Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes
Abstract
:1. Introduction
2. Results
2.1. Identification of Aeromonas Strains
2.2. Detection of intI1, Antimicrobial and Heavy Metal Resistance Genes
2.3. Genomic Analyses
2.4. Adaptation to a Polluted Environment
3. Discussion
4. Materials and Methods
4.1. Water Sampling and Bacterial Strains
4.2. Bacterial Identification and Phylogenetic Analysis
4.3. Molecular Detection of Antimicrobial and Heavy Metal Resistance Genes
4.4. Whole Genome Sequencing, Assembly, and Annotation
4.5. Functional Genomic Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Larsson, D.G.; Flach, C.F. Antibiotic resistance in the environment. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Marti, E.; Variatza, E.; Balcazar, J.L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014, 22, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Canellas, A.L.B.; Laport, M.S. The biotechnological potential of Aeromonas: A bird’s eye view. Crit. Rev. Microbiol. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- List of Prokaryotic Names with Standard Nomenclature (LPSN). Aeromonas. Available online: https://lpsn.dsmz.de/genus/aeromonas (accessed on 22 October 2022).
- Fernández-Bravo, A.; Figueras, M.J. An update on the genus Aeromonas: Taxonomy, epidemiology, and pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekizuka, T.; Inamine, Y.; Segawa, T.; Hashino, M.; Yatsu, K.; Kuroda, M. Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan. Environ. Microbiol. Rep. 2019, 11, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Conte, D.; Palmeiro, J.K.; Bavaroski, A.A.; Rodrigues, L.S.; Cardozo, D.; Tomaz, A.P.; Camargo, J.O.; Dalla-Costa, L.M. Antimicrobial resistance in Aeromonas species isolated from aquatic environments in Brazil. J. Appl. Microbiol. 2021, 131, 169–181. [Google Scholar] [CrossRef]
- Canellas, A.L.B.; da Costa, W.F.; Paranhos, R.; Laport, M.S. Diving into the unknown: Identification of antimicrobial resistance hotspots in a tropical urban estuary. Lett. Appl. Microbiol. 2021, 73, 270–279. [Google Scholar] [CrossRef]
- Leonard, A.F.; Zhang, L.; Balfour, A.J.; Garside, R.; Hawkey, P.M.; Murray, A.K.; Ukoumunne, O.C.; Gaze, W.H. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 2018, 114, 326–333. [Google Scholar] [CrossRef]
- Fistarol, G.O.; Coutinho, F.H.; Moreira, A.P.B.; Venas, T.; Cánovas, A.; de Paula, S.E., Jr.; Coutinho, R.; de Moura, R.L.; Valentin, J.V.; Tenenbaum, D.R.; et al. Environmental and sanitary conditions of Guanabara Bay, Rio de Janeiro. Front. Microbiol. 2015, 6, 1232. [Google Scholar] [CrossRef] [Green Version]
- Grilo, M.L.; Sousa-Santos, C.; Robalo, J.; Oliveira, M. The potential of Aeromonas spp. from wildlife as antimicrobial resistance indicators in aquatic environments. Ecol. Indic. 2020, 115, 106396. [Google Scholar] [CrossRef]
- Ghaly, T.M.; Gillings, M.R.; Penesyan, A.; Qi, Q.; Rajabal, V.; Tetu, S.G. The natural history of integrons. Microorganisms 2021, 9, 2212. [Google Scholar] [CrossRef] [PubMed]
- Hossain, S.; Dahanayake, P.S.; De Silva, B.C.J.; Wickramanayake, M.V.K.S.; Wimalasena, S.H.M.P.; Heo, G.J. Multidrug resistant Aeromonas spp. isolated from zebrafish (Danio rerio): Antibiogram, antimicrobial resistance genes and class 1 integron gene cassettes. Lett. Appl. Microbiol. 2019, 68, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Harnisz, M.; Korzeniewska, E. The prevalence of multidrug-resistant Aeromonas spp. in the municipal wastewater system and their dissemination in the environment. Sci. Total Environ. 2018, 626, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Przygodzińska, D.; Matyjewicz, K.; Popowska, M. Occurrence and variety of β-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Front. Microbiol. 2017, 8, 863. [Google Scholar] [CrossRef] [Green Version]
