The Outcome of Antibiotic Overuse before and during the COVID-19 Pandemic in a Tertiary Care Hospital in Oman
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Antibiotic Consumption Analysis
4.2. Microorganism Analysis
4.3. Surveillance of MDRO per Royal Hospital Policy
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655, Erratum in Lancet 2022, 400, 1102. https://doi.org/10.1016/S0140-6736(21)02653-2. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Hays, J.P.; Kemp, A.; Okechukwu, R.; Murugaiyan, J.; Ekwanzala, M.D.; Ruiz Alvarez, M.J.; Paul-Satyaseela, M.; Iwu, C.D.; Balleste-Delpierre, C.; et al. The Potential Impact of the COVID-19 Pandemic on Global Antimicrobial and Biocide Resistance: An AMR Insights Global Perspective. JAC Antimicrob. Resist. 2021, 3, dlab038. [Google Scholar] [CrossRef] [PubMed]
- Venter, H.; Henningsen, M.L.; Begg, S.L. Antimicrobial Resistance in Healthcare, Agriculture and the Environment: The Biochemistry behind the Headlines. Essays Biochem. 2017, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bartoletti, M.; Azap, O.; Barac, A.; Bussini, L.; Ergonul, O.; Krause, R.; Paño-Pardo, J.R.; Power, N.R.; Sibani, M.; Szabo, B.G.; et al. ESCMID COVID-19 living Guidelines: Drug Treatment and Clinical Management. Clin. Microbiol. Infect. 2022, 28, 222–238. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, V.M.; Gandhi, T.N.; Petty, L.A.; Patel, P.K.; Prescott, H.C.; Malani, A.N.; Ratz, D.; McLaughlin, E.; Chopra, V.; Flanders, S.A. Empiric Antibacterial Therapy and Community-onset Bacterial Coinfection in Patients Hospitalized with Coronavirus Disease 2019 (COVID-19): A Multi-hospital Cohort Study. Clin. Infect. Dis. 2021, 72, e533–e541. [Google Scholar] [CrossRef]
- Youngs, J.; Wyncoll, D.; Hopkins, P.; Arnold, A.; Ball, J.; Bicanic, T. Improving Antibiotic Stewardship in COVID-19: Bacterial Co-infection is Less Common than with Influenza. J. Infect. 2020, 81, e55–e57. [Google Scholar] [CrossRef]
- Rabbi, F.; Banfield, L.; Munir, M.; Chagla, Z.; Mayhew, A.; de Souza, R.J. Overprescription of antibiotics for treating hospitalized COVID-19 patients: A systematic review & meta-analysis. Heliyon 2023, 9, e20563. [Google Scholar] [CrossRef]
- Pandak, N.; Khamis, F.; Al Balushi, Z.; Chhetri, S.; Al Lawati, A.; AbouElhamd, H.; Golchinheydari, S.; Sidrah, A.K.; Al Jahwari, S.K.; Al Dowaiki, S. Low Rate of Bacterial Coinfections and Antibiotic Overprescribing during COVID-19 Pandemic. A Retrospective Study from Oman. Oman Med. J. 2023, 38, e525. [Google Scholar] [CrossRef]
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.H.; Dugas, A. The Frequency of Influenza and Bacterial Coinfection: A Systematic Review and Meta-analysis. Influenza Other Respir. Viruses 2016, 10, 394–403. [Google Scholar] [CrossRef]
- Axfors, C.; Schmitt, A.M.; Janiaud, P.; Van’t Hooft, J.; Abd-Elsalam, S.; Abdo, E.F.; Abella, B.S.; Akram, J.; Amaravadi, R.K.; Angus, D.C.; et al. Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nat. Commun. 2021, 12, 2349. [Google Scholar] [CrossRef]
- Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; et al. Profiling Serum Cytokines in COVID-19 Patients Reveals IL-6 and IL-10 are Disease Severity Predictors. Emerg. Microbes Infect. 2020, 9, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Al-Samkari, H.; Karp Leaf, R.S.; Dzik, W.H.; Carlson, J.C.T.; Fogerty, A.E.; Waheed, A.; Goodarzi, K.; Bendapudi, P.K.; Bornikova, L.; Gupta, S.; et al. COVID-19 and Coagulation: Bleeding and Thrombotic Manifestations of SARS-CoV-2 Infection. Blood 2020, 136, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Andrews, A.; Budd, E.L.; Hendrick, A.; Ashiru-Oredope, D.; Beech, E.; Hopkins, S.; Gerver, S.; Muller-Pebody, B.; The Amu COVID-Stakeholder Group. Surveillance of Antibacterial Usage during the COVID-19 Pandemic in England, 2020. Antibiotics 2021, 10, 841. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.S.; Mundra, S. Increasing Consumption of Antibiotics during the COVID-19 Pandemic: Implications for Patient Health and Emerging Anti-Microbial Resistance. Antibiotics 2022, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, G.G.; Ferreira, L.R.; Feliciano, C.S.; Campos Júnior, C.P.; Molina, F.M.R.; Vendruscolo, A.C.S.; Bradan, G.M.A.; Lopes, N.A.P.; Martinez, R.; Bollela, V.R. Pre- and Post-COVID-19 Evaluation of Antimicrobial Susceptibility for Healthcare-Associated Infections in the Intensive Care Unit of a Tertiary Hospital. Rev. Soc. Bras. Med. Trop. 2021, 54, e00902021. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, V.; Panopoulou, M.; Rafailidis, P.; Lemonakis, N.; Lazaridis, G.; Terzi, I.; Papazoglou, D.; Panagopoulos, P. The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections. Pathogens 2023, 12, 780. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, I.C.; Valencia, S.; Pinzon, E.M.; Lesmes, M.C.; Sanchez, M.; Rodriguez, J.; Ochoa, B.; Shewade, H.D.; Edwards, J.K.; Hann, K.; et al. Antibiotic Resistance and Consumption before and during the COVID-19 Pandemic in Valle del Cauca, Colombia. Rev. Panam. Salud Publica 2023, 47, e10. [Google Scholar] [CrossRef]
- Al-Yamani, A.; Khamis, F.; Al-Zakwani, I.; Al-Noomani, H.; Al-Noomani, J.; Al-Abri, S. Patterns of Antimicrobial Prescribing in a Tertiary Care Hospital in Oman. Oman Med. J. 2016, 31, 35–39. [Google Scholar] [CrossRef]
- Bauer, K.A.; Puzniak, L.A.; Yu, K.C.; Klinker, K.P.; Watts, J.A.; Moise, P.A.; Finelli, L.; Ai, C.; Gupta, V. A Multicenter Comparison of Prevalence and Predictors of Antimicrobial Resistance in Hospitalized Patients before and during the Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic. Open Forum Infect. Dis. 2022, 9, ofac537. [Google Scholar] [CrossRef]
- Baym, M.; Lieberman, T.D.; Kelsic, E.D.; Chait, R.; Gross, R.; Yelin, I.; Kishony, R. Spatiotemporal Microbial Evolution on Antibiotic Landscapes. Science 2016, 353, 1147–1151. [Google Scholar] [CrossRef]
- Thomas-Rüddel, D.O.; Schlattmann, P.; Pletz, M.; Kurzai, O.; Bloos, F. Risk Factors for Invasive Candida Infection in Critically Ill Patients: A Systematic Review and Meta-analysis. Chest 2022, 161, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Khamis, F.; Al-Zakwani, I.; Al Naamani, H.; Al Lawati, S.; Pandak, N.; Omar, M.B.; Al Bahrani, M.; Bulushi, Z.A.; Al Khalili, H.; Al Salmi, I.; et al. Clinical Characteristics and Outcomes of the First 63 Adult Patients Hospitalized with COVID-19: An experience from Oman. J. Infect. Public Health 2020, 13, 906–913. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Model List for Essential Medicines, 20th ed.; WHO: Geneva, Switzerland, 2017.
- World Health Organization (WHO), Collaborating Center for Drug Statistics Methodology. Guidelines for ATC Classification and DDD Index. Updates Included in the ATC/DDD Index 2023. Available online: https://www.whocc.no/atcddd/ (accessed on 27 May 2023).
- Directorate General for Disease Surveillance and Control, Ministry of Health. Infection Prevention and Control Policy for Multi-Drug Resistant Organisms (MDROs). Oman. 2019. Available online: https://www.moh.gov.om/ar/1 (accessed on 17 July 2023).
