Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Data Collection
4.3. Meropenem Administration and Sampling Procedure
4.4. Relationship between Meropenem Aggressive PK/PD Target and Microbiological Outcome
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angus, D.C.; van der Poll, T. Severe Sepsis and Septic Shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- MacVane, S.H. Antimicrobial Resistance in the Intensive Care Unit: A Focus on Gram-Negative Bacterial Infections. J. Intensive Care Med. 2017, 32, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Antimicrobial Susceptibility of Gram-Negative Organisms Isolated from Patients Hospitalized in Intensive Care Units in United States and European Hospitals (2009–2011). Diagn. Microbiol. Infect. Dis. 2014, 78, 443–448. [Google Scholar] [CrossRef]
- Martín-Loeches, I.; Diaz, E.; Vallés, J. Risks for Multidrug-Resistant Pathogens in the ICU. Curr. Opin. Crit. Care 2014, 20, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, 10–1128. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas Aeruginosa with Difficult-to-Treat Resistance (DTR-P. Aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter Baumannii, and Stenotrophomonas Maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- ECDC Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data (accessed on 25 August 2023).
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell’Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics 2021, 10, 1311. [Google Scholar] [CrossRef]
- Alshaer, M.H.; Maranchick, N.; Alexander, K.M.; Manigaba, K.; Shoulders, B.R.; Felton, T.W.; Mathew, S.K.; Peloquin, C.A. Beta-Lactam Target Attainment and Associated Outcomes in Patients with Bloodstream Infections. Int. J. Antimicrob. Agents 2023, 61, 106727. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.A.J.; Lameire, N.H.; Vanholder, R.C.; Benoit, D.D.; Decruyenaere, J.M.A.; Colardyn, F.A. Acute Renal Failure in Patients with Sepsis in a Surgical ICU: Predictive Factors, Incidence, Comorbidity, and Outcome. J. Am. Soc. Nephrol. 2003, 14, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute Renal Failure in Critically Ill Patients: A Multinational, Multicenter Study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Pea, F. Antimicrobial Dose Reduction in Continuous Renal Replacement Therapy: Myth or Real Need? A Practical Approach for Guiding Dose Optimization of Novel Antibiotics. Clin. Pharmacokinet 2021, 60, 1271–1289. [Google Scholar] [CrossRef]
- Hoff, B.M.; Maker, J.H.; Dager, W.E.; Heintz, B.H. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann. Pharmacother 2020, 54, 43–55. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Xia, Y.; Chu, Y.; Zhong, H.; Li, J.; Liang, P.; Bu, Y.; Zhao, R.; Liao, Y.; et al. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front. Pharmacol. 2020, 11, 786. [Google Scholar] [CrossRef]
- Gatti, M.; Cojutti, P.G.; Bartoletti, M.; Tonetti, T.; Bianchini, A.; Ramirez, S.; Pizzilli, G.; Ambretti, S.; Giannella, M.; Mancini, R.; et al. Expert Clinical Pharmacological Advice May Make an Antimicrobial TDM Program for Emerging Candidates More Clinically Useful in Tailoring Therapy of Critically Ill Patients. Crit. Care 2022, 26, 178. [Google Scholar] [CrossRef]
