Personalized Approach in Eradication of Helicobacter pylori Infection
Abstract
:1. Introduction
2. Current Position and Strategies
Emerging Antibiotic Resistance
3. Tailored Therapy
4. Anything New in Diagnostics?
Antibiotic Sensitivity Testing Issues
5. Novelties of the Maastricht VI Guidelines
6. CYP2C19 Polymorphism
7. Future Prospects in the Approach to H. pylori Infections and Treatment
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Authors | Year | Country | N | Susceptibility Testing | Tailored Therapy | Empirical Therapy | Results Tailored vs. Empirical | Comments | ||
---|---|---|---|---|---|---|---|---|---|---|
Regime (PPI Included) | Duration (Days) | Regime (PPI Included) | Duration (Days) | |||||||
Delchier et al. [43] | 2019 | France | 526 | GenoT ype HelicoDR® PCR | AM (1000 mg bd) + CL (500 mg bd) AM (1000 mg bd) + LE (250 mg bd) AM (1000 mg bd) + MT (500 mg bd) | 7–14 | AM (1000 mg bd) + CL (500 mg bd) | 7 | ITT: 85.5% vs. 73.1%, p = 0.003 PP: 74.4% vs. 86.5%, P = 0.003 | tailored therapy superior |
Dong et al. [44] | 2015 | China | 90 | Culture with E test and PCR | AM + CL + BI AM + BI + LE AM + BI + FU BI + CL + MT (doses n/a) | 7 | BI (600 mg bd) + AM (1000 mg bd) + CL (500 mg bd) | 7 | ITT: 91.1 % vs. 73.3%, p = 0.027 PP: 96.3% vs. 78.6%, p = 0.021 | tailored therapy superior |
Zhou et al. [40] | 2016 | China | 1050 | Culture with E test | AM (1000 mg bd) + CL (500 mg bd) AM (1000 mg tid) + TI (500 mg tid) | 10 | AM (1000 mg bd) + CL (500 mg bd) + BI (220 mg bd) AM (1000 mg bd) + CL (500 mg bd) + TI (500 mg bd) | 10 | ITT: 88.7% vs. 77.4% vs. 78.3 %, p < 0.001 PP: 93.3% vs. 87.0% vs. 87.4%, p = 0.021 | tailored therapy superior than triple plus bismuth and concomitant groups |
Chen et al. [46] | 2019 | China | 382 | Culture with agar dilution | AM (1000 mg bd) + CL (500 mg bd) AM (1000 mg bd) + MT (400 mg bd) AM (1000 mg bd) + LE (500 mg bd) AM (1000 mg bd) + BI (600 mg bd) + MT (400 mg qid) | 14 | AM (1000 mg tid) + MT (400 mg tid) + BI (600 mg bd) | 14 | ITT: 91.6% vs. 85.4%, p = 0.12 PP: 97.7% vs. 97.6%, p = 1.00 | no significant difference |
Ong et al. [47] | 2019 | South Korea | 397 | Culture with agar dilution and PCR | AM (1000 mg bd) + CL (500 mg bd) AM (1000 mg bd) + MT (500 mg bd) | 14 | AM (1000 mg bd) + CL (500 mg bd) + MT (500 mg bd) | 14 | ITT: 86.2% vs. 81.6%, p = 0.132 PP: 90.2% vs. 86.5%, p = 0.179 | no significant difference |
Pan et al. [48] | 2020 | China | 467 | Culture with agar dilution | AM (1000 mg bd) + CL (500 mg bd) AM (1000 mg bd) + LE (200 mg bd) AM (1000 mg bd) + FU (100 mg bd) BI (200–220 mg bd) + AM (100 mg bd)/CL (500 mg bd)/LE (200 mg bd)/FU (100 mg bd) * | 14 | AM (1000 mg bd) + CL (500 mg bd) + BI (200–220 mg bd) | 14 | ITT: 85.99% vs. 67.32% vs. 63.69%, p < 0.001 PP: 91.22% vs. 74.64% vs. 68.49%, p < 0.001 | no significant differences between tailored triple therapy and empirical bismuth therapy tailored bismuth therapy was the most efficacious regimen |
Perkovic et al. [12] | 2021 | Croatia | 80 | Culture with E test | AM/CL/MT/ TT/LE * (doses n/a) | 14 | AM (1000 mg bd) + CL (500 mg bd) + MT (500 mg bd) | 14 | ITT= 92.5% vs. 70%, p = 0.010 PP = 100% vs. 87.5%, p = 0.030 | tailored therapy superior |
Cho et al. [49] | 2021 | South Korea | 282 | dual priming oligonucleotide-based PCR | PPI + AM + CL PPI + TT + MT + BI (doses n/a) | 7 | AM (1000 mg bd) + MT (750 mg bd) + BI (600 mg bd) | 14 | ITT: 80.9% vs. 85.8%, p = 0.262 PP: 89.0% vs. 93.5%, p = 0.198 | empirical bismuth therapy exhibits similar efficacy and improved cost-effectiveness compared to tailored |
