pseudomonas aeruginosa Isolates. Antimicrob. Agents Chemother. 2017, 61, 01858-17. [Google Scholar] [CrossRef]
- Sader, H.S.; Mendes, R.E.; Duncan, L.; Kimbrough, J.H.; Carvalhaes, C.G.; Castanheira, M. Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-relebactam activities against multidrug-resistant Enterobacterales from United States Medical Centers (2018–2022). Diagn. Microbiol. Infect. Dis. 2023, 106, 115945. [Google Scholar] [CrossRef]
- Alsenani, T.A.; Viviani, S.L.; Kumar, V.; Taracila, M.A.; Bethel, C.R.; Barnes, M.D.; Papp-Wallace, K.M.; Shields, R.K.; Nguyen, M.H.; Clancy, C.J.; et al. Structural Characterization of the D179N and D179Y Variants of KPC-2 beta-Lactamase: Omega-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2022, 66, e0241421. [Google Scholar] [CrossRef]
- Alsenani, T.A.; Viviani, S.L.; Papp-Wallace, K.M.; Bonomo, R.A.; van den Akker, F. Exploring avibactam and relebactam inhibition of Klebsiella pneumoniae carbapenemase D179N variant: Role of the Omega loop-held deacylation water. Antimicrob. Agents Chemother. 2023, 67, e0035023. [Google Scholar] [CrossRef]
- Hobson, C.A.; Pierrat, G.; Tenaillon, O.; Bonacorsi, S.; Bercot, B.; Jaouen, E.; Jacquier, H.; Birgy, A. Klebsiella pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: An Evolutionary Overview. Antimicrob. Agents Chemother. 2022, 66, e0044722. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, S.; Unali, I.; Bertoncelli, A.; Cecchetto, R.; Mazzariol, A. Ceftazidime/avibactam resistance is associated with different mechanisms in KPC-producing Klebsiella pneumoniae strains. Acta Microbiol. Immunol. Hung. 2021, 68, 235–239. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, N.; Lin, Z.; Ba, X.; Zhuo, C.; Li, F.; Wang, J.; Li, Y.; Yao, L.; Liu, B.; et al. Mutations in porin LamB contribute to ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 2021, 10, 2042–2051. [Google Scholar] [CrossRef]
- Nelson, K.; Hemarajata, P.; Sun, D.; Rubio-Aparicio, D.; Tsivkovski, R.; Yang, S.; Sebra, R.; Kasarskis, A.; Nguyen, H.; Hanson, B.M.; et al. Resistance to Ceftazidime-Avibactam Is Due to Transposition of KPC in a Porin-Deficient Strain of Klebsiella pneumoniae with Increased Efflux Activity. Antimicrob. Agents Chemother. 2017, 61, e00989-17. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.D.; Winkler, M.L.; Taracila, M.A.; Page, M.G.; Desarbre, E.; Kreiswirth, B.N.; Shields, R.K.; Nguyen, M.H.; Clancy, C.; Spellberg, B.; et al. Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from beta-Lactamase Protein Engineering. mBio 2017, 8, e00528-17. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Chen, L.; Kreiswirth, B.N.; Clancy, C.J. Emergence of Ceftazidime-Avibactam Resistance and Restoration of Carbapenem Susceptibility in Klebsiella pneumoniae Carbapenemase-Producing K pneumoniae: A Case Report and Review of Literature. Open Forum Infect. Dis. 2017, 4, ofx101. [Google Scholar] [CrossRef] [PubMed]
- Shropshire, W.C.; Endres, B.T.; Borjan, J.; Aitken, S.L.; Bachman, W.C.; McElheny, C.L.; Wu, C.T.; Egge, S.L.; Khan, A.; Miller, W.R.; et al. High-level ceftazidime/avibactam resistance in Escherichia coli conferred by the novel plasmid-mediated beta-lactamase CMY-185 variant. J. Antimicrob. Chemother. 2023, 78, 2442–2450. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, L.; Sun, S.; Yin, Y.; Wang, R.; Chen, F.; Wang, X.; Zhang, Y.; Hou, J.; Zhang, Y.; et al. Occurrence of High Levels of Cefiderocol Resistance in Carbapenem-Resistant Escherichia coli before Its Approval in China: A Report from China CRE-Network. Microbiol. Spectr. 2022, 10, e0267021. [Google Scholar] [CrossRef]
