Point Prevalence Survey of Antimicrobial Use and Resistance during the COVID-19 Era among Hospitals in Saudi Arabia and the Implications
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Settings
4.2. Inclusion and Exclusion Criteria
4.3. Data Collection
4.4. Statistical Analysis
4.5. Ethical Approval
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pauwels, I.; Versporten, A.; Drapier, N.; Vlieghe, E.; Goossens, H. Hospital antibiotic prescribing patterns in adult patients according to the WHO Access, Watch and Reserve classification (AWaRe): Results from a worldwide point prevalence survey in 69 countries. J. Antimicrob. Chemother. 2021, 76, 1614–1624. [Google Scholar] [CrossRef] [PubMed]
- Sulis, G.; Sayood, S.; Katukoori, S.; Bollam, N.; George, I.; Yaeger, L.H.; Chavez, M.A.; Tetteh, E.; Yarrabelli, S.; Pulcini, C.; et al. Exposure to WHO AWaRe antibiotics and isolation of multi-drug resistant bacteria: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 1193–1202. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, U.; Zulkarnain, A.I.; Rodríguez-Baño, J.; Kamarudin, N.; Elrggal, M.E.; Elnaem, M.H.; Harun, S.N. Treatments and Predictors of Mortality for Carbapenem-Resistant Gram-Negative Bacilli Infections in Malaysia: A Retrospective Cohort Study. Trop. Med. Infect. Dis. 2022, 7, 415. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Dadgostar, P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Alpert, P.T. Superbugs: Antibiotic resistance is becoming a major public health concern. Home Health Care Manag. Pract. 2017, 29, 130–133. [Google Scholar] [CrossRef]
- Poudel, A.N.; Zhu, S.; Cooper, N.; Little, P.; Tarrant, C.; Hickman, M.; Yao, G. The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0285170. [Google Scholar] [CrossRef]
- Gautam, A. Antimicrobial Resistance: The Next Probable Pandemic. J. Nepal. Med. Assoc. 2022, 60, 225. [Google Scholar] [CrossRef]
- Faidah, H.S. Colistin Use and Its Resistance in Kingdom of Saudi Arabia: A Narrative Review. Adv. Infect. Dis. 2018, 8, 255–261. [Google Scholar] [CrossRef]
- Ameen, L.; Assaggaf, H.; Alsafi, R.; Minshawi, F.; Alghamdi, S.; Alharbi, A.; Qashqari, F.; Makhdoom, H.; Refaat, B.; Alsaif, B.; et al. Analysis of the Clinical Characteristics of COVID-19 Patient Severity Amongst Saudi Hospital Admission. J. Umm Al-Qura Univ. Med. Sci. 2022, 8, 18–23. [Google Scholar]
- Wang, Y.; Wang, Y.; Chen, Y.; Qin, Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J. Med. Virol. 2020, 92, 568–576. [Google Scholar] [CrossRef]
- Elgohary, M.A.; Ali, A.; El-Masry, T.A.; Faidah, H.; Bantun, F.; Elkholy, A.M.; Fahim, J.S.; Elgamal, N.N.; Mohamed, M.E.; Seadawy, M.G.; et al. Development and validation of a predictive scoring system for in-hospital mortality in COVID-19 Egyptian patients: A retrospective study. Sci. Rep. 2022, 12, 22352. [Google Scholar] [CrossRef]
- Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J.J.R. Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology 2020, 296, E15–E25. [Google Scholar] [CrossRef]
- Alzahrani, S.I.; Aljamaan, I.A.; Al-Fakih, E.A. Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions. J. Infect. Public Health 2020, 13, 914–919. [Google Scholar] [CrossRef]
- Al-Harbi, S.K.; Al-Tuwairqi, S.M. Modeling the effect of lockdown and social distancing on the spread of COVID-19 in Saudi Arabia. PLoS ONE 2022, 17, e0265779. [Google Scholar] [CrossRef]
- Sayed, A.A. The progressive public measures of Saudi Arabia to tackle COVID-19 and limit its spread. Int. J. Environ. Res. Public Health 2021, 18, 783. [Google Scholar] [CrossRef]
- Alghamdi, M.; Alotaibi, F.; Ahmed, H.; Alharbi, F.; Bukhari, O.; Youssef, A.-R. Effect of medical education on the knowledge, attitude and compliance regarding infection control measures among dental students in Makkah. J. Umm Al-Qura Univ. Med. Sci. 2021, 7, 14–17. [Google Scholar] [CrossRef]