Choi et al. [51] | 2021 | South Korea | 217 | dual-priming oligonucleotide-based PCR | MT (500 mg bd) + BI (300 mg qid) + TT (500 mg qid) AM (1000 mg bd) + CL (500 mg bd) | 10 - 14 | AM (1000 mg bd) + CL (500 mg bd) + MT (500 mg bd) | 10 | ITT: 82.7% vs. 82.2%, p = 095 PP: 90.1% vs. 91.6%, p = 0.72 | no significant difference in eradication rates; adverse events were significantly lower in tailored group |
Kim et al. [50] | 2022 | South Korea | 290 | dual-priming oligonucleotide-based PCR | AM (1000 mg bd) + CL (500 mg bd) MT (500 mg tid) + BI (120 mg qid) + TT (500 mg qid) | 14 | AM (1000 mg bd) + CL (500 mg bd) + MT (500 mg bd) | 14 | ITT: 85.5% vs. 82.8%, p = 0.520 PP: 94.6% vs. 88.6%, p = 0.084 | empirical and tailored therapy showed similar overall eradication rates |
References
- Fischbach, W.; Malfertheiner, P. Helicobacter pylori infection. Dtsch. Arztebl. Int. 2018, 115, 429–436. [Google Scholar] [CrossRef] [PubMed]
- IARC. Working Group on the Evaluation of Carcinogenic Risks to Humans. Helicobacter pylori. In Schistosomes, Liver Flukes and Helicobacter Pylori Views and Expert Opinions of an IARC Working Group on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 1994; pp. 177–240. [Google Scholar]
- Uemura, N.; Okamoto, S.; Yamamoto, S.; Yamaguchi, S.; Mashiba, H.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 2001, 34, 784–789. [Google Scholar] [CrossRef]
- Yeo, Y.H.; Shiu, S.I.; Ho, H.J.; Zou, B.; Lin, J.T.; Wu, M.S.; Liou, J.M.; Wu, C.Y. First-line Helicobacter pylori eradication therapies in countries with high and low clarithromycin resistance: A systematic review and network meta-analysis. Gut 2018, 67, 20–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savoldi, A.; Carrara, E.; Graham, D.Y.; Conti, M.; Tacconelli, E. Prevalence of Antibiotic Resistance in Helicobacter pylori: A Systematic Review and Meta-analysis in World Health Organization Regions. Gastroenterology 2018, 155, 1372–1382. [Google Scholar] [CrossRef] [Green Version]
- Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.M.; Schulz, C.; Gasbarrini, A.; Hunt R., H.; Leja, M.; O'Morain, C.; et al. European Helicobacter and Microbiota Study group. Management of Helicobacter pylori infection: The Maastricht VI/Florence consensus report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipres, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection—The Maastricht V/Florence Consensus Report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mestrovic, A.; Perkovic, N.; Bozic, J.; Pavicic Ivelja, M.; Vukovic, J.; Kardum, G.; Puljiz, Z.; Tonkic, A. Randomised clinical trial comparing concomitant and hybrid therapy for eradication of Helicobacter pylori infection. PLoS ONE 2020, 15, e0244500. [Google Scholar] [CrossRef]
- Hirata, K.; Suzuki, H.; Matsuzaki, J.; Masaoka, T.; Saito, Y.; Nishizawa, T.; Iwasaki, E.; Fukuhara, S.; Okada, S.; Hibi, T. Improvement of reflux symptom related quality of life after Helicobacter pylori eradication therapy. J. Clin. Biochem. Nutr. 2013, 52, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Taguchi, H.; Kanmura, S.; Maeda, T.; Iwaya, H.; Arima, S.; Sasaki, F.; Nasu, Y.; Tanoue, S.; Hashimoto, S.; Ido, A. Helicobacter pylori eradication improves the quality of life regardless of the treatment outcome: A multicenter prospective cohort study. Medicine 2017, 96, e9507. [Google Scholar] [CrossRef] [PubMed]