- Zhang, Y.; Kashikar, A.; Brown, C.A.; Denys, G.; Bush, K. Unusual Escherichia coli PBP 3 Insertion Sequence Identified from a Collection of Carbapenem-Resistant Enterobacteriaceae Tested In Vitro with a Combination of Ceftazidime-, Ceftaroline-, or Aztreonam-Avibactam. Antimicrob. Agents Chemother. 2017, 61, e00389-17. [Google Scholar] [CrossRef]
- Periasamy, H.; Joshi, P.; Palwe, S.; Shrivastava, R.; Bhagwat, S.; Patel, M. High prevalence of Escherichia coli clinical isolates in India harbouring four amino acid inserts in PBP3 adversely impacting activity of aztreonam/avibactam. J. Antimicrob. Chemother. 2020, 75, 1650–1651. [Google Scholar] [CrossRef]
- Satlin, M.J.; Chen, L.; Gomez-Simmonds, A.; Marino, J.; Weston, G.; Bhowmick, T.; Seo, S.K.; Sperber, S.J.; Kim, A.C.; Eilertson, B.; et al. Impact of a Rapid Molecular Test for Klebsiella pneumoniae Carbapenemase and Ceftazidime-Avibactam Use on Outcomes After Bacteremia Caused by Carbapenem-Resistant Enterobacterales. Clin. Infect. Dis. 2022, 75, 2066–2075. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Yang, X.; Yang, Y.; Guo, Y.; Yin, D.; Ding, L.; Wu, S.; Zhu, D.; Hu, F. Assessment of Ceftazidime-Avibactam 30/20-mug Disk, Etest versus Broth Microdilution Results When Tested against Enterobacterales Clinical Isolates. Microbiol. Spectr. 2022, 10, e0109221. [Google Scholar] [CrossRef] [PubMed]
- Wenzler, E.; Lee, M.; Wu, T.J.; Meyer, K.A.; Shields, R.K.; Nguyen, M.H.; Clancy, C.J.; Humphries, R.M.; Harrington, A.T. Performance of ceftazidime/avibactam susceptibility testing methods against clinically relevant Gram-negative organisms. J. Antimicrob. Chemother. 2019, 74, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Doyle, T.B.; Deshpande, L.M.; Mendes, R.E.; Sader, H.S. Activity of ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam against carbapenemase-negative carbapenem-resistant Enterobacterales isolates from US hospitals. Int. J. Antimicrob. Agents 2021, 58, 106439. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.P.; Ho, J.Y.; Teo, J.Q.; Sim, J.H.; Tan, S.H.; Tan, T.T.; Kwa, A.L. In Vitro Susceptibility to Ceftazidime-Avibactam and Comparator Antimicrobial Agents of Carbapenem-Resistant Enterobacterales Isolates. Microorganisms 2023, 11, 2158. [Google Scholar] [CrossRef] [PubMed]
- Mauri, C.; Maraolo, A.E.; Di Bella, S.; Luzzaro, F.; Principe, L. The Revival of Aztreonam in Combination with Avibactam against Metallo-beta-Lactamase-Producing Gram-Negatives: A Systematic Review of In Vitro Studies and Clinical Cases. Antibiotics 2021, 10, 1012. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Yao, Y.; Falgenhauer, L.; Sadek, M.; Imirzalioglu, C.; Chakraborty, T. Recent Emergence of Aztreonam-Avibactam Resistance in NDM and OXA-48 Carbapenemase-Producing Escherichia coli in Germany. Antimicrob. Agents Chemother. 2021, 65, e0109021. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Erickson, S.G.; Pettaway, C.; Arias, C.A.; Miller, W.R.; Bhatti, M.M. Evaluation of Susceptibility Testing Methods for Aztreonam and Ceftazidime-Avibactam Combination Therapy on Extensively Drug-Resistant Gram-Negative Organisms. Antimicrob. Agents Chemother. 2021, 65, e0084621. [Google Scholar] [CrossRef]