- Talic, S.; Shah, S.; Wild, H.; Gasevic, D.; Maharaj, A.; Ademi, Z.; Li, X.; Xu, W.; Mesa-Eguiagaray, I.; Rostron, J.; et al. Effectiveness of public health measures in reducing the incidence of COVID-19, SARS-CoV-2 transmission, and COVID-19 mortality: Systematic review and meta-analysis. BMJ 2021, 375, e068302. [Google Scholar] [CrossRef]
- Nurunnabi, M. The preventive strategies of COVID-19 pandemic in Saudi Arabia. J. Microbiol. Immunol. Infect. 2021, 54, 127–128. [Google Scholar] [CrossRef]
- Saleem, Z.; Haseeb, A.; Godman, B.; Batool, N.; Altaf, U.; Ahsan, U.; Khan, F.U.; Mustafa, Z.U.; Nadeem, M.U.; Farrukh, M.J.; et al. Point prevalence survey of antimicrobial use during the COVID-19 pandemic among different hospitals in Pakistan: Findings and implications. Antibiotics 2022, 12, 70. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef] [PubMed]
- Alshaikh, F.S.; Godman, B.; Sindi, O.N.; Seaton, R.A.; Kurdi, A. Prevalence of bacterial coinfection and patterns of antibiotics prescribing in patients with COVID-19: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272375. [Google Scholar] [CrossRef] [PubMed]
- Rawson, T.M.; Ming, D.; Ahmad, R.; Moore, L.S.; Holmes, A.H. Antimicrobial use, drug-resistant infections and COVID. Nat. Rev. Microbiol. 2020, 18, 409–410. [Google Scholar] [CrossRef] [PubMed]
- Ukuhor, H.O. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J. Infect. Public Health 2021, 14, 53–60. [Google Scholar] [CrossRef]
- Haseeb, A.; Saleem, Z.; Maqadmi, A.F.; Allehyani, R.A.; Mahrous, A.J.; Elrggal, M.E.; Kamran, S.H.; AlGethamy, M.; Naji, A.S.; AlQarni, A.; et al. Ongoing strategies to improve antimicrobial utilization in hospitals across the Middle East and North Africa (MENA): Findings and implications. Antibiotics 2023, 12, 827. [Google Scholar] [CrossRef]
- Saleem, Z.; Hassali, M.A.; Godman, B.; Versporten, A.; Hashmi, F.K.; Saeed, H.; Saleem, F.; Salman, M.; Rehman, I.U.; Khan, T.H. Point prevalence surveys of antimicrobial use: A systematic review and the implications. Expert Rev. Anti. Infect. Ther. 2020, 18, 897–910. [Google Scholar] [CrossRef]
- Alsaedi, A.A.; El-Saed, A.; Althaqafi, A.; Bhutta, M.J.; Abukhzam, B.; Alshamrani, M. Antimicrobial therapy, resistance, and appropriateness in healthcare-associated and community-associated infections; a point prevalence survey. J. Infect. Chemother. 2022, 28, 1358–1363. [Google Scholar] [CrossRef]
- Haseeb, A.; Faidah, H.S.; Algethamy, M.; Alghamdi, S.; Alhazmi, G.A.; Alshomrani, A.O.; Alqethami, B.R.; Alotibi, H.S.; Almutiri, M.Z.; Almuqati, K.S.; et al. Antimicrobial Usage and Resistance in Makkah Region Hospitals: A Regional Point Prevalence Survey of Public Hospitals. Int. J. Environ. Res. Public Health 2022, 19, 254. [Google Scholar] [CrossRef]
- Al Matar, M.; Enani, M.; Binsaleh, G.; Roushdy, H.; Alokaili, D.; Al Bannai, A.; Khidir, Y.; Al-Abdely, H. Point prevalence survey of antibiotic use in 26 Saudi hospitals. J. Infect. Public Health 2019, 12, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Yaser, M.; Aljabri, A.K.; Alsaadi, F.N.; Rizk, L.M.; Alahmadi, R.Y.; Aljuhani, S.R.; Aljohani, S.H.; Al Thagfan, S.S.; Alamuddin, W.A.; Alonazie, W.S.; et al. A prospective antibiotic point prevalence survey in two primary referral hospitals during and after pilgrims stay in Madinah, Saudi Arabia. Trop. J. Pharm. Res. 2020, 19, 391–399. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Al-Homoud, A.H. Pattern of systemic antibiotic use among hospitalized patients in a general hospital in Saudi Arabia. Travel. Med. Infect. Dis. 2020, 36, 101605. [Google Scholar] [CrossRef]
- Alakhali, K.M.; Mohammad, A.A.S. Prescribing pattern of antibiotics in pediatric patients in the Jazan Region, Kingdom of Saudi Arabia. RGUHS J. Pharm. Sci. 2014, 4, 120–124. [Google Scholar] [CrossRef]
- Kurdi, A.; Hasan, A.J.; Baker, K.I.; Seaton, R.A.; Ramzi, Z.S.; Sneddon, J.; Godman, B. A multicentre point prevalence survey of hospital antibiotic prescribing and quality indices in the Kurdistan regional government of Northern Iraq: The need for urgent action. Expert Rev. Anti. Infect. Ther. 2021, 19, 805–814. [Google Scholar] [CrossRef]
