Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Data Collection
4.3. Meropenem Administration and Sampling Procedure
4.4. Relationship between Meropenem Aggressive PK/PD Target and Microbiological Outcome
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angus, D.C.; van der Poll, T. Severe Sepsis and Septic Shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- MacVane, S.H. Antimicrobial Resistance in the Intensive Care Unit: A Focus on Gram-Negative Bacterial Infections. J. Intensive Care Med. 2017, 32, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Antimicrobial Susceptibility of Gram-Negative Organisms Isolated from Patients Hospitalized in Intensive Care Units in United States and European Hospitals (2009–2011). Diagn. Microbiol. Infect. Dis. 2014, 78, 443–448. [Google Scholar] [CrossRef]
- Martín-Loeches, I.; Diaz, E.; Vallés, J. Risks for Multidrug-Resistant Pathogens in the ICU. Curr. Opin. Crit. Care 2014, 20, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Yahav, D.; Giske, C.G.; Grāmatniece, A.; Abodakpi, H.; Tam, V.H.; Leibovici, L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin. Microbiol. Rev. 2020, 34, 10–1128. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-Lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas Aeruginosa with Difficult-to-Treat Resistance (DTR-P. Aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC β-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter Baumannii, and Stenotrophomonas Maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- ECDC Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data (accessed on 25 August 2023).
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet 2019, 58, 1407–1443. [Google Scholar] [CrossRef]
- Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell’Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics 2021, 10, 1311. [Google Scholar] [CrossRef]
- Alshaer, M.H.; Maranchick, N.; Alexander, K.M.; Manigaba, K.; Shoulders, B.R.; Felton, T.W.; Mathew, S.K.; Peloquin, C.A. Beta-Lactam Target Attainment and Associated Outcomes in Patients with Bloodstream Infections. Int. J. Antimicrob. Agents 2023, 61, 106727. [Google Scholar] [CrossRef] [PubMed]
- Hoste, E.A.J.; Lameire, N.H.; Vanholder, R.C.; Benoit, D.D.; Decruyenaere, J.M.A.; Colardyn, F.A. Acute Renal Failure in Patients with Sepsis in a Surgical ICU: Predictive Factors, Incidence, Comorbidity, and Outcome. J. Am. Soc. Nephrol. 2003, 14, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute Renal Failure in Critically Ill Patients: A Multinational, Multicenter Study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Pea, F. Antimicrobial Dose Reduction in Continuous Renal Replacement Therapy: Myth or Real Need? A Practical Approach for Guiding Dose Optimization of Novel Antibiotics. Clin. Pharmacokinet 2021, 60, 1271–1289. [Google Scholar] [CrossRef]