- Harris, H.; Tao, L.; Jacobs, E.B.; Bergman, Y.; Adebayo, A.; Tekle, T.; Lewis, S.; Dahlquist, A.; Abbey, T.C.; Wenzler, E.; et al. Multicenter Evaluation of an MIC-Based Aztreonam and Ceftazidime-Avibactam Broth Disk Elution Test. J. Clin. Microbiol. 2023, 61, e0164722. [Google Scholar] [CrossRef]
- Bhowmick, T.; Weinstein, M.P. Microbiology of Meropenem-Vaborbactam: A Novel Carbapenem Beta-Lactamase Inhibitor Combination for Carbapenem-Resistant Enterobacterales Infections. Infect. Dis. Ther. 2020, 9, 757–767. [Google Scholar] [CrossRef]
- Wilson, W.R.; Kline, E.G.; Jones, C.E.; Morder, K.T.; Mettus, R.T.; Doi, Y.; Nguyen, M.H.; Clancy, C.J.; Shields, R.K. Effects of KPC Variant and Porin Genotype on the In Vitro Activity of Meropenem-Vaborbactam against Carbapenem-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e02048-18. [Google Scholar] [CrossRef]
- Gaibani, P.; Giani, T.; Bovo, F.; Lombardo, D.; Amadesi, S.; Lazzarotto, T.; Coppi, M.; Rossolini, G.M.; Ambretti, S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics 2022, 11, 628. [Google Scholar] [CrossRef] [PubMed]
- Bovo, F.; Amadesi, S.; Palombo, M.; Lazzarotto, T.; Ambretti, S.; Gaibani, P. Clonal dissemination of Klebsiella pneumoniae resistant to cefiderocol, ceftazidime/avibactam, meropenem/vaborbactam and imipenem/relebactam co-producing KPC and OXA-181 carbapenemase. JAC Antimicrob. Resist. 2023, 5, dlad099. [Google Scholar] [CrossRef] [PubMed]
- Asempa, T.E.; Kois, A.K.; Gill, C.M.; Nicolau, D.P. Phenotypes, genotypes and breakpoints: An assessment of beta-lactam/beta-lactamase inhibitor combinations against OXA-48. J. Antimicrob. Chemother. 2023, 78, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Jean, S.; Garrett, S.; Anglade, C.; Bridon, L.; Davies, L.; Garner, O.B.; Richards, J.; Wallace, M.; Wootton, M.; Burnham, C.A. Multicenter Clinical Evaluation of Etest Meropenem-Vaborbactam (bioMerieux) for Susceptibility Testing of Enterobacterales (Enterobacteriaceae) and Pseudomonas aeruginosa. J. Clin. Microbiol. 2019, 58, e01205-19. [Google Scholar] [CrossRef] [PubMed]
- Young, K.; Painter, R.E.; Raghoobar, S.L.; Hairston, N.N.; Racine, F.; Wisniewski, D.; Balibar, C.J.; Villafania, A.; Zhang, R.; Sahm, D.F.; et al. In vitro studies evaluating the activity of imipenem in combination with relebactam against Pseudomonas aeruginosa. BMC Microbiol. 2019, 19, 150. [Google Scholar] [CrossRef]
- Biagi, M.; Shajee, A.; Vialichka, A.; Jurkovic, M.; Tan, X.; Wenzler, E. Activity of Imipenem-Relebactam and Meropenem-Vaborbactam against Carbapenem-Resistant, SME-Producing Serratia marcescens. Antimicrob. Agents Chemother. 2020, 64, e02255-19. [Google Scholar] [CrossRef]
- Mushtaq, S.; Meunier, D.; Vickers, A.; Woodford, N.; Livermore, D.M. Activity of imipenem/relebactam against Pseudomonas aeruginosa producing ESBLs and carbapenemases. J. Antimicrob. Chemother. 2021, 76, 434–442. [Google Scholar] [CrossRef]
- Lapuebla, A.; Abdallah, M.; Olafisoye, O.; Cortes, C.; Urban, C.; Landman, D.; Quale, J. Activity of Imipenem with Relebactam against Gram-Negative Pathogens from New York City. Antimicrob. Agents Chemother. 2015, 59, 5029–5031. [Google Scholar] [CrossRef]
- Lasarte-Monterrubio, C.; Fraile-Ribot, P.A.; Vazquez-Ucha, J.C.; Cabot, G.; Guijarro-Sanchez, P.; Alonso-Garcia, I.; Rumbo-Feal, S.; Galan-Sanchez, F.; Beceiro, A.; Arca-Suarez, J.; et al. Activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2022, 77, 2809–2815. [Google Scholar] [CrossRef]