- Arif, S.; Sadeeqa, S.; Saleem, Z. Patterns of Antimicrobial Use in Hospitalized Children: A Repeated Point Prevalence Survey From Pakistan. J. Pediatr. Infect. Dis. Soc. 2021, 10, 970–974. [Google Scholar] [CrossRef]
- Versporten, A.; Zarb, P.; Caniaux, I.; Gros, M.-F.; Drapier, N.; Miller, M.; Jarlier, V.; Nathwani, D.; Goossens, H.; Koraqi, A.J.T.L.G.H.; et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: Results of an internet-based global point prevalence survey. Lancet Glob. Health 2018, 6, e619–e2938. [Google Scholar] [CrossRef]
- Hsia, Y.; Lee, B.R.; Versporten, A.; Yang, Y.; Bielicki, J.; Jackson, C.; Newland, J.; Goossens, H.; Magrini, N.; Sharland, M.; et al. Use of the WHO Access, Watch, and Reserve classification to define patterns of hospital antibiotic use (AWaRe): An analysis of paediatric survey data from 56 countries. Lancet Glob. Health 2019, 7, e861–e871. [Google Scholar] [CrossRef]
- Anand Paramadhas, B.D.; Tiroyakgosi, C.; Mpinda-Joseph, P.; Morokotso, M.; Matome, M.; Sinkala, F.; Gaolebe, M.; Malone, B.; Molosiwa, E.; Shanmugam, M.; et al. Point prevalence study of antimicrobial use among hospitals across Botswana; findings and implications. Expert Rev. Anti. Infect. Ther. 2019, 17, 535–546. [Google Scholar] [CrossRef]
- Alanazi, M.Q.; Salam, M.; Alqahtani, F.Y.; Ahmed, A.E.; Alenaze, A.Q.; Al-Jeraisy, M.; Al Salamah, M.; Aleanizy, F.S.; Al Daham, D.; Al Obaidy, S.J.I.; et al. An evaluation of antibiotics prescribing patterns in the emergency department of a tertiary care hospital in Saudi Arabia. Infect. Drug Resist. 2019, 12, 3241–3247. [Google Scholar] [CrossRef]
- Chowdhury, K.; Haque, M.; Nusrat, N.; Adnan, N.; Islam, S.; Lutfor, A.B.; Begum, D.; Rabbany, A.; Karim, E.; Malek, A.; et al. Management of Children Admitted to Hospitals across Bangladesh with Suspected or Confirmed COVID-19 and the Implications for the Future: A Nationwide Cross-Sectional Study. Antibiotics 2022, 11, 105. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Haque, M.; Shetty, A.; Choudhary, S.; Bhatt, R.; Sinha, V.; Manohar, B.; Chowdhury, K.; Nusrat, N.; Jahan, N.; et al. Characteristics and Management of Children with Suspected COVID-19 Admitted to Hospitals in India: Implications for Future Care. Cureus 2022, 14, e27230. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, T.G.; Robertson, J.; van den Ham, H.A.; Iwamoto, K.; Bak Pedersen, H.; Mantel-Teeuwisse, A.K. Assessing the impact of law enforcement to reduce over-the-counter (OTC) sales of antibiotics in low- and middle-income countries: A systematic literature review. BMC Health Serv. Res. 2019, 19, 536. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tang, Y.; Liu, C.; Liu, J.; Cui, Y.; Zhang, X. Effects of restrictive-prescribing stewardship on antibiotic consumption in primary care in China: An interrupted time series analysis, 2012. Antimicrob. Resist. Infect. Control 2020, 9, 159. [Google Scholar] [CrossRef]
- Sulis, G.; Batomen, B.; Kotwani, A.; Pai, M.; Gandra, S. Sales of antibiotics and hydroxychloroquine in India during the COVID-19 epidemic: An interrupted time series analysis. PLoS Med. 2021, 18, e1003682. [Google Scholar] [CrossRef]
- Zanichelli, V.; Sharland, M.; Cappello, B.; Moja, L.; Getahun, H.; Pessoa-Silva, C.; Sati, H.; van Weezenbeek, C.; Balkhy, H.; Simão, M.; et al. The WHO AWaRe (Access, Watch, Reserve) antibiotic book and prevention of antimicrobial resistance. Bull. World Health Organ. 2023, 101, 290–296. [Google Scholar] [CrossRef]
- Sharland, M.; Zanichelli, V.; Ombajo, L.A.; Bazira, J.; Cappello, B.; Chitatanga, R.; Chuki, P.; Gandra, S.; Getahun, H.; Harbarth, S.; et al. The WHO essential medicines list AWaRe book: From a list to a quality improvement system. Clin. Microbiol. Infect. 2022, 28, 1533–1535. [Google Scholar] [CrossRef]