- Dahanayake, P.S.; Hossain, S.; Wickramanayake, M.V.K.S.; Heo, G.J. Antibiotic and heavy metal resistance genes in Aeromonas spp. isolated from marketed Manila Clam (Ruditapes philippinarum) in Korea. J. Appl. Microbiol. 2019, 127, 941–952. [Google Scholar] [CrossRef]
- De Silva, B.C.; Hossain, S.; Dahanayake, P.S.; Heo, G.J. Frozen white-leg shrimp (Litopenaeus vannamei) in Korean markets as a source of Aeromonas spp. harboring antibiotic and heavy metal resistance genes. Microb. Drug Resist. 2018, 24, 1587–1598. [Google Scholar] [CrossRef]
- Hossain, S.; Heo, G.J. Detection of Antimicrobial and Heavy-Metal Resistance Genes in Aeromonas spp. Isolated from Hard-Shelled Mussel (Mytilus coruscus). Microb. Drug Resist. 2022, 28, 127–135. [Google Scholar] [CrossRef]
- Xu, J.; Xu, Y.; Wang, H.; Guo, C.; Qiu, H.; He, Y.; Zhang, Y.; Li, X.; Meng, W. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 2015, 119, 1379–1385. [Google Scholar] [CrossRef]
- Dong, P.; Cui, Q.; Fang, T.; Huang, Y.; Wang, H. Occurrence of antibiotic resistance genes and bacterial pathogens in water and sediment in urban recreational water. J. Environ. Sci. 2019, 77, 65–74. [Google Scholar] [CrossRef]
- de Melo Rodrigues Sobral, M.; Barreto, C.; Bianco, K.; de Oliveira, S.S.A.; Clementino, M.M. Virulence determinants in genetically heterogeneous populations of Aeromonads recovered from an urban lagoon. J. Water Health. 2019, 17, 380–392. [Google Scholar] [CrossRef]
- Lamy, B.; Baron, S.; Barraud, O. Aeromonas: The multifaceted middleman in the One Health world. Curr. Opin. Microbiol. 2022, 65, 24–32. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, C.; Sun, Q.; Schwarz, S.; Ou, Y.; Yang, L.; Huang, Z.; Eichhorn, I.; Walsh, T.R.; Wang, Y.; et al. Prevalence and genetic analysis of mcr-3-positive Aeromonas species from humans, retail meat, and environmental water samples. Antimicrob. Agents Chemother. 2018, 62, e00404-18. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yao, R.; Olsen, R.H.; Zhang, Y.; Meng, H. Antibiotic resistance and polymyxin B resistance mechanism of Aeromonas spp. isolated from yellow catfish, hybrid snakeheads and associated water from intensive fish farms in Southern China. LWT 2022, 166, 113802. [Google Scholar] [CrossRef]
- Yang, C.; Guo, M.; Yang, H.; Wen, Y.; Zhu, Z.; Wang, T.; Zhu, J.; Chen, L.; Du, H. blaKPC-24-Harboring Aeromonas veronii from the Hospital Sewage Samples in China. Microbiol. Spectr. 2022, 10, e00555-22. [Google Scholar] [PubMed]
- Li, Y.; Qiu, Y.; Fang, C.; Dai, X.; Zhang, L. Genomic Characterization of a Multidrug-Resistant Aeromonas caviae Isolate Carrying a Novel blaKPC-2-Harbouring Plasmid and an IMP-4-Encoding Phage-like Plasmid. Microbiol. Spectr. 2022, 10, e00840-22. [Google Scholar] [PubMed]
- Lim, S.R.; Lee, D.H.; Park, S.Y.; Lee, S.; Kim, H.Y.; Lee, M.S.; Han, J.E.; Kim, H.K.; Kim, J.H. Wild nutria (Myocastor coypus) is a potential reservoir of carbapenem-resistant and zoonotic Aeromonas spp. in Korea. Microorganisms 2019, 7, 224. [Google Scholar] [CrossRef] [Green Version]