- Peng, Y.; Cheng, Z.; Xie, F. Population Pharmacokinetic Meta-Analysis and Dosing Recommendation for Meropenem in Critically Ill Patients Receiving Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2022, 66, e0082222. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.S.; Chung, K.C.; Gill, M.A. Pharmacokinetics of Meropenem in Animals, Healthy Volunteers, and Patients. Clin. Infect. Dis. 1997, 24 (Suppl. 2), S249–S255. [Google Scholar] [CrossRef] [PubMed]
- Petersson, J.; Giske, C.G.; Eliasson, E. Poor Correlation between Meropenem and Piperacillin Plasma Concentrations and Delivered Dose of Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2021, 65, e02029-20. [Google Scholar] [CrossRef] [PubMed]
- Jamal, J.-A.; Udy, A.A.; Lipman, J.; Roberts, J.A. The Impact of Variation in Renal Replacement Therapy Settings on Piperacillin, Meropenem, and Vancomycin Drug Clearance in the Critically Ill: An Analysis of Published Literature and Dosing Regimens*. Crit. Care Med. 2014, 42, 1640–1650. [Google Scholar] [CrossRef]
- Roberts, D.M.; Liu, X.; Roberts, J.A.; Nair, P.; Cole, L.; Roberts, M.S.; Lipman, J.; Bellomo, R. RENAL Replacement Therapy Study Investigators A Multicenter Study on the Effect of Continuous Hemodiafiltration Intensity on Antibiotic Pharmacokinetics. Crit. Care 2015, 19, 84. [Google Scholar] [CrossRef]
- Roberts, J.A.; Joynt, G.; Lee, A.; Choi, G.; Bellomo, R.; Kanji, S.; Mudaliar, M.Y.; Peake, S.L.; Stephens, D.; Taccone, F.S.; et al. The Effect of Renal Replacement Therapy and Antibiotic Dose on Antibiotic Concentrations in Critically Ill Patients: Data from the Multinational SMARRT Study. Clin. Infect. Dis. 2020, 72, 1369–1378. [Google Scholar] [CrossRef]
- Valtonen, M.; Tiula, E.; Backman, J.T.; Neuvonen, P.J. Elimination of Meropenem during Continuous Veno-Venous Haemofiltration and Haemodiafiltration in Patients with Acute Renal Failure. J. Antimicrob. Chemother. 2000, 45, 701–704. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ulldemolins, M.; Soy, D.; Llaurado-Serra, M.; Vaquer, S.; Castro, P.; Rodríguez, A.H.; Pontes, C.; Calvo, G.; Torres, A.; Martín-Loeches, I. Meropenem Population Pharmacokinetics in Critically Ill Patients with Septic Shock and Continuous Renal Replacement Therapy: Influence of Residual Diuresis on Dose Requirements. Antimicrob. Agents Chemother. 2015, 59, 5520–5528. [Google Scholar] [CrossRef] [PubMed]
- Sangla, F.; Marti, P.E.; Verissimo, T.; Pugin, J.; de Seigneux, S.; Legouis, D. Measured and Estimated Glomerular Filtration Rate in the ICU: A Prospective Study. Crit. Care Med. 2020, 48, e1232–e1241. [Google Scholar] [CrossRef]
- Gatti, M.; Pea, F. Continuous versus Intermittent Infusion of Antibiotics in Gram-Negative Multidrug-Resistant Infections. Curr. Opin. Infect. Dis. 2021, 34, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Croom, K.; Adomakoh, N. Continuous Infusion of Beta-Lactam Antibiotics: Narrative Review of Systematic Reviews, and Implications for Outpatient Parenteral Antibiotic Therapy. Expert Rev. Anti Infect. Ther. 2023, 21, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Roger, C.; Louart, B. Beta-Lactams Toxicity in the Intensive Care Unit: An Underestimated Collateral Damage? Microorganisms 2021, 9, 1505. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Kalimeris, G.D.; Triarides, N.A.; Falagas, M.E. An Update on Adverse Drug Reactions Related to β-Lactam Antibiotics. Expert Opin. Drug Saf. 2018, 17, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Rinaldi, M.; Gaibani, P.; Siniscalchi, A.; Tonetti, T.; Giannella, M.; Viale, P.; Pea, F. A Descriptive Pharmacokinetic/Pharmacodynamic Analysis of Continuous Infusion Ceftazidime-Avibactam for Treating DTR Gram-Negative Infections in a Case Series of Critically Ill Patients Undergoing Continuous Veno-Venous Haemodiafiltration (CVVHDF). J. Crit. Care 2023, 76, 154301. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN Surveillance Definition of Health Care-Associated Infection and Criteria for Specific Types of Infections in the Acute Care Setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Chastre, J.; Fagon, J.-Y. Ventilator-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef] [PubMed]