- Sharland, M.; Gandra, S.; Huttner, B.; Moja, L.; Pulcini, C.; Zeng, M.; Mendelson, M.; Cappello, B.; Cooke, G.; Magrini, N.; et al. Encouraging AWaRe-ness and discouraging inappropriate antibiotic use-the new 2019 Essential Medicines List becomes a global antibiotic stewardship tool. Lancet Infect Dis. 2019, 19, 1278–1280. [Google Scholar] [CrossRef]
- Sulis, G.; Adam, P.; Nafade, V.; Gore, G.; Daniels, B.; Daftary, A.; Das, J.; Gandra, S.; Pai, M. Antibiotic prescription practices in primary care in low-and middle-income countries: A systematic review and meta-analysis. PLoS Med. 2020, 17, e1003139. [Google Scholar] [CrossRef]
- Alyamani, E.J.; Khiyami, A.M.; Booq, R.Y.; Majrashi, M.A.; Bahwerth, F.S.; Rechkina, E. The occurrence of ESBL-producing Escherichia coli carrying aminoglycoside resistance genes in urinary tract infections in Saudi Arabia. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 1–13. [Google Scholar] [CrossRef]
- Mutair, A.A.; Alhumaid, S.; Alawi, Z.A.; Zaidi, A.R.Z.; Alzahrani, A.J.; Al-Tawfiq, J.A.; Al-Shammari, H.; Rabaan, A.A.; Khojah, O.; Al-Omari, A. Five-year resistance trends in pathogens causing healthcare-associated infections at a multi-hospital healthcare system in Saudi Arabia, 2015. J. Glob. Antimicrob. Resist. 2021, 25, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Aloraifi, R.I.; Alharthi, A.F.; Almefleh, A.A.; Alamri, A.H.; Alobud, A.S.; Bawazeer, R.A.; Alswaji, A.A.; Alalwan, B.; Aldriwesh, M.G.; Al Johani, S.M.; et al. Prevalence of Carbapenem Non-susceptible Gram-Negative Bacteria at Tertiary Care Hospitals in Saudi Arabia. Cureus 2023, 15, e33767. [Google Scholar] [CrossRef] [PubMed]
- Rizk, N.A.; Moghnieh, R.; Haddad, N.; Rebeiz, M.-C.; Zeenny, R.M.; Hindy, J.-R.; Orlando, G.; Kanj, S.S. Challenges to antimicrobial stewardship in the countries of the Arab League: Concerns of worsening resistance during the COVID-19 pandemic and proposed solutions. Antibiotics 2021, 10, 1320. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, D.; Varghese, D.; Stephens, J.; Ansari, W.; Martin, S.; Charbonneau, C. Value of hospital antimicrobial stewardship programs [ASPs]: A systematic review. Antimicrob. Resist. Infect. Control 2019, 8, 1–13. [Google Scholar] [CrossRef]
- Charani, E.; Holmes, A.J.A. Antibiotic stewardship—Twenty years in the making. Antibiotics 2019, 8, 7. [Google Scholar] [CrossRef]
- Cox, J.; Vlieghe, E.; Mendelson, M.; Wertheim, H.; Ndegwa, L.; Villegas, M.; Gould, I.; Hara, G.L. Antibiotic stewardship in low-and middle-income countries: The same but different? Clin. Microbiol. Infect. 2017, 23, 812–818. [Google Scholar] [CrossRef]
- Alawi, M.M.; Darwesh, B.M. A stepwise introduction of a successful antimicrobial stewardship program: Experience from a tertiary care university hospital in Western, Saudi Arabia. Saudi Med. J. 2016, 37, 1350. [Google Scholar] [CrossRef]
- Alghamdi, S.; Berrou, I.; Bajnaid, E.; Aslanpour, Z.; Haseeb, A.; Hammad, M.A.; Shebl, N. Antimicrobial Stewardship Program Implementation in a Saudi Medical City: An Exploratory Case Study. Antibiotics 2021, 10, 280. [Google Scholar] [CrossRef]
- Al Salman, J.; Al Dabal, L.; Bassetti, M.; Alfouzan, W.A.; Al Maslamani, M.; Alraddadi, B.; Elhoufi, A.; Khamis, F.; Mokkadas, E.; Romany, I.; et al. Promoting cross-regional collaboration in antimicrobial stewardship: Findings of an infectious diseases working group survey in Arab countries of the Middle East. J. Infect. Public Health 2021, 14, 978–984. [Google Scholar] [CrossRef]
- Torumkuney, D.; Dolgum, S.; van Hasselt, J.; Abdullah, W.; Keles, N. Country data on AMR in Saudi Arabia in the context of community-acquired respiratory tract infections: Links between antibiotic susceptibility, local and international antibiotic prescribing guidelines, access to medicine and clinical outcome. J. Antimicrob. Chemother. 2022, 77 (Suppl. S1), i70–i76. [Google Scholar] [CrossRef]
- WHO. Living Guidance for Clinical Management of COVID-19. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 6 June 2022).