- Hoff, B.M.; Maker, J.H.; Dager, W.E.; Heintz, B.H. Antibiotic Dosing for Critically Ill Adult Patients Receiving Intermittent Hemodialysis, Prolonged Intermittent Renal Replacement Therapy, and Continuous Renal Replacement Therapy: An Update. Ann. Pharmacother 2020, 54, 43–55. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Xia, Y.; Chu, Y.; Zhong, H.; Li, J.; Liang, P.; Bu, Y.; Zhao, R.; Liao, Y.; et al. Recommendation of Antimicrobial Dosing Optimization During Continuous Renal Replacement Therapy. Front. Pharmacol. 2020, 11, 786. [Google Scholar] [CrossRef]
- Gatti, M.; Cojutti, P.G.; Bartoletti, M.; Tonetti, T.; Bianchini, A.; Ramirez, S.; Pizzilli, G.; Ambretti, S.; Giannella, M.; Mancini, R.; et al. Expert Clinical Pharmacological Advice May Make an Antimicrobial TDM Program for Emerging Candidates More Clinically Useful in Tailoring Therapy of Critically Ill Patients. Crit. Care 2022, 26, 178. [Google Scholar] [CrossRef]
- Peng, Y.; Cheng, Z.; Xie, F. Population Pharmacokinetic Meta-Analysis and Dosing Recommendation for Meropenem in Critically Ill Patients Receiving Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2022, 66, e0082222. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.S.; Chung, K.C.; Gill, M.A. Pharmacokinetics of Meropenem in Animals, Healthy Volunteers, and Patients. Clin. Infect. Dis. 1997, 24 (Suppl. 2), S249–S255. [Google Scholar] [CrossRef] [PubMed]
- Petersson, J.; Giske, C.G.; Eliasson, E. Poor Correlation between Meropenem and Piperacillin Plasma Concentrations and Delivered Dose of Continuous Renal Replacement Therapy. Antimicrob. Agents Chemother. 2021, 65, e02029-20. [Google Scholar] [CrossRef] [PubMed]
- Jamal, J.-A.; Udy, A.A.; Lipman, J.; Roberts, J.A. The Impact of Variation in Renal Replacement Therapy Settings on Piperacillin, Meropenem, and Vancomycin Drug Clearance in the Critically Ill: An Analysis of Published Literature and Dosing Regimens*. Crit. Care Med. 2014, 42, 1640–1650. [Google Scholar] [CrossRef]
- Roberts, D.M.; Liu, X.; Roberts, J.A.; Nair, P.; Cole, L.; Roberts, M.S.; Lipman, J.; Bellomo, R. RENAL Replacement Therapy Study Investigators A Multicenter Study on the Effect of Continuous Hemodiafiltration Intensity on Antibiotic Pharmacokinetics. Crit. Care 2015, 19, 84. [Google Scholar] [CrossRef]
- Roberts, J.A.; Joynt, G.; Lee, A.; Choi, G.; Bellomo, R.; Kanji, S.; Mudaliar, M.Y.; Peake, S.L.; Stephens, D.; Taccone, F.S.; et al. The Effect of Renal Replacement Therapy and Antibiotic Dose on Antibiotic Concentrations in Critically Ill Patients: Data from the Multinational SMARRT Study. Clin. Infect. Dis. 2020, 72, 1369–1378. [Google Scholar] [CrossRef]
- Valtonen, M.; Tiula, E.; Backman, J.T.; Neuvonen, P.J. Elimination of Meropenem during Continuous Veno-Venous Haemofiltration and Haemodiafiltration in Patients with Acute Renal Failure. J. Antimicrob. Chemother. 2000, 45, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Ulldemolins, M.; Soy, D.; Llaurado-Serra, M.; Vaquer, S.; Castro, P.; Rodríguez, A.H.; Pontes, C.; Calvo, G.; Torres, A.; Martín-Loeches, I. Meropenem Population Pharmacokinetics in Critically Ill Patients with Septic Shock and Continuous Renal Replacement Therapy: Influence of Residual Diuresis on Dose Requirements. Antimicrob. Agents Chemother. 2015, 59, 5520–5528. [Google Scholar] [CrossRef] [PubMed]