- Silva-Nunes, J.; Cardoso, T. Intra-Abdominal Infections: The Role of Different Classifications on the Selection of the Best Antibiotic Treatment. BMC Infect. Dis. 2019, 19, 980. [Google Scholar] [CrossRef]
- EUCAST—European Committee on Antimicrobial Susceptibility Testing. European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 12.0, Valid from 2022-01-01; EUCAST: Basel, Switzerland, 2022. [Google Scholar]
- Carlier, M.; Stove, V.; Verstraete, A.G.; De Waele, J.J. Stability of Generic Brands of Meropenem Reconstituted in Isotonic Saline. Minerva Anestesiol. 2015, 81, 283–287. [Google Scholar]
- Fawaz, S.; Barton, S.; Whitney, L.; Swinden, J.; Nabhani-Gebara, S. Stability of Meropenem After Reconstitution for Administration by Prolonged Infusion. Hosp. Pharm. 2019, 54, 190–196. [Google Scholar] [CrossRef]
- Craig, W.A. The Pharmacology of Meropenem, a New Carbapenem Antibiotic. Clin. Infect. Dis. 1997, 24 (Suppl. 2), S266–S275. [Google Scholar] [CrossRef]
- Sanz Codina, M.; Gatti, M.; Troisi, C.; Fornaro, G.; Pasquini, Z.; Trapani, F.; Zanoni, A.; Caramelli, F.; Viale, P.; Pea, F. Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem. Pharmaceutics 2022, 14, 1585. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.H.; Chang, K.-T.; Zhou, J.; Ledesma, K.R.; Phe, K.; Gao, S.; Van Bambeke, F.; Sánchez-Díaz, A.M.; Zamorano, L.; Oliver, A.; et al. Determining β-Lactam Exposure Threshold to Suppress Resistance Development in Gram-Negative Bacteria. J. Antimicrob. Chemother. 2017, 72, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
Demographics and Clinical Variables | Patients (N = 24) |
---|---|
Patient demographics | |
Age (years) [median (IQR)] | 68 (61–74) |
Gender (male/female) [n (%)] | 15/9 (62.5/37.5) |
Caucasian [n (%)] | 23 (95.8) |
Body weight (Kg) [median (IQR)] | 67.5 (60.0–80.0) |
Body mass index (Kg/m2) [median (IQR)] | 24.0 (22.0–27.6) |
Charlson Comorbidity Index [median (IQR)] | 5 (3–6) |
Underlying diseases [n (%)] | |
Bowel perforation | 7 (29.2) |
OLTx | 6 (25.0) |
Acute-on-chronic liver failure | 3 (12.5) |
Cholangitis/cholecystitis | 3 (12.5) |
Acute pulmonary edema | 2 (8.3) |
Others * | 3 (12.5) |
Severity of infections | |
SOFA score at infection onset [median (IQR)] | 14 (10.75–17) |
Mechanical ventilation [n (%)] | 21 (87.5) |
Vasopressors [n (%)] | 20 (83.3) |
CVVHDF settings | |
Total effluent flow rate (mL/h) [median (IQR)] | 2800 (2615–2900) |
CVVHDF dose intensity (mL/kg/h) [median (IQR)] | 37.4 (33.8–44.6) |
Blood flow rate (mL/min) [median (IQR)] | 150 (150–150) |
Net removal (mL/h) [median (IQR)] | 90 (50–120) |
Residual diuresis (mL/24 h) [median (IQR)] | 140 (40.0–417.5) |
Site of infection [n (%)] | |
VAP | 9 (37.5) |
BSI | 7 (29.2) |
cIAI + BSI | 3 (12.5) |
cIAI | 2 (8.3) |
cIAI + VAP | 2 (8.3) |
VAP + BSI | 1 (4.2) |
Gram-negative clinical isolates 1 [n (%)] | |
Escherichia coli | 7 (25.9) |
Klebsiella pneumoniae | 7 (25.9) |
Enterobacter cloacae | 5 (18.5) |
Proteus mirabilis | 3 (11.2) |