- Saleem, Z.; Godman, B.; Cook, A.; Khan, M.A.; Campbell, S.M.; Seaton, R.A.; Siachalinga, L.; Haseeb, A.; Amir, A.; Kurdi, A.; et al. Ongoing Efforts to Improve Antimicrobial Utilization in Hospitals among African Countries and Implications for the Future. Antibiotics 2022, 11, 1824. [Google Scholar] [CrossRef] [PubMed]
- Hussein, R.R.; Shaman, M.B.; Shaaban, A.H.; Fahmy, A.M.; Sofy, M.R.; Lattyak, E.A.; Abuelhana, A.; Naguib, I.A.; Ashour, A.M.; Aldeyab, M.A.; et al. Antibiotic consumption in hospitals during COVID-19 pandemic: A comparative study. J. Infect. Dev. Ctries 2022, 16, 1679–1686. [Google Scholar] [CrossRef] [PubMed]
- Siachalinga, L.; Mufwambi, W.; Lee, I.H. Impact of antimicrobial stewardship interventions to improve antibiotic prescribing for hospital inpatients in Africa: A systematic review and meta-analysis. J. Hosp. Infect. 2022, 129, 124–143. [Google Scholar] [CrossRef] [PubMed]
- Haseeb, A.; Faidah, H.S.; Al-Gethamy, M.; Iqbal, M.S.; Barnawi, A.M.; Elahe, S.S.; Bukhari, D.N.; Noor Al-Sulaimani, T.M.; Fadaaq, M.; Alghamdi, S.; et al. Evaluation of a Multidisciplinary Antimicrobial Stewardship Program in a Saudi Critical Care Unit: A Quasi-Experimental Study. Front. Pharmacol. 2021, 11, 2222. [Google Scholar] [CrossRef]
- Almeleebia, T.M.; Alhifany, A.A.; Almutairi, F.; Alshibani, M.; Alhossan, A.M. Regulating antimicrobial sales in Saudi Arabia: Achievements and challenges. Int. J. Clin. Pract. 2021, 75, e13833. [Google Scholar] [CrossRef]
- Alshareef, H.; Alfahad, W.; Albaadani, A.; Alyazid, H.; Talib, R.B. Impact of antibiotic de-escalation on hospitalized patients with urinary tract infections: A retrospective cohort single center study. J. Infect. Public Health 2020, 13, 985–990. [Google Scholar] [CrossRef]
- Kingdom of Saudi Arabia. Kingdom Saudi Arabia—National Action Plan on Combating Antimicrobial Resistance. 2017. Available online: https://faolex.fao.org/docs/pdf/sau171813.pdf (accessed on 20 May 2023).