- Sangla, F.; Marti, P.E.; Verissimo, T.; Pugin, J.; de Seigneux, S.; Legouis, D. Measured and Estimated Glomerular Filtration Rate in the ICU: A Prospective Study. Crit. Care Med. 2020, 48, e1232–e1241. [Google Scholar] [CrossRef]
- Gatti, M.; Pea, F. Continuous versus Intermittent Infusion of Antibiotics in Gram-Negative Multidrug-Resistant Infections. Curr. Opin. Infect. Dis. 2021, 34, 737–747. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Croom, K.; Adomakoh, N. Continuous Infusion of Beta-Lactam Antibiotics: Narrative Review of Systematic Reviews, and Implications for Outpatient Parenteral Antibiotic Therapy. Expert Rev. Anti Infect. Ther. 2023, 21, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Roger, C.; Louart, B. Beta-Lactams Toxicity in the Intensive Care Unit: An Underestimated Collateral Damage? Microorganisms 2021, 9, 1505. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Kalimeris, G.D.; Triarides, N.A.; Falagas, M.E. An Update on Adverse Drug Reactions Related to β-Lactam Antibiotics. Expert Opin. Drug Saf. 2018, 17, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Rinaldi, M.; Gaibani, P.; Siniscalchi, A.; Tonetti, T.; Giannella, M.; Viale, P.; Pea, F. A Descriptive Pharmacokinetic/Pharmacodynamic Analysis of Continuous Infusion Ceftazidime-Avibactam for Treating DTR Gram-Negative Infections in a Case Series of Critically Ill Patients Undergoing Continuous Veno-Venous Haemodiafiltration (CVVHDF). J. Crit. Care 2023, 76, 154301. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN Surveillance Definition of Health Care-Associated Infection and Criteria for Specific Types of Infections in the Acute Care Setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Chastre, J.; Fagon, J.-Y. Ventilator-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2002, 165, 867–903. [Google Scholar] [CrossRef]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R.; et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef] [PubMed]
- Silva-Nunes, J.; Cardoso, T. Intra-Abdominal Infections: The Role of Different Classifications on the Selection of the Best Antibiotic Treatment. BMC Infect. Dis. 2019, 19, 980. [Google Scholar] [CrossRef]
- EUCAST—European Committee on Antimicrobial Susceptibility Testing. European Committee on Antimicrobial Susceptibility Testing Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 12.0, Valid from 2022-01-01; EUCAST: Basel, Switzerland, 2022. [Google Scholar]
- Carlier, M.; Stove, V.; Verstraete, A.G.; De Waele, J.J. Stability of Generic Brands of Meropenem Reconstituted in Isotonic Saline. Minerva Anestesiol. 2015, 81, 283–287. [Google Scholar]
- Fawaz, S.; Barton, S.; Whitney, L.; Swinden, J.; Nabhani-Gebara, S. Stability of Meropenem After Reconstitution for Administration by Prolonged Infusion. Hosp. Pharm. 2019, 54, 190–196. [Google Scholar] [CrossRef]
- Craig, W.A. The Pharmacology of Meropenem, a New Carbapenem Antibiotic. Clin. Infect. Dis. 1997, 24 (Suppl. 2), S266–S275. [Google Scholar] [CrossRef]