- Talagrand-Reboul, E.; Colston, S.M.; Graf, J.; Lamy, B.; Jumas-Bilak, E. Comparative and evolutionary genomics of isolates provide insight into the pathoadaptation of Aeromonas. Genome Biol. Evol. 2020, 12, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Canellas, A.L.B.; Lopes, I.R.; Mello, M.P.; Paranhos, R.; de Oliveira, B.F.R.; Laport, M.S. Vibrio species in an urban tropical estuary: Antimicrobial susceptibility, interaction with environmental parameters, and possible public health outcomes. Microorganisms 2021, 9, 1007. [Google Scholar] [CrossRef]
- Mercier, C.; Chalansonnet, V.; Orenga, S.; Gilbert, C. Characteristics of major Escherichia coli reductases involved in aerobic nitro and azo reduction. J. Appl. Microbiol. 2013, 115, 1012–1022. [Google Scholar] [CrossRef]
- Matsumoto, K.I.; Mukai, Y.; Ogata, D.; Shozui, F.; Nduko, J.M.; Taguchi, S.; Ooi, T. Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl. Microbiol. Biotechnol. 2010, 86, 1431–1438. [Google Scholar] [CrossRef]
- Rael, R.M.; Frankenberger, W.T., Jr. Influence of pH, salinity, and selenium on the growth of Aeromonas veronii in evaporation agricultural drainage water. Water Res. 1996, 30, 422–430. [Google Scholar] [CrossRef]
- Aigle, A.; Colin, Y.; Bouchali, R.; Bourgeois, E.; Marti, R.; Ribun, S.; Marjolet, L.; Pozzi, A.C.M.; Misery, B.; Colinon, C.; et al. Spatio-temporal variations in chemical pollutants found among urban deposits match changes in thiopurine S-methyltransferase-harboring bacteria tracked by the tpm metabarcoding approach. Sci. Total Environ. 2021, 767, 145425. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, R.; Joseph, S.W.; Chopra, A.K.; Sha, J.; Shaw, J.; Graf, J.; Haft, D.; Wu, M.; Ren, Q.; Rosovitz, M.J.; et al. Genome sequence of Aeromonas hydrophila ATCC 7966T: Jack of all trades. J. Bacteriol. 2006, 188, 8272–8282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, Y.; Wang, J.; Wang, H.; Chai, B.; Rao, C.; Chen, X.; Du, S. 4-Hydroxyphenylpyruvate dioxygenase thermolability is responsible for temperature-dependent melanogenesis in Aeromonas salmonicida subsp. salmonicida. Appl. Environ. Microbiol. 2019, 85, e01926-18. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Liu, H.M.; Liao, Y.; Su, Y.; Geng, J.; Yang, M.Y.; Chen, X.D.; Shen, P. Isolation of a novel strain of Aeromonas media producing high levels of DOPA-melanin and assessment of the photoprotective role of the melanin in bioinsecticide applications. J. Appl. Microbiol. 2007, 103, 2533–2541. [Google Scholar] [CrossRef]
- Walsh, P.S.; Metzger, D.A.; Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991, 10, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laport, M.S.; Bauwens, M.; Oliveira, S.N.; Willenz, P.; George, I.; Muricy, G. Culturable bacterial communities associated to Brazilian Oscarella species (Porifera: Homoscleromorpha) and their antagonistic interactions. Antonie Van Leeuwenhoek 2017, 110, 489–499. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplifcation for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Stackebrandt, E.; Ebers, J. Taxonomic parameters revisited: Tarnished gold standards. Microbiol. Today 2006, 33, 152–155. [Google Scholar]
- Jackson, S.A.; Crossman, L.; Almeida, E.L.; Margassery, L.M.; Kennedy, J.; Dobson, A.D. Diverse and abundant secondary metabolism biosynthetic gene clusters in the genomes of marine sponge derived Streptomyces spp. isolates. Mar. Drugs 2018, 16, 67. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 10 April 2022).