- Rubio, A.M.; Kline, E.G.; Jones, C.E.; Chen, L.; Kreiswirth, B.N.; Nguyen, M.H.; Clancy, C.J.; Cooper, V.S.; Haidar, G.; Van Tyne, D.; et al. In Vitro Susceptibility of Multidrug-Resistant Pseudomonas aeruginosa following Treatment-Emergent Resistance to Ceftolozane-Tazobactam. Antimicrob. Agents Chemother. 2021, 65, e00084-21. [Google Scholar] [CrossRef] [PubMed]
- Hakvoort, H.; Bovenkamp, E.; Greenwood-Quaintance, K.E.; Schmidt-Malan, S.M.; Mandrekar, J.N.; Schuetz, A.N.; Patel, R. Imipenem-Relebactam Susceptibility Testing of Gram-Negative Bacilli by Agar Dilution, Disk Diffusion, and Gradient Strip Methods Compared with Broth Microdilution. J. Clin. Microbiol. 2020, 58, e00695-20. [Google Scholar] [CrossRef] [PubMed]
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog. 2023, 182, 106221. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.B.; Poignon, C.; Yilmaz, S.; Bleibtreu, A.; Emeraud, C.; Girlich, D.; Naas, T.; Robert, J.; Bonnin, R.A.; Dortet, L. Rapid selection of a cefiderocol-resistant Escherichia coli producing NDM-5 associated with a single amino acid substitution in the CirA siderophore receptor. J. Antimicrob. Chemother. 2023, 78, 1125–1127. [Google Scholar] [CrossRef]
- Klein, S.; Boutin, S.; Kocer, K.; Fiedler, M.O.; Storzinger, D.; Weigand, M.A.; Tan, B.; Richter, D.; Rupp, C.; Mieth, M.; et al. Rapid Development of Cefiderocol Resistance in Carbapenem-resistant Enterobacter cloacae During Therapy Is Associated With Heterogeneous Mutations in the Catecholate Siderophore Receptor cirA. Clin. Infect. Dis. 2022, 74, 905–908. [Google Scholar] [CrossRef]
- Lan, P.; Lu, Y.; Jiang, Y.; Wu, X.; Yu, Y.; Zhou, J. Catecholate siderophore receptor CirA impacts cefiderocol susceptibility in Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2022, 60, 106646. [Google Scholar] [CrossRef]
- Moon, S.H.; Udaondo, Z.; Jun, S.R.; Huang, E. Cefiderocol heteroresistance in Klebsiella pneumoniae is linked to mutations in the siderophore receptor cirA and beta-lactamase activities. Int. J. Antimicrob. Agents 2022, 60, 106635. [Google Scholar] [CrossRef]
- Sadek, M.; Le Guern, R.; Kipnis, E.; Gosset, P.; Poirel, L.; Dessein, R.; Nordmann, P. Progressive in vivo development of resistance to cefiderocol in Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 61–66. [Google Scholar] [CrossRef]
- Kawai, A.; McElheny, C.L.; Iovleva, A.; Kline, E.G.; Sluis-Cremer, N.; Shields, R.K.; Doi, Y. Structural Basis of Reduced Susceptibility to Ceftazidime-Avibactam and Cefiderocol in Enterobacter cloacae Due to AmpC R2 Loop Deletion. Antimicrob Agents Chemother 2020, 64, e00198-20. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Rousaki, M.; Vassilopoulou, L.; Kritsotakis, E.I. Global prevalence of cefiderocol non-susceptibility in Enterobacterales, Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023; ahead of print. [Google Scholar] [CrossRef]
- Nakamura, R.; Oota, M.; Matsumoto, S.; Sato, T.; Yamano, Y. In Vitro Activity and In Vivo Efficacy of Cefiderocol against Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2021, 65, e01436-20. [Google Scholar] [CrossRef]
- Simner, P.J.; Patel, R. Cefiderocol Antimicrobial Susceptibility Testing Considerations: The Achilles’ Heel of the Trojan Horse? J. Clin. Microbiol. 2020, 59, e00951-20. [Google Scholar] [CrossRef] [PubMed]
- Simner, P.J.; Palavecino, E.L.; Satlin, M.J.; Mathers, A.J.; Weinstein, M.P.; Lewis, J.S., 2nd; Humphries, R. Potential of Inaccurate Cefiderocol Susceptibility Results: A CLSI AST Subcommittee Advisory. J. Clin. Microbiol. 2023, 61, e0160022. [Google Scholar] [CrossRef]