Pseudomonas aeruginosa | 2 (7.4) |
Klebsiella oxytoca | 1 (3.7) |
Klebsiella aerogenes | 1 (3.7) |
Acinetobacter baumannii | 1 (3.7) |
Antibiotic treatment | |
Meropenem daily dose (mg) [median (IQR)] | 500 q8h over 8 h (250–1000 q6h over 6 h) |
Meropenem fCss (mg/L) [median (IQR)] | 19.9 (17.4–28.0) |
Meropenem CLtot (L/h) [median (IQR)] | 3.89 (3.28–5.29) |
Combination therapy [n (%)] Tigecycline Ciprofloxacin | 10 (41.7) 9 1 |
Treatment duration (days) [median (IQR)] | 10.5 (6–17) |
PK/PD target attainment | |
Meropenem fCss/MIC [median (IQR)] | 147.2 (48.5–196.9) |
fCss/MIC > 4 [n (%)] fCss/MIC = 1–4 [n (%)] fCss/MIC < 1 [n (%)] | 24 (100.0) 0 (0.0) 0 (0.0) |
TDM-based ECPA | |
Overall TDM-based ECPA | 51 |
N. of TDM-based ECPA per patient [median (IQR)] | 1 (1–3) |
N. of dosage confirmations at first TDM assessment [n (%)] | 4 (16.7) |
N. of dosage increases at first TDM assessment [n (%)] | 0 (0.0) |
N. of dosage decreases at first TDM assessment [n (%)] | 20 (83.3) |
Overall n. of dosage confirmations [n (%)] | 25 (49.0) |
Overall n. of dosage increases [n (%)] | 1 (2.0) |
Overall n. of dosage decreases [n (%)] | 25 (49.0) |
Clinical outcome | |
Microbiological eradication 2 [n (%)] | 19 (90.5) |
Resistance development 2 [n (%)] | 0 (0.0) |
Clinical cure [n (%)] | 13 (54.2) |
30-day mortality rate [n (%)] | 12 (50.0) |
ID Case | Age/Gender | Underlying Disease | CCI | MV/ Vasopressors | Baseline SOFA Score | Type of Infection | Pathogen | MIC (mg/L) | Initial Meropenem MD | Average fCss (mg/L) | Average fCss/MIC Ratio | PK/PD Target Attainment | Combination Therapy | Microbiological Eradication | Clinical Cure | 30-Day Mortality Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | 54/M | ACLF | 5 | Yes/Yes | 19 | BSI | ESBL-producing Escherichia coli | 0.12 | 500 mg q6h over 6 h | 19.11 | 159.25 | Optimal | None | Yes | No * | Yes |
#2 | 77/F | Cholangitis | 3 | Yes/Yes | 15 | cIAI + BSI | Enterobacter cloacae | 0.12 | 1000 mg q6h over 6 h | 22.91 | 190.94 | Optimal | Tigecycline | No | No | No |
#3 | 67/F | OLTx | 5 | Yes/Yes | 16 | VAP | Enterobacter cloacae | 1 | 1000 mg q6h over 6 h | 44.59 | 44.59 | Optimal | Tigecycline | No | No | Yes |
#4 | 70/F | Bowel perforation | 3 | Yes/Yes | 17 | BSI | ESBL-producing Escherichia coli | 0.12 | 1000 mg q6h over 6 h | 75.66 | 630.47 | Optimal | None | NA | No | Yes |
#5 | 67/F | OLTx | 5 | Yes/Yes | 16 | VAP | Enterobacter cloacae | 1 | 1000 mg q6h over 6 h | 30.02 | 30.02 | Optimal | None | Yes | No * | Yes |
#6 | 77/F | Cholangitis | 3 | Yes/Yes | 16 | cIAI + BSI | Enterobacter cloacae | 0.12 | 250 mg q6h over 6 h | 8.43 | 70.23 | Optimal | Tigecycline | Yes | Yes | No |
#7 | 63/M | OLTx | 6 | Yes/Yes | 17 | cIAI + BSI | Klebsiella oxytoca | 0.12 | 1000 mg q6h over 6 h | 18.54 | 148.31 | Optimal | Tigecycline | Yes | Yes | No |
#8 | 62/M | Acute pulmonary oedema | 6 | Yes/No | 6 | VAP | ESBL-producing Klebsiella pneumoniae | 0.5 | 500 mg q6h over 6 h | 20.91 | 41.81 | Optimal | Ciprofloxacin | Yes | Yes | No |
#9 | 63/M | OLTx | 6 | Yes/Yes | 17 | VAP | Acinetobacter baumannii | 1 | 1000 mg q6h over 6 h | 27.59 | 27.59 | Optimal | Tigecycline | Yes | Yes | No |
#10 | 57/F | OLTx | 5 | Yes/No | 12 | VAP | Proteus mirabilis | 0.12 | 1000 mg q6h over 6 h | 18.69 | 155.78 | Optimal | None | Yes | Yes | No |
#11 | 81/M | Acute pulmonary oedema | 5 | Yes/Yes | 11 | VAP | ESBL-producing Klebsiella pneumoniae | 0.12 | 1000 mg q6h over 6 h | 42.24 | 351.98 | Optimal | None | Yes | No * | Yes |