- Krueger, F.; James, F.; Ewels, P.; Afyounian, E.; Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7-DOI via Zenodo (0.6.7), version 0.6.7; Available online: https://zenodo.org/record/5127899 (accessed on 10 April 2022).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Zhou, S.; Chen, L.; Yang, J. VFDB 2022: A general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022, 50, D912–D917. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. PlasmidFinder and pMLST: In silico detection and typing of plasmids. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, X.; Xie, Y.; Bi, D.; Sun, J.; Li, J.; Tai, C.; Deng, Z.; Ou, H.Y. ICEberg 2.0: An updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 2019, 47, D660–D665. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, Y.; Liu, M.; Tai, C.; Sun, J.; Deng, Z.; Ou, H.Y. oriTfinder: A web-based tool for the identification of origin of transfers in DNA sequences of bacterial mobile genetic elements. Nucleic Acids Res. 2018, 46, W229–W234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Néron, B.; Littner, E.; Haudiquet, M.; Perrin, A.; Cury, J.; Rocha, E. IntegronFinder 2.0: Identification and Analysis of Integrons across Bacteria, with a Focus on Antibiotic Resistance in Klebsiella. Microorganisms 2022, 10, 700. [Google Scholar] [CrossRef] [PubMed]
Gene | Gene Family | Antimicrobials |
---|---|---|
TEM-1 | TEM beta-lactamase | Monobactam, cephalosporin, penam, penem |
mphA | Macrolide phosphotransferase (MPH) | Macrolide |
sul1_1; sul1_2 | Sulfonamide resistant sul | Sulfonamide |
qacE∆1_1; qacE∆1_2 | Major facilitator superfamily (MFS) antibiotic efflux pump | Disinfecting agents and antiseptics |
CTX-M-2 | CTX-M beta-lactamase | Cephalosporin |
arr-3 | Rifampin ADP-ribosyltransferase (Arr) | Rifamycin |
aac(3)-IId | AAC (3) | Aminoglycoside |
KPC-2 | KPC beta-lactamase | Monobactam, carbapenem, cephalosporin, penam |
qacJ | Small multidrug resistance (SMR) antibiotic efflux pump | Disinfecting agents and antiseptics |
adeF | Resistance-nodulation-cell division (RND) antibiotic efflux pump | Fluoroquinolone antibiotic, tetracycline |
OXA-726 | OXA beta-lactamase | Carbapenem, cephalosporin, penam |
rsmA | Resistance-nodulation-cell division (RND) antibiotic efflux pump | Fluoroquinolone antibiotic, diaminopyrimidine antibiotic, phenicol |
imiH | cphA beta-lactamase | Carbapenem |
adeF | Resistance-nodulation-cell division (RND) antibiotic efflux pump | Fluoroquinolone antibiotic, tetracycline |
aac(6’)-Ib-cr6 | AAC (6’)-Ib-cr | Fluoroquinolone antibiotic, aminoglycoside |
Escherichia coli EF-Tu mutants conferring resistance to Pulvomycin | Elfamycin resistant EF-Tu | Elfamycin |
tetA | Tetracycline resistance protein, class B | Tetracycline |
cat | Chloramphenicol acetyltransferase | Chloramphenicol |
emrA | Colistin resistance protein EmrA | Colistin |
emrB | Colistin resistance protein EmrB | Colistin |
bla_3 | Beta-lactamase Toho-1 | Penicillin G, ampicillin, oxacillin, carbenicillin, piperacillin, cephalothin, cefoxitin, Cefotaxime, ceftazidime, and aztreonam |
bla_1 | Beta-lactamase OXA-18 | amoxicillin, ticarcillin, cephalothin, Ceftazidime, cefotaxime, and aztreonam |
yokD | SPbeta prophage-derived aminoglycoside N (3’)-acetyltransferase-like protein YokD | Aminoglycoside |
vat | Virginiamycin A acetyltransferase | Virginiamycin |
qacC | Quaternary ammonium compound-resistance protein QacC | Quaternary ammonium compounds, antiseptics |
Heavy Metal | Gene | Functional Assignment |
---|---|---|
Mercury | merA, merA2 | Mercuric reductase |
merC, merC2 | Mercuric transport protein MerC | |
merP, merP2 | Mercuric transport protein periplasmic component | |
merT, merT2 | Mercuric transport protein MerT | |
merR, merR1 | Mercuric resistance operon regulatory protein | |
Copper and silver resistance | copA | Putative copper-importing P-type ATPase A |
copA2 | Copper-exporting P-type ATPase | |
copA3 | Copper resistance protein A | |
copA4 | Putative copper-importing P-type ATPase A | |
copB | Copper resistance protein B | |
copR | Transcriptional activator protein CopR | |