- Sanz Codina, M.; Gatti, M.; Troisi, C.; Fornaro, G.; Pasquini, Z.; Trapani, F.; Zanoni, A.; Caramelli, F.; Viale, P.; Pea, F. Relationship between Pharmacokinetic/Pharmacodynamic Target Attainment and Microbiological Outcome in Critically Ill COVID-19 Patients with Documented Gram-Negative Superinfections Treated with TDM-Guided Continuous-Infusion Meropenem. Pharmaceutics 2022, 14, 1585. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.H.; Chang, K.-T.; Zhou, J.; Ledesma, K.R.; Phe, K.; Gao, S.; Van Bambeke, F.; Sánchez-Díaz, A.M.; Zamorano, L.; Oliver, A.; et al. Determining β-Lactam Exposure Threshold to Suppress Resistance Development in Gram-Negative Bacteria. J. Antimicrob. Chemother. 2017, 72, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
Demographics and Clinical Variables | Patients (N = 24) |
---|---|
Patient demographics | |
Age (years) [median (IQR)] | 68 (61–74) |
Gender (male/female) [n (%)] | 15/9 (62.5/37.5) |
Caucasian [n (%)] | 23 (95.8) |
Body weight (Kg) [median (IQR)] | 67.5 (60.0–80.0) |
Body mass index (Kg/m2) [median (IQR)] | 24.0 (22.0–27.6) |
Charlson Comorbidity Index [median (IQR)] | 5 (3–6) |
Underlying diseases [n (%)] | |
Bowel perforation | 7 (29.2) |
OLTx | 6 (25.0) |
Acute-on-chronic liver failure | 3 (12.5) |
Cholangitis/cholecystitis | 3 (12.5) |
Acute pulmonary edema | 2 (8.3) |
Others * | 3 (12.5) |
Severity of infections | |
SOFA score at infection onset [median (IQR)] | 14 (10.75–17) |
Mechanical ventilation [n (%)] | 21 (87.5) |
Vasopressors [n (%)] | 20 (83.3) |
CVVHDF settings | |
Total effluent flow rate (mL/h) [median (IQR)] | 2800 (2615–2900) |
CVVHDF dose intensity (mL/kg/h) [median (IQR)] | 37.4 (33.8–44.6) |
Blood flow rate (mL/min) [median (IQR)] | 150 (150–150) |
Net removal (mL/h) [median (IQR)] | 90 (50–120) |
Residual diuresis (mL/24 h) [median (IQR)] | 140 (40.0–417.5) |
Site of infection [n (%)] | |
VAP | 9 (37.5) |
BSI | 7 (29.2) |
cIAI + BSI | 3 (12.5) |
cIAI | 2 (8.3) |
cIAI + VAP | 2 (8.3) |
VAP + BSI | 1 (4.2) |
Gram-negative clinical isolates 1 [n (%)] | |
Escherichia coli | 7 (25.9) |
Klebsiella pneumoniae | 7 (25.9) |
Enterobacter cloacae | 5 (18.5) |
Proteus mirabilis | 3 (11.2) |
Pseudomonas aeruginosa | 2 (7.4) |
Klebsiella oxytoca | 1 (3.7) |
Klebsiella aerogenes | 1 (3.7) |
Acinetobacter baumannii | 1 (3.7) |
Antibiotic treatment | |
Meropenem daily dose (mg) [median (IQR)] | 500 q8h over 8 h (250–1000 q6h over 6 h) |
Meropenem fCss (mg/L) [median (IQR)] | 19.9 (17.4–28.0) |
Meropenem CLtot (L/h) [median (IQR)] | 3.89 (3.28–5.29) |
Combination therapy [n (%)] Tigecycline Ciprofloxacin | 10 (41.7) 9 1 |
Treatment duration (days) [median (IQR)] | 10.5 (6–17) |
PK/PD target attainment | |
Meropenem fCss/MIC [median (IQR)] | 147.2 (48.5–196.9) |
fCss/MIC > 4 [n (%)] fCss/MIC = 1–4 [n (%)] fCss/MIC < 1 [n (%)] | 24 (100.0) 0 (0.0) 0 (0.0) |
TDM-based ECPA | |
Overall TDM-based ECPA | 51 |
N. of TDM-based ECPA per patient [median (IQR)] | 1 (1–3) |
N. of dosage confirmations at first TDM assessment [n (%)] | 4 (16.7) |
N. of dosage increases at first TDM assessment [n (%)] | 0 (0.0) |
N. of dosage decreases at first TDM assessment [n (%)] | 20 (83.3) |