#12 | 58/M | ACLF | 7 | No/Yes | 15 | BSI | Klebsiella pneumoniae | 0.12 | 1000 mg q6h over 6 h | 30.09 | 250.72 | Optimal | None | Yes | Yes | Yes |
#13 | 62/M | Bowel perforation | 2 | Yes/Yes | 18 | cIAI | ESBL-producing Escherichia coli | 0.12 | 250 mg q6h over 6 h | 5.98 | 48.92 | Optimal | None | Yes | No * | Yes |
#14 | 41/M | ACLF | 3 | No/No | 8 | BSI | ESBL-producing Escherichia coli ESBL-producing Klebsiella pneumoniae | 0.12 0.12 | 750 mg q6h over 6 h | 25.77 | 214.78 | Optimal | None | Yes | Yes | No |
#15 | 73/M | Bowel perforation | 4 | Yes/Yes | 9 | cIAI + VAP | ESBL-producing Proteus mirabilis | 0.12 | 1000 mg q6h over 6 h | 29.20 | 233.63 | Optimal | Tigecycline | Yes | No * | Yes |
#16 | 74/M | Bowel perforation | 6 | Yes/Yes | 12 | cIAI + VAP | Escherichia coli Proteus mirabilis | 0.12 | 1000 mg q6h over 6 h | 27.34 | 218.74 | Optimal | None | NA | No | Yes |
#17 | 71/M | Obstructive AKI | 9 | Yes/Yes | 18 | VAP | ESBL-producing Klebsiella pneumoniae | 0.12 | 1000 mg q6h over 6 h | 8.82 | 70.56 | Optimal | None | NA | No | Yes |
#18 | 71/M | Bowel perforation | 5 | Yes/Yes | 9 | BSI | ESBL-producing Klebsiella pneumoniae | 1 | 1000 mg q6h over 6 h | 16.82 | 16.82 | Optimal | None | Yes | Yes | Yes |
#19 | 69/M | Dress syndorme | 9 | Yes/Yes | 11 | VAP | AmpC-producing Klebsiella aerogenes | 0.12 | 500 mg q6h over 6 h | 14.70 | 122.50 | Optimal | Tygeciccline | Yes | Yes | No |
#20 | 83/F | Bowel perforation | 7 | Yes/Yes | 20 | VAP + BSI | ESBL-producing Escherichia coli | 0.12 | 1000 mg q6h over 6 h | 17.54 | 146.18 | Optimal | None | Yes | No * | Yes |
#21 | 50/F | OLT | 4 | Yes/Yes | 12 | BSI | Pseudomonas aeruginosa | 0.25 | 250 mg q6h CI | 20.04 | 80.16 | Optimal | Tygeciccline | Yes | Yes | No |
#22 | 77/M | Bowel perforation | 7 | Yes/No | 9 | cIAI | Escherichia coli Enterobacter cloacae | 0.12 0.12 | 1000 mg q6h over 6 h | 17.95 | 149.61 | Optimal | Tygeciccline | Yes | Yes | No |
#23 | 56/M | Febrile neutropenia | 3 | No/Yes | 13 | BSI | ESBL-producing Escherichia coli | 0.12 | 1000 mg q6h over 6 h | 19.83 | 158.63 | Optimal | None | Yes | Yes | No |
#24 | 74/F | Cholecistitis | 3 | Yes/Yes | 10 | VAP | Pseudomonas aeruginosa | 1 | 500 mg q6h over 6 h | 14.80 | 14.80 | Optimal | None | Yes | Yes | No |
Optimal PK/PD Target | MIC of Isolated Pathogen (mg/L) | TDM-Based Meropenem Dosing ECPA Recommendation |
---|---|---|
fCss/MIC > 4 | 0.12 | 125 mg q6h over 6 h |
fCss/MIC > 4 | 0.25–1 | 250 mg q6h over 6 h |
fCss/MIC > 4 | 2 | 500 mg q6h over 6 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; Rinaldi, M.; Tonetti, T.; Siniscalchi, A.; Viale, P.; Pea, F. Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration. Antibiotics 2023, 12, 1524. https://doi.org/10.3390/antibiotics12101524
Gatti M, Rinaldi M, Tonetti T, Siniscalchi A, Viale P, Pea F. Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration. Antibiotics. 2023; 12(10):1524. https://doi.org/10.3390/antibiotics12101524
Chicago/Turabian StyleGatti, Milo, Matteo Rinaldi, Tommaso Tonetti, Antonio Siniscalchi, Pierluigi Viale, and Federico Pea. 2023. "Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration" Antibiotics 12, no. 10: 1524. https://doi.org/10.3390/antibiotics12101524
APA StyleGatti, M., Rinaldi, M., Tonetti, T., Siniscalchi, A., Viale, P., & Pea, F. (2023). Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration. Antibiotics, 12(10), 1524. https://doi.org/10.3390/antibiotics12101524