cusA1, cusA2 | Cation efflux system protein CusA | |
cusB | Cation efflux system protein CusB | |
cusS | Sensor histidine kinase CusS | |
cueO | Blue copper oxidase CueO | |
cueR | HTH-type transcriptional regulator CueR | |
Arsenic resistance | arsA | Arsenical pump-driving ATPase |
arsC | Arsenate reductase | |
arsD | Arsenical resistance operon trans-acting repressor ArsD | |
acr3 | Arsenical-resistance protein Acr3 | |
Molybdate resistance and homeostasis | modA | Molybdate-binding protein ModA |
moaE | Molybdopterin synthase catalytic subunit | |
moaD | Molybdopterin synthase sulfur carrier subunit | |
moaA | GTP 3’,8-cyclase | |
moaB | Molybdenum cofactor biosynthesis protein B | |
moaC | Cyclic pyranopterin monophosphate synthase | |
Heavy metal efflux pumps and transporters | czcD | Cadmium, cobalt and zinc/H(+)-K(+) antiporter |
corA | Magnesium transport protein CorA | |
zntR | HTH-type transcriptional regulator ZntR | |
zntB | Zinc transport protein ZntB | |
zntA | Zinc/cadmium/lead-transporting P-type ATPase | |
fieF_1 | Ferrous-iron efflux pump FieF | |
cusB | Cation efflux system protein CusB | |
acrA | Multidrug efflux pump subunit AcrA |
Gene | Functional Assignment | Mechanism |
---|---|---|
flab1, flab2 | Flagellin B | Adhesion |
flgB | Flagellar basal body rod protein FlgB | |
flgC | Flagellar basal-body rod protein FlgC | |
flgD | Basal-body rod modification protein FlgD | |
flgE | Flagellar hook protein FlgE | |
flgF | Flagellar basal-body rod protein FlgF | |
flgG | Flagellar basal-body rod protein FlgG | |
flgH | Flagellar L-ring protein | |
flgI | Flagellar P-ring protein | |
flgJ | Peptidoglycan hydrolase FlgJ | |
ecpD | Fimbria adhesin EcpD | |
pile | Fimbrial protein | |
pilQ | Type IV pilus biogenesis and competence protein PilQ | |
ecpA | Common pilus major fimbrillin subunit EcpA | |
pilT1, pilT2, pilT3 | Twitching mobility protein | |
tcpE | Toxin coregulated pilus biosynthesis protein E | |
chew1,2 | Chemotaxis protein CheW | |
pomA1,2,3 | Chemotaxis protein PomA | |
tabA | Toxin-antitoxin biofilm protein TabA | |
aerA | Aerolysin | Hemolysins |
hlyA | Hemolysin | |
hlyB | Alpha-hemolysin translocation ATP-binding Protein HlyB | |
hlyD1, 2 | Hemolysin secretion protein D, chromosomal | |
vgrG1,2,3 | Actin cross-linking toxin VgrG1 | |
apxIB1,2 | Toxin RTX-I translocation ATP-binding protein | |
bvg1, 2 | Virulence sensor protein BvgS | Virulence sensors |
phoQ | Virulence sensor histidine kinase PhoQ | |
entE | Enterobactin synthase component E | Siderophore |
entB | Enterobactin synthase component B | |
entD | Enterobactin synthase component D | |
Fur | Ferric uptake regulation protein | |
epsC | Type II secretion system protein C | Secretion systems |
epsE | Type II secretion system protein E | |
epsF1,2 | Type II secretion system protein F | |
epsG | Type II secretion system protein G | |
epsH | Type II secretion system protein H | |
xcpW | Type II secretion system protein J | |
epsL | Type II secretion system protein L | |
epsM | Type II secretion system protein M | |
outN | Type II secretion system protein N | |
sctC | Type 3 secretion system secretin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canellas, A.L.B.; de Oliveira, B.F.R.; Laport, M.S. Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes. Antibiotics 2023, 12, 84. https://doi.org/10.3390/antibiotics12010084
Canellas ALB, de Oliveira BFR, Laport MS. Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes. Antibiotics. 2023; 12(1):84. https://doi.org/10.3390/antibiotics12010084
Chicago/Turabian StyleCanellas, Anna Luiza Bauer, Bruno Francesco Rodrigues de Oliveira, and Marinella Silva Laport. 2023. "Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes" Antibiotics 12, no. 1: 84. https://doi.org/10.3390/antibiotics12010084
APA StyleCanellas, A. L. B., de Oliveira, B. F. R., & Laport, M. S. (2023). Hiding in Plain Sight: Characterization of Aeromonas Species Isolated from a Recreational Estuary Reveals the Carriage and Putative Dissemination of Resistance Genes. Antibiotics, 12(1), 84. https://doi.org/10.3390/antibiotics12010084