- Xu, K.; Wang, Z.; Qin, M.; Gao, Y.; Luo, N.; Xie, W.; Zou, Y.; Wang, J.; Ma, X. A systematic review and meta-analysis of the effectiveness and safety of COVID-19 vaccination in older adults. Front. Immunol. 2023, 14, 1113156. [Google Scholar] [CrossRef]
- Wang, K.; Wang, L.; Li, M.; Xie, B.; He, L.; Wang, M.; Zhang, R.; Hou, N.; Zhang, Y.; Jia, F. Real-Word Effectiveness of Global COVID-19 Vaccines Against SARS-CoV-2 Variants: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 820544. [Google Scholar] [CrossRef]
- Sadeghalvad, M.; Mansourabadi, A.H.; Noori, M.; Nejadghaderi, S.A.; Masoomikarimi, M.; Alimohammadi, M.; Rezaei, N. Recent developments in SARS-CoV-2 vaccines: A systematic review of the current studies. Rev. Med. Virol. 2023, 33, e2359. [Google Scholar] [CrossRef]
Characteristics | N | %, Range and Mean |
---|---|---|
Total beds (number) | 930 | |
Hospitalized patients | 897 | |
Number of treated patients and percentage | 518 (57.7%) | |
Number of prescribed antibiotics | 982 | |
Number of antibiotics per patient (median) | 2 | Range: 1–6; Mean: 1.9 |
Gender | ||
Male | 260 | 50.2% |
Female | 258 | 49.8% |
Age (median) | 33 years | Range: 1 day–97 years; Mean: 34.3 years |
Weight (median) | 65 kg | Range: 2–165 kg; Mean: 55.7 kg |
Length of Hospitalization (median) | 7 days | Range: 1–30 days; Mean: 10.8 days |
No. of Antibiotics | ||
1 | 244 | 47.11% |
2 | 164 | 31.75% |
>2 | 110 | 21.14% |
Comorbidities | 164 | 31.7% |
Immunosuppressant use | 28 | 5.4% |
Surgical procedures | 156 | 30.1% |
Catheterization | ||
Peripheral | 216 | 41.7% |
Central | 66 | 12.7% |
Urinary | 42 | 8.1% |
Intubation | ||
Nasogastric tube | 62 | 12.0% |
Endotracheal tube | 18 | 3.5% |
COVID-19 | ||
Yes | 86 | 16.6% |
No | 432 | 83.4% |
Parameters | N | % |
---|---|---|
Culture Reports | 174 | 36.5 |
Sample | ||
Blood | 116 | 22.4 |
CSF | 6 | 1.2 |
Sputum | 8 | 1.5 |
Urine | 24 | 4.6 |
Wound swab | 20 | 3.9 |
Resistance Microbes | ||
Carbapenem-resistant nonfermenter Gram-negative | 20 | 3.9 |
ESBL-producing nonfermenter Gram-negative bacilli | 8 | 1.6 |
3rd generation cephalosporin-resistant | 22 | 4.2 |
Carbapenem-resistant Enterobacteriaceae | 10 | 2.0 |
Vancomycin-resistant Enterococci (VRE) | 6 | 1.2 |
Targeted treatment against other MDR organisms | 16 | 3.1 |
ESBL-producing enterobacteria | 12 | 2.4 |
Methicillin-resistant Staphylococcus aureus (MRSA) | 12 | 2.4 |
Ceftazidime/avibactam resistance | 2 | 0.4 |
Type of Infection | ||
Community-acquired infection | 318 | 61.4 |
Hospital-acquired infection | 158 | 30.5 |
Surgical/medical prophylaxis | 42 | 8.1 |
Antibiotics | Total | Community-Acquired Infection | Hospital-Acquired Infection | |||
---|---|---|---|---|---|---|
N | % | N | % | N | % | |
Ceftriaxone (W) | 136 | 13.91 | 98 | 16.4 | 28 | 8.5 |
Piperacillin/Tazobactam (W) | 122 | 12.47 | 78 | 13.1 | 40 | 12.1 |
Vancomycin (W) | 106 | 10.84 | 48 | 8.1 | 56 | 17.11 |
Meropenem (W) | 82 | 8.38 | 38 | 6.4 | 44 | 13.3 |