Overall n. of dosage confirmations [n (%)] | 25 (49.0) |
Overall n. of dosage increases [n (%)] | 1 (2.0) |
Overall n. of dosage decreases [n (%)] | 25 (49.0) |
Clinical outcome | |
Microbiological eradication 2 [n (%)] | 19 (90.5) |
Resistance development 2 [n (%)] | 0 (0.0) |
Clinical cure [n (%)] | 13 (54.2) |
30-day mortality rate [n (%)] | 12 (50.0) |
ID Case | Age/Gender | Underlying Disease | CCI | MV/ Vasopressors | Baseline SOFA Score | Type of Infection | Pathogen | MIC (mg/L) | Initial Meropenem MD | Average fCss (mg/L) | Average fCss/MIC Ratio | PK/PD Target Attainment | Combination Therapy | Microbiological Eradication | Clinical Cure | 30-Day Mortality Rate |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | 54/M | ACLF | 5 | Yes/Yes | 19 | BSI | ESBL-producing Escherichia coli | 0.12 | 500 mg q6h over 6 h | 19.11 | 159.25 | Optimal | None | Yes | No * | Yes |
#2 | 77/F | Cholangitis | 3 | Yes/Yes | 15 | cIAI + BSI | Enterobacter cloacae | 0.12 | 1000 mg q6h over 6 h | 22.91 | 190.94 | Optimal | Tigecycline | No | No | No |
#3 | 67/F | OLTx | 5 | Yes/Yes | 16 | VAP | Enterobacter cloacae | 1 | 1000 mg q6h over 6 h | 44.59 | 44.59 | Optimal | Tigecycline | No | No | Yes |
#4 | 70/F | Bowel perforation | 3 | Yes/Yes | 17 | BSI | ESBL-producing Escherichia coli | 0.12 | 1000 mg q6h over 6 h | 75.66 | 630.47 | Optimal | None | NA | No | Yes |
#5 | 67/F | OLTx | 5 | Yes/Yes | 16 | VAP | Enterobacter cloacae | 1 | 1000 mg q6h over 6 h | 30.02 | 30.02 | Optimal | None | Yes | No * | Yes |
#6 | 77/F | Cholangitis | 3 | Yes/Yes | 16 | cIAI + BSI | Enterobacter cloacae | 0.12 | 250 mg q6h over 6 h | 8.43 | 70.23 | Optimal | Tigecycline | Yes | Yes | No |
#7 | 63/M | OLTx | 6 | Yes/Yes | 17 | cIAI + BSI | Klebsiella oxytoca | 0.12 | 1000 mg q6h over 6 h | 18.54 | 148.31 | Optimal | Tigecycline | Yes | Yes | No |
#8 | 62/M | Acute pulmonary oedema | 6 | Yes/No | 6 | VAP | ESBL-producing Klebsiella pneumoniae | 0.5 | 500 mg q6h over 6 h | 20.91 | 41.81 | Optimal | Ciprofloxacin | Yes | Yes | No |
#9 | 63/M | OLTx | 6 | Yes/Yes | 17 | VAP | Acinetobacter baumannii | 1 | 1000 mg q6h over 6 h | 27.59 | 27.59 | Optimal | Tigecycline | Yes | Yes | No |
#10 | 57/F | OLTx | 5 | Yes/No | 12 | VAP | Proteus mirabilis | 0.12 | 1000 mg q6h over 6 h | 18.69 | 155.78 | Optimal | None | Yes | Yes | No |
#11 | 81/M | Acute pulmonary oedema | 5 | Yes/Yes | 11 | VAP | ESBL-producing Klebsiella pneumoniae | 0.12 | 1000 mg q6h over 6 h | 42.24 | 351.98 | Optimal | None | Yes | No * | Yes |
#12 | 58/M | ACLF | 7 | No/Yes | 15 | BSI | Klebsiella pneumoniae | 0.12 | 1000 mg q6h over 6 h | 30.09 | 250.72 | Optimal | None | Yes | Yes | Yes |
#13 | 62/M | Bowel perforation | 2 | Yes/Yes | 18 | cIAI | ESBL-producing Escherichia coli | 0.12 | 250 mg q6h over 6 h | 5.98 | 48.92 | Optimal | None | Yes | No * | Yes |
#14 | 41/M | ACLF | 3 | No/No | 8 | BSI | ESBL-producing Escherichia coli ESBL-producing Klebsiella pneumoniae | 0.12 0.12 | 750 mg q6h over 6 h | 25.77 | 214.78 | Optimal | None | Yes | Yes | No |