Period Quarter/Year | Admission | Pt on ABX | % | PTZ DDD | PTZ ACI | MER DDD | MER ACI | VANC DDD | VANC ACI | CFT DDD | CFT ACI |
---|---|---|---|---|---|---|---|---|---|---|---|
I/2018 | 16,668 | 916 | 5.5 | 3883 | 38.8 | 1580 | 15.8 | 655 | 6.6 | 2353 | 23.5 |
II/2018 | 15,501 | 809 | 5.2 | 4365 | 43.7 | 3185 | 31.9 | 638 | 6.4 | 1928 | 19.3 |
III/2018 | 15,987 | 864 | 5.4 | 5626 | 56.3 | 1610 | 16.1 | 642 | 6.4 | 1985 | 19.9 |
IV/2018 | 17,360 | 980 | 5.6 | 6275 | 62.8 | 1699 | 17 | 718 | 7.2 | 2148 | 21.5 |
I/2019 | 16,955 | 871 | 5.1 | 3884 | 38.8 | 1154 | 11.5 | 601 | 6 | 1804 | 18 |
II/2019 | 16,192 | 917 | 5.7 | 5540 | 55.4 | 2812 | 28.1 | 669 | 6.7 | 1704 | 17 |
III/2019 | 16,537 | 945 | 5.7 | 5931 | 59.3 | 1399 | 14 | 624 | 6.2 | 1948 | 19.5 |
IV2019 | 17,628 | 1048 | 5.9 | 7231 | 72.3 | 1519 | 15.2 | 729 | 7.3 | 2399 | 24 |
Total pre-COVID-19 | 132,828 | 7350 | 5.53 | 42,735 | 14,958 | 5276 | 16,269 | ||||
Median (IQR) ACI | 56 (41–61) | 16 (14–23) | 7 (6–10) | 20 (19–23) | |||||||
I/2020 | 16,362 | 1204 | 7.4 | 5573 | 55.7 | 1278 | 12.8 | 799 | 8 | 2532 | 25.3 |
II/2020 | 11,743 | 831 | 7.1 | 3777 | 37.8 | 1443 | 14.4 | 739 | 7.4 | 2407 | 24.1 |
III/2020 | 13,665 | 891 | 6.5 | 4947 | 49.5 | 2142 | 21.4 | 1333 | 13.3 | 1882 | 18.8 |
IV/2020 | 14,933 | 886 | 5.9 | 4356 | 43.6 | 1894 | 18.9 | 1116 | 11.2 | 2381 | 23.8 |
I/2021 | 16,001 | 894 | 5.6 | 5588 | 55.9 | 1393 | 13.9 | 879 | 8.8 | 1944 | 19.4 |
II/2021 | 14,545 | 1064 | 7.3 | 5356 | 53.6 | 2176 | 21.8 | 1271 | 12.7 | 3160 | 31.6 |
III/2021 | 15,201 | 1044 | 6.9 | 6865 | 68.7 | 1986 | 19.9 | 1128 | 11.3 | 2446 | 24.5 |
IV/2021 | 16,741 | 1101 | 6.6 | 5283 | 52.8 | 1814 | 18.1 | 980 | 9.8 | 2488 | 24.9 |
Total COVID-19 | 119,191 | 7915 | 6.64 | 41,745 | 14,126 | 8245 | 19,240 | ||||
Median (IQR) ACI | 53 (47–56) | 19 (14–21) | 11 (8–12) | 24 (22–25) | |||||||
p-value | 0.528 | 0.834 | 0.001 | 0.036 |
Period | Pre-COVID-19 | COVID-19 | p-Value | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2019 | 2020 | Median | 2021 | 2022 | Median | |||||||||||||
Quarter | I | II | III | IV | I | II | III | IV | I | II | III | IV | I | II | III | IV | |||
MRSA | 174 | 150 | 173 | 170 | 170 | 154 | 176 | 162 | 170 | 143 | 115 | 117 | 143 | 130 | 147 | 153 | 178 | 143 | 0.016 |
VRE | 4 | 4 | 1 | 3 | 4 | 2 | 3 | 1 | 3 | 2 | 2 | 10 | 7 | 35 | 86 | 227 | 184 | 23 | 0.026 |
C. auris | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 20 | 0 | 36 | 14 | 17 | 28 | 23 | 19 | 10 | 17 | 18 | 0.004 |
Period | Pre-COVID-19 | COVID-19 | p-Value | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2019 | 2020 | Median | 2021 | 2022 | Median | |||||||||||||
Quarter | I | II | III | IV | I | II | III | IV | I | II | III | IV | I | II | III | IV | |||
Sample | Urine culture | ||||||||||||||||||
CRE | 16 | 16 | 10 | 26 | 16 | 18 | 10 | 16 | 16 | 29 | 11 | 22 | 24 | 28 | 31 | 29 | 27 | 28 | 0.011 |