Cefazolin (A) | 74 | 7.57 | 38 | 6.4 | 22 | 6.7 |
Ampicillin (A) | 74 | 7.57 | 32 | 5.4 | 36 | 10.9 |
Gentamicin (A) | 44 | 4.50 | 14 | 2.3 | 26 | 7.9 |
ATT (W) | 42 | 4.29 | 32 | 5.4 | 10 | 3.1 |
Metronidazole (A) | 36 | 3.68 | 30 | 5.0 | 6 | 1.8 |
Co-amoxiclav (A) | 26 | 2.66 | 18 | 3.0 | 6 | 1.8 |
Ceftazidime (W) | 26 | 2.66 | 18 | 3.0 | 6 | 1.8 |
Clindamycin (A) | 24 | 2.45 | 20 | 3.4 | 2 | 0.6 |
Ciprofloxacin (W) | 22 | 2.25 | 16 | 2.7 | 6 | 1.8 |
Azithromycin (W) | 20 | 2.04 | 14 | 2.3 | 6 | 1.8 |
Cefuroxime (W) | 18 | 1.84 | 12 | 2.0 | 6 | 1.8 |
Cefotaxime (W) | 18 | 1.84 | 12 | 2.0 | 6 | 1.8 |
Levofloxacin (W) | 16 | 1.64 | 14 | 2.3 | 2 | 0.6 |
Amikacin (A) | 14 | 1.43 | 6 | 1.0 | 8 | 2.4 |
Cefepime (W) | 14 | 1.43 | 8 | 1.3 | 2 | 0.6 |
Colistin (R) | 14 | 1.43 | 12 | 2.0 | 2 | 0.6 |
Miscellaneous | 54 | 5.52 | 38 | 6.4 | 10 | 3.1 |
Total | 982 | 100 | 596 | 100 | 330 | 100 |
Antibiotics | Total | COVID-19 | Non COVID-19 | |||
---|---|---|---|---|---|---|
N | % | N | % | N | % | |
Ceftriaxone (W) | 136 | 13.91 | 20 | 10.75 | 116 | 14.57 |
Piperacillin/Tazobactam (W) | 122 | 12.47 | 34 | 18.28 | 88 | 11.06 |
Vancomycin (W) | 106 | 10.84 | 20 | 10.75 | 86 | 10.80 |
Meropenem (W) | 82 | 8.38 | 20 | 10.75 | 62 | 7.79 |
Cefazolin (A) | 74 | 7.57 | 4 | 2.15 | 70 | 8.79 |
Ampicillin (A) | 74 | 7.57 | 6 | 3.23 | 68 | 8.54 |
Gentamicin (A) | 44 | 4.50 | 2 | 1.08 | 42 | 5.28 |
ATT (W) | 42 | 4.29 | 8 | 4.30 | 34 | 4.27 |
Metronidazole (A) | 36 | 3.68 | 6 | 3.23 | 30 | 3.77 |
Co-amoxiclav (A) | 26 | 2.66 | 2 | 1.08 | 24 | 3.02 |
Ceftazidime (W) | 26 | 2.66 | 4 | 2.15 | 22 | 2.76 |
Clindamycin (A) | 24 | 2.45 | 6 | 3.23 | 18 | 2.26 |
Ciprofloxacin (W) | 22 | 2.25 | 0 | 0.00 | 22 | 2.76 |
Azithromycin (W) | 20 | 2.04 | 16 | 8.60 | 4 | 0.50 |
Cefuroxime (W) | 18 | 1.84 | 0 | 0.00 | 18 | 2.26 |
Cefotaxime (W) | 18 | 1.84 | 4 | 2.15 | 14 | 1.76 |
Levofloxacin (W) | 16 | 1.64 | 8 | 4.30 | 8 | 1.01 |
Amikacin (A) | 14 | 1.43 | 2 | 1.08 | 12 | 1.51 |
Cefepime (W) | 14 | 1.43 | 4 | 2.15 | 10 | 1.26 |
Colistin (R) | 14 | 1.43 | 2 | 1.08 | 12 | 1.51 |
Miscellaneous | 54 | 5.52 | 18 | 9.68 | 36 | 4.52 |
Total | 982 | 100 | 186 | 100 | 796 | 100 |
Antibiotics | Blood | RTI | SSTI | GIT | UTI | CNS | CVS | OBGY |
---|---|---|---|---|---|---|---|---|
Ceftriaxone (W) | 16 | 44 | 10 | 26 | 12 | 20 | 6 | 0 |
Piperacillin/Tazobactam (W) | 38 | 24 | 24 | 14 | 10 | 4 | 2 | 2 |
Vancomycin (W) | 38 | 14 | 10 | 6 | 10 | 12 | 4 | 2 |
Meropenem (W) | 30 | 14 | 6 | 4 | 12 | 4 | 2 | 4 |
Cefazolin (A) | 8 | 6 | 24 | 10 | 8 | 2 | 2 | 6 |
Ampicillin (A) | 40 | 18 | 6 | 6 | 0 | 2 | 0 | 2 |
Gentamicin (A) | 28 | 6 | 4 | 0 | 2 | 2 | 0 | 2 |
ATT (W) | 0 | 42 | 0 | 0 | 0 | 0 | 0 | 0 |
Metronidazole (A) | 6 | 2 | 8 | 18 | 2 | 0 | 0 | 0 |
Co-amoxiclav (A) | 4 | 0 | 14 | 4 | 2 | 0 | 0 | 0 |
Ceftazidime (W) | 14 | 2 | 4 | 0 | 4 | 2 | 0 | 0 |
Clindamycin (A) | 2 | 4 | 8 | 2 | 2 | 6 | 0 | 0 |
Ciprofloxacin (W) | 8 | 0 | 4 | 0 | 2 | 4 | 2 | 2 |