- Devoos, L.; Biguenet, A.; Rousselot, J.; Bour, M.; Plesiat, P.; Fournier, D.; Jeannot, K. Performance of discs, sensititre EUMDROXF microplates and MTS gradient strips for the determination of the susceptibility of multidrug-resistant Pseudomonas aeruginosa to cefiderocol. Clin. Microbiol. Infect. 2023, 29, 652.e1–652.e8. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.P.; Bergman, Y.; Tekle, T.; Fissel, J.A.; Tamma, P.D.; Simner, P.J. Cefiderocol Antimicrobial Susceptibility Testing against Multidrug-Resistant Gram-Negative Bacilli: A Comparison of Disk Diffusion to Broth Microdilution. J. Clin. Microbiol. 2020, 59, e01649-20. [Google Scholar] [CrossRef]
- Delgado-Valverde, M.; Conejo, M.D.C.; Serrano, L.; Fernandez-Cuenca, F.; Pascual, A. Activity of cefiderocol against high-risk clones of multidrug-resistant Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J. Antimicrob. Chemother. 2020, 75, 1840–1849. [Google Scholar] [CrossRef]
- Kazmierczak, K.M.; Tsuji, M.; Wise, M.G.; Hackel, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-beta-lactamase-producing isolates (SIDERO-WT-2014 Study). Int. J. Antimicrob. Agents 2019, 53, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; McLeod, S.M.; Miller, A.A. Durlobactam, a Broad-Spectrum Serine beta-lactamase Inhibitor, Restores Sulbactam Activity Against Acinetobacter Species. Clin. Infect. Dis. 2023, 76, S194–S201. [Google Scholar] [CrossRef]
- Findlay, J.; Poirel, L.; Bouvier, M.; Nordmann, P. In vitro activity of sulbactam-durlobactam against carbapenem-resistant Acinetobacter baumannii and mechanisms of resistance. J. Glob. Antimicrob. Resist. 2022, 30, 445–450. [Google Scholar] [CrossRef]
- McLeod, S.M.; Shapiro, A.B.; Moussa, S.H.; Johnstone, M.; McLaughlin, R.E.; de Jonge, B.L.M.; Miller, A.A. Frequency and Mechanism of Spontaneous Resistance to Sulbactam Combined with the Novel beta-Lactamase Inhibitor ETX2514 in Clinical Isolates of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2018, 62, e01576-17. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Hackel, M.A.; McLeod, S.M.; Miller, A.A. In Vitro Activity of Sulbactam-Durlobactam against Global Isolates of Acinetobacter baumannii-calcoaceticus Complex Collected from 2016 to 2021. Antimicrob. Agents Chemother. 2022, 66, e0078122. [Google Scholar] [CrossRef]
- Humphries, R.M.; Hindler, J.A. Emerging Resistance, New Antimicrobial Agents... but No Tests! The Challenge of Antimicrobial Susceptibility Testing in the Current US Regulatory Landscape. Clin. Infect. Dis. 2016, 63, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Simner, P.J.; Rauch, C.A.; Martin, I.W.; Sullivan, K.V.; Rhoads, D.; Rolf, R.; She, R.; Souers, R.J.; Wojewoda, C.; Humphries, R.M. Raising the Bar: Improving Antimicrobial Resistance Detection by Clinical Laboratories by Ensuring Use of Current Breakpoints. Open Forum Infect. Dis. 2022, 9, ofac007. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Miller, L.; Zimmer, B.; Matuschek, E.; Hindler, J.A. Contemporary Considerations for Establishing Reference Methods for Antibacterial Susceptibility Testing. J. Clin. Microbiol. 2023, 61, e0188622. [Google Scholar] [CrossRef] [PubMed]
Enzyme | C/T | CZA | MEV | IMR | |
---|---|---|---|---|---|
Class A | KPC | ✗ | ✓ | ✓ | ✓ |
SHV | ✓ | ✓ | ✓ | ✓ | |
TEM | ✓ | ✓ | ✓ | ✓ | |