VRE | 0 | 0 | 0 | 1 | 0 | 1 | 2 | 0 | 0 | 2 | 1 | 5 | 3 | 8 | 10 | 38 | 22 | 6.5 | 0.002 |
C. auris | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 6 | 4 | 3 | 1 | 0 | 2 | 0.03 |
Sample | Endotracheal secretion culture | ||||||||||||||||||
ESBL | 9 | 10 | 11 | 6 | 9 | 15 | 5 | 11 | 10 | 7 | 10 | 31 | 39 | 18 | 30 | 32 | 16 | 24 | 0.018 |
Sample | Screening | ||||||||||||||||||
MRSA | 163 | 144 | 153 | 157 | 158 | 147 | 162 | 143 | 155 | 128 | 102 | 98 | 122 | 107 | 124 | 131 | 157 | 123 | 0.004 |
MDRAB | 63 | 58 | 64 | 56 | 52 | 41 | 41 | 26 | 54 | 33 | 15 | 28 | 26 | 17 | 44 | 47 | 42 | 31 | 0.031 |
ESBL | 3 | 2 | 2 | 2 | 2 | 4 | 3 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0.005 |
C. auris | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 15 | 0 | 33 | 14 | 14 | 21 | 18 | 16 | 9 | 16 | 16 | 0.002 |
Piperacillin Tazobactam | Meropenem | Vancomycin | Ceftriaxone | |||||
---|---|---|---|---|---|---|---|---|
Microorganism | rho | p-Value | rho | p-Value | rho | p-Value | rho | p-Value |
MRSA | 0.25 | 0.351 | −0.1 | 0.716 | −0.56 | 0.025 | −0.05 | 0.85 |
CRE | 0.06 | 0.816 | −0.38 | 0.144 | 0.39 | 0.14 | 0.36 | 0.165 |
VRE | −0.16 | 0.565 | 0.32 | 0.229 | 0.58 | 0.017 | 0.18 | 0.495 |
MDR PA | −0.12 | 0.665 | −0.35 | 0.182 | −0.61 | 0.013 | −0.27 | 0.321 |
MDR AB | −0.11 | 0.684 | 0.4 | 0.124 | 0.19 | 0.484 | 0.05 | 0.867 |
ESBL | 0.57 | 0.021 | 0.15 | 0.579 | 0.46 | 0.075 | 0.42 | 0.102 |
C. auris | 0.17 | 0.539 | −0.2 | 0.468 | 0.71 | 0.002 | 0.56 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandak, N.; Al Sidairi, H.; Al-Zakwani, I.; Al Balushi, Z.; Chhetri, S.; Ba’Omar, M.; Al Lawati, S.; Al-Abri, S.S.; Khamis, F. The Outcome of Antibiotic Overuse before and during the COVID-19 Pandemic in a Tertiary Care Hospital in Oman. Antibiotics 2023, 12, 1665. https://doi.org/10.3390/antibiotics12121665
Pandak N, Al Sidairi H, Al-Zakwani I, Al Balushi Z, Chhetri S, Ba’Omar M, Al Lawati S, Al-Abri SS, Khamis F. The Outcome of Antibiotic Overuse before and during the COVID-19 Pandemic in a Tertiary Care Hospital in Oman. Antibiotics. 2023; 12(12):1665. https://doi.org/10.3390/antibiotics12121665
Chicago/Turabian StylePandak, Nenad, Hilal Al Sidairi, Ibrahim Al-Zakwani, Zakariya Al Balushi, Shabnam Chhetri, Muna Ba’Omar, Sultan Al Lawati, Seif S. Al-Abri, and Faryal Khamis. 2023. "The Outcome of Antibiotic Overuse before and during the COVID-19 Pandemic in a Tertiary Care Hospital in Oman" Antibiotics 12, no. 12: 1665. https://doi.org/10.3390/antibiotics12121665
APA StylePandak, N., Al Sidairi, H., Al-Zakwani, I., Al Balushi, Z., Chhetri, S., Ba’Omar, M., Al Lawati, S., Al-Abri, S. S., & Khamis, F. (2023). The Outcome of Antibiotic Overuse before and during the COVID-19 Pandemic in a Tertiary Care Hospital in Oman. Antibiotics, 12(12), 1665. https://doi.org/10.3390/antibiotics12121665