Azithromycin (W) | 4 | 12 | 2 | 0 | 0 | 0 | 0 | 2 |
Cefuroxime (W) | 6 | 2 | 2 | 8 | 0 | 0 | 0 | 0 |
Cefotaxime (W) | 6 | 6 | 4 | 0 | 0 | 2 | 0 | 0 |
Levofloxacin (W) | 4 | 10 | 0 | 0 | 0 | 2 | 0 | 0 |
Amikacin (A) | 6 | 0 | 0 | 2 | 2 | 0 | 0 | 0 |
Cefepime (W) | 0 | 8 | 4 | 0 | 0 | 0 | 0 | 2 |
Colistin (R) | 2 | 0 | 6 | 0 | 2 | 0 | 0 | 2 |
Total | 260 | 214 | 140 | 100 | 70 | 62 | 18 | 26 |
Organ System | N | Antibiotic 1 | N | Antibiotic 2 | N | Antibiotic 3 | N |
---|---|---|---|---|---|---|---|
Blood | 120 | Ampicillin (A) | 40 | Piperacillin/Tazobactam (W) | 38 | Vancomycin (W) | 38 |
RTI | 114 | Ceftriaxone (W) | 44 | ATT (W) | 42 | Piperacillin/Tazobactam (W) | 24 |
SSTI | 86 | Cefazolin (A) | 24 | Piperacillin/Tazobactam (W) | 24 | Co-amoxiclav (A) | 14 |
GIT | 64 | Ceftriaxone (W) | 26 | Metronidazole (A) | 18 | Piperacillin/Tazobactam (W) | 14 |
UTI | 40 | Meropenem (W) | 12 | Ceftriaxone (W) | 12 | Piperacillin/Tazobactam (W) | 10 |
CNS | 38 | Ceftriaxone (W) | 20 | Vancomycin (W) | 12 | Clindamycin (A) | 8 |
OBGY | 18 | Cefazolin (A) | 6 | Meropenem (W) | 4 | Piperacillin/Tazobactam (W) | 2 |
CVS | 14 | Ceftriaxone (W) | 6 | Vancomycin (W) | 4 | Cefazolin (A) | 2 |
Others | 24 | Vancomycin(W) | 10 | Cefazolin (A) | 8 | Meropenem (W) | 6 |
Total | 518 | 188 | 162 | 118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haseeb, A.; Abuhussain, S.S.A.; Alghamdi, S.; Bahshwan, S.M.; Mahrous, A.J.; Alzahrani, Y.A.; Alzahrani, A.F.; AlQarni, A.; AlGethamy, M.; Naji, A.S.; et al. Point Prevalence Survey of Antimicrobial Use and Resistance during the COVID-19 Era among Hospitals in Saudi Arabia and the Implications. Antibiotics 2023, 12, 1609. https://doi.org/10.3390/antibiotics12111609
Haseeb A, Abuhussain SSA, Alghamdi S, Bahshwan SM, Mahrous AJ, Alzahrani YA, Alzahrani AF, AlQarni A, AlGethamy M, Naji AS, et al. Point Prevalence Survey of Antimicrobial Use and Resistance during the COVID-19 Era among Hospitals in Saudi Arabia and the Implications. Antibiotics. 2023; 12(11):1609. https://doi.org/10.3390/antibiotics12111609
Chicago/Turabian StyleHaseeb, Abdul, Safa S. Almarzoky Abuhussain, Saleh Alghamdi, Shahad M. Bahshwan, Ahmad J. Mahrous, Yazeed A. Alzahrani, Albaraa Faraj Alzahrani, Abdullmoin AlQarni, Manal AlGethamy, Asem Saleh Naji, and et al. 2023. "Point Prevalence Survey of Antimicrobial Use and Resistance during the COVID-19 Era among Hospitals in Saudi Arabia and the Implications" Antibiotics 12, no. 11: 1609. https://doi.org/10.3390/antibiotics12111609
APA StyleHaseeb, A., Abuhussain, S. S. A., Alghamdi, S., Bahshwan, S. M., Mahrous, A. J., Alzahrani, Y. A., Alzahrani, A. F., AlQarni, A., AlGethamy, M., Naji, A. S., Khogeer, A. A. O., Iqbal, M. S., Godman, B., & Saleem, Z. (2023). Point Prevalence Survey of Antimicrobial Use and Resistance during the COVID-19 Era among Hospitals in Saudi Arabia and the Implications. Antibiotics, 12(11), 1609. https://doi.org/10.3390/antibiotics12111609