CTX-M | ✓ | ✓ | ✓ | ✓ | |
Class B (MBL) | NDM | ✗ | ✗ | ✗ | ✗ |
IMP | ✗ | ✗ | ✗ | ✗ | |
VIM | ✗ | ✗ | ✗ | ✗ | |
Class C | AmpC | ✗ | ✓ | ✓ | ✓ |
Class D | OXA | ✗ | ✓/✗ | ✗ | ✗ |
Antimicrobial | Organism | CLSI | EUCAST | FDA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
S | I | R | S | I | R | S | I | R | ||
CZA | Enterobacterales | ≤8/4 | - | ≥16/4 | ≤8/4 | - | >8/4 | Recognizes CLSI | ||
P. aeruginosa | ≤8/4 | - | ≥16/4 | ≤8/4 | - | >8/4 | Recognizes CLSI | |||
C/T | Enterobacterales | ≤2/4 | 4/4 | ≥8/4 | ≤2 | - | >2 | Recognizes CLSI | ||
P. aeruginosa | ≤4/4 | 8/4 | ≥16/4 | ≤4 | - | >4 | Recognizes CLSI | |||
H. influenzae | ≤0.5/4 | - | - | - | - | - | Recognizes CLSI | |||
Streptococcus, Viridans Grp | ≤8/4 | 16/4 | ≥32/4 | - | - | - | Recognizes CLSI | |||
B. fragilis | - | - | - | - | - | - | ≤8/4 | 16/4 | ≥32/4 | |
MEV | Enterobacterales | ≤4/8 | 8/8 | 16/8 | ≤8/8 | - | >8/8 | Recognizes CLSI | ||
IMR | Enterobacterales | ≤1/4 | 2/4 | ≥4/4 | ≤2/4 | - | >2/4 | Recognizes CLSI | ||
P. aeruginosa | ≤2/4 | 4/4 | ≥8/4 | ≤2/4 | - | >2/4 | Recognizes CLSI | |||
Acinetobacter calcoaceticus-baumannii complex | - | - | - | ≤2/4 | - | >2/4 | ≤2/4 | 4/4 | ≥8/4 | |
Haemophilus influenzae | - | - | - | - | - | - | ≤4/4 | |||
Anaerobes | ≤4/4 | 8/4 | ≥16/4 | - | - | - | Recognizes CLSI | |||
FDC | Enterobacterales | ≤4 | 8 | ≥16 | ≤2 | - | >2 | Recognizes CLSI | ||
P. aeruginosa | ≤4 | 8 | ≥16 | ≤2 | - | >2 | ≤1 | 2 | ≥4 | |
Acinetobacter calcoaceticus-baumannii complex | ≤4 | 8 | ≥16 | - | - | - | ≤1 | 2 | ≥4 | |
Stenotrophomonas maltophilia | ≤1 | - | - | - | - | - | - | - | - | |
SUD | Acinetobacter calcoaceticus-baumannii complex | - | - | - | - | - | - | ≤4/4 | 8 | ≥16/4 |
C/T | CZA | MEV | IMR | FDC | SUD | |
---|---|---|---|---|---|---|
Phoenix (Becton Dickenson) | Y | Y | Y | N | N | N |
Vitek-2 (BioMerieux) | Y | Y | Y | Y | N | N |
MicroScan (Beckman Coulter) | Y | Y | Y | N | N | N |
Sensititre (Thermo Fisher Scientific) | Y | Y | Y | Y | Y | Y |
Disk (Becton Dickenson) | N | Y | N | N | Y | N |
Disk (Hardy Diagnostics) | Y | Y | Y | Y | Y | Y |
Gradient diffusion (Etest, BioMerieux) | Y | Y | Y | Y | N | (RUO) |
Gradient diffusion (MTS, Liofilchem) | Y | Y | Y | Y | Y | N |
NGP (Selux Diagnostics) | N | Y | Y | Y | N | N |
PhenoTest BC (Accelerate Diagnostics) | N | (RUO) | N | N | N | N |
Antimicrobial | Results | Possible Cause | Next Steps/Resolution |
---|---|---|---|
C/T | C/T–R Ceftazidime–S | Testing error Contamination | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. |
C/T–S ESBL + Carbapenemase − | Expected result | No confirmatory testing necessary | |
C/T–R ESBL + Carbapenemase − | Expected result | No confirmatory testing necessary | |
C/T–S Carbapenemase + | C/T has no activity against carbapenemases, likely testing error. Less common—inactive carbapenemase | Confirm findings to rule out errors. Consider testing for carbapenemase function by performing mCIM or similar test. | |
CZA | CZA–R ESC–S | Testing error Contamination | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. |
CZA–R Carbapenems–S | Testing error Contamination Carbapenemase variants such as KPC-161 | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. If result confirms, perform carbapenemase test and gene for mutations. Consider reporting carbapenems as R if carbapenemase present. | |