#15 | 73/M | Bowel perforation | 4 | Yes/Yes | 9 | cIAI + VAP | ESBL-producing Proteus mirabilis | 0.12 | 1000 mg q6h over 6 h | 29.20 | 233.63 | Optimal | Tigecycline | Yes | No * | Yes |
#16 | 74/M | Bowel perforation | 6 | Yes/Yes | 12 | cIAI + VAP | Escherichia coli Proteus mirabilis | 0.12 | 1000 mg q6h over 6 h | 27.34 | 218.74 | Optimal | None | NA | No | Yes |
#17 | 71/M | Obstructive AKI | 9 | Yes/Yes | 18 | VAP | ESBL-producing Klebsiella pneumoniae | 0.12 | 1000 mg q6h over 6 h | 8.82 | 70.56 | Optimal | None | NA | No | Yes |
#18 | 71/M | Bowel perforation | 5 | Yes/Yes | 9 | BSI | ESBL-producing Klebsiella pneumoniae | 1 | 1000 mg q6h over 6 h | 16.82 | 16.82 | Optimal | None | Yes | Yes | Yes |
#19 | 69/M | Dress syndorme | 9 | Yes/Yes | 11 | VAP | AmpC-producing Klebsiella aerogenes | 0.12 | 500 mg q6h over 6 h | 14.70 | 122.50 | Optimal | Tygeciccline | Yes | Yes | No |
#20 | 83/F | Bowel perforation | 7 | Yes/Yes | 20 | VAP + BSI | ESBL-producing Escherichia coli | 0.12 | 1000 mg q6h over 6 h | 17.54 | 146.18 | Optimal | None | Yes | No * | Yes |
#21 | 50/F | OLT | 4 | Yes/Yes | 12 | BSI | Pseudomonas aeruginosa | 0.25 | 250 mg q6h CI | 20.04 | 80.16 | Optimal | Tygeciccline | Yes | Yes | No |
#22 | 77/M | Bowel perforation | 7 | Yes/No | 9 | cIAI | Escherichia coli Enterobacter cloacae | 0.12 0.12 | 1000 mg q6h over 6 h | 17.95 | 149.61 | Optimal | Tygeciccline | Yes | Yes | No |
#23 | 56/M | Febrile neutropenia | 3 | No/Yes | 13 | BSI | ESBL-producing Escherichia coli | 0.12 | 1000 mg q6h over 6 h | 19.83 | 158.63 | Optimal | None | Yes | Yes | No |
#24 | 74/F | Cholecistitis | 3 | Yes/Yes | 10 | VAP | Pseudomonas aeruginosa | 1 | 500 mg q6h over 6 h | 14.80 | 14.80 | Optimal | None | Yes | Yes | No |
Optimal PK/PD Target | MIC of Isolated Pathogen (mg/L) | TDM-Based Meropenem Dosing ECPA Recommendation |
---|---|---|
fCss/MIC > 4 | 0.12 | 125 mg q6h over 6 h |
fCss/MIC > 4 | 0.25–1 | 250 mg q6h over 6 h |
fCss/MIC > 4 | 2 | 500 mg q6h over 6 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; Rinaldi, M.; Tonetti, T.; Siniscalchi, A.; Viale, P.; Pea, F. Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration. Antibiotics 2023, 12, 1524. https://doi.org/10.3390/antibiotics12101524
Gatti M, Rinaldi M, Tonetti T, Siniscalchi A, Viale P, Pea F. Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration. Antibiotics. 2023; 12(10):1524. https://doi.org/10.3390/antibiotics12101524
Chicago/Turabian StyleGatti, Milo, Matteo Rinaldi, Tommaso Tonetti, Antonio Siniscalchi, Pierluigi Viale, and Federico Pea. 2023. "Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration" Antibiotics 12, no. 10: 1524. https://doi.org/10.3390/antibiotics12101524
APA StyleGatti, M., Rinaldi, M., Tonetti, T., Siniscalchi, A., Viale, P., & Pea, F. (2023). Real-Time TDM-Based Expert Clinical Pharmacological Advice Program for Attaining Aggressive Pharmacokinetic/Pharmacodynamic Target of Continuous Infusion Meropenem in the Treatment of Critically Ill Patients with Documented Gram-Negative Infections Undergoing Continuous Veno-Venous Hemodiafiltration. Antibiotics, 12(10), 1524. https://doi.org/10.3390/antibiotics12101524