CZA–R Serine carbapenemase + | Testing error Contamination Carbapenemase variants such as KPC-161 | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. Evaluate if CZA MIC or disk zone at breakpoint—due to absence of intermediate category, errors may occur. If result confirms, evaluate carbapenemase gene for mutations | |
CZA–S MBL + | Testing error Less common—inactive/low expression of MBL | Confirm findings to rule out errors. Evaluate if CZA MIC or disk zone at breakpoint—due to absence of intermediate category, errors may occur. Consider testing for carbapenemase function by performing mCIM/eCIM or similar test. Some isolates may test at the susceptible breakpoint (MIC of 8 µg/mL). If testing confirms initial findings, consider reporting CZA as R. | |
MEV | MEV–S Meropenem–R at same MIC | Expected result due to breakpoints (Table 2) May indicate presence of low-level carbapenemase, such as OXA-48 | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. Evaluate for carbapenemase presence, by mCIM and/or genotypic method. If carbapenemase +, report both MEV result and carbapenemase, or consider reporting MEV as resistant. If carbapenemase -, report MEV as tested. |
MEV–R Carbapenem–S | Testing error Contamination | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. | |
MEV–R KPC+ | Reduced permeability due to porin mutation combined with overexpression of KPC or co-production of KPC with an OXA-48-like carbapenemase | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. Evaluate for presence of other carbapenemases by genotypic test. May be due to MBL or OXA-48-like enzyme. If results confirmed, report as tested. | |
IMR | IMR–R Carbapenem–S | Testing error Contamination | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. |
IMR–R KPC+ | Reduced permeability due to porin mutation combined with overexpression of KPC Co-expression of MBL Proteus, Providencia and Morganella grp expected phenotype. | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. Evaluate for presence of other carbapenemases by genotypic test. If confirmed, report as tested. | |
FDC | FDC–R ESC–S | Testing error Mutations to iron-uptake pathway | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. Ideally, send isolate to a reference laboratory for FDC testing. |
FDC–R by disk/S by MIC FDC–S by disk/R by MIC | Testing challenges with FDC may lead to discordant results. | Carefully evaluate adherence to AST protocol including inoculum preparation, incuation time, and reading instructions. Confirm iron depletion complete in CA-MHB. Try testing on a different lot/brand of MHA. | |
SUD | SUD–R ESC–S | Testing error β-lactamase variants not inhibited by durlobactam | Repeat AST, check for mixed cultures, uninoculated wells, etc. Often indicates random contamination of test panel. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, C.; Humphries, R. Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory. Antibiotics 2023, 12, 1700. https://doi.org/10.3390/antibiotics12121700
Russo C, Humphries R. Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory. Antibiotics. 2023; 12(12):1700. https://doi.org/10.3390/antibiotics12121700
Chicago/Turabian StyleRusso, Carmella, and Romney Humphries. 2023. "Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory" Antibiotics 12, no. 12: 1700. https://doi.org/10.3390/antibiotics12121700
APA StyleRusso, C., & Humphries, R. (2023). Approaches to Testing Novel β-Lactam and β-Lactam Combination Agents in the Clinical Laboratory. Antibiotics, 12(12), 1700. https://doi.org/10.3390/antibiotics12121700