- Mestrovic, A.; Bozic, J.; Vukojevic, K.; Tonkic, A. Impact of Different Helicobacter pylori Eradication Therapies on Gastrointestinal Symptoms. Medicina 2021, 57, 803. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, N.; Mestrovic, A.; Bozic, J.; Ivelja, M.P.; Vukovic, J.; Kardum, G.; Sundov, Z.; Tonkic, M.; Puljiz, Z.; Vukojevic, K.; et al. Randomized Clinical Trial Comparing Concomitant and Tailored Therapy for Eradication of Helicobacter pylori Infection. J. Pers. Med. 2021, 11, 534. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Fischbach, L. Helicobacter pylori infection. N. Engl. J. Med. 2010, 363, 595–596. [Google Scholar] [PubMed] [Green Version]
- Gisbert, J.P.; Calvet, X. Review article: The effectiveness of standard triple therapy for Helicobacter pylori has not changed over the last decade, but it is not good enough. Aliment. Pharmacol. Ther. 2011, 34, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T.; Shirai, N.; Sugimoto, M.; Nakamura, A.; Hishida, A.; Ishizaki, T. Influence of CYP2C19 pharmacogenetic polymorphism on proton pump inhibitor-based therapies. Drug Metab. Pharmacokinetics 2005, 20, 153–167. [Google Scholar] [CrossRef]
- Lima, J.J.; Thomas, C.D.; Barbarino, J.; Desta, Z.; Van Driest, S.L.; El Rouby, N.; Johnson, J.A.; Cavallari, L.H.; Shakhnovich, V.; Thacker, D.L.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Proton Pump Inhibitor Dosing. Clin. Pharmacol. Ther. 2021, 109, 1417–1423. [Google Scholar] [CrossRef]
- Roszczenko-Jasińska, P.; Wojtyś, M.I.; Jagusztyn-Krynicka, E.K. Helicobacter pylori treatment in the post-antibiotics era-searching for new drug targets. Appl. Microbiol. Biotechnol. 2020, 104, 9891–9905. [Google Scholar] [CrossRef]
- Nyssen, O.P.; Bordin, D.; Tepes, B.; Pérez-Aisa, Á.; Vaira, D.; Caldas, M.; Bujanda, L.; Castro-Fernandez, M.; Lerang, F.; Leja, M.; et al. European Registry on Helicobacter pylori management (Hp-EuReg): Patterns and trends in first-line empirical eradication prescription and outcomes of 5 years and 21,533 patients. Gut 2021, 70, 40–54. [Google Scholar] [CrossRef]
- Graham, D.Y.; Lu, H.; Shiotani, A. Vonoprazan-containing Helicobacter pylori triple therapies contribution to global antimicrobial resistance. J. Gastroenterol. Hepatol. 2021, 36, 1159–1163. [Google Scholar] [CrossRef]
- Chey, W.D.; Mégraud, F.; Laine, L.; López, L.J.; Hunt, B.J.; Howden, C.W. Vonoprazan Triple and Dual Therapy for Helicobacter pylori Infection in the United States and Europe: Randomized Clinical Trial. Gastroenterology 2022, 163, 608–619. [Google Scholar] [CrossRef]
- Zhou, B.G.; Chen, L.X.; Li, B.; Wan, L.Y.; Ai, Y.W. Saccharomyces boulardii as an adjuvant therapy for Helicobacter pylori eradication: A systematic review and meta-analysis with trial sequential analysis. Helicobacter 2019, 24, e12651. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, C.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Meta-analysis of the efficacy of probiotic-supplemented therapy on the eradication of H. pylori and incidence of therapy-associated side effects. Microb. Pathog. 2020, 147, 104403. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Wang, B.; Zhou, X.; Wang, F.; Xie, Y.; Zheng, H.; Lv, N. Efficacy and safety of probiotics as adjuvant agents for Helicobacter pylori infection: A meta-analysis. Exp. Ther. Med. 2015, 9, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Mégraud, F. H pylori antibiotic resistance: Prevalence, importance, and advances in testing. Gut 2004, 53, 1374–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Megraud, F.; Bruyndonckx, R.; Coenen, S.; Wittkop, L.; Huang, T.D.; Hoebeke, M.; Bénéjat, L.; Lehours, P.; Goossens, H.; Glupczynski, Y.; et al. Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut 2021, 70, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Glupczynski, Y.; Mégraud, F.; Lopez-Brea, M.; Andersen, L.P. European multicentre survey of in vitro antimicrobial resistance in Helicobacter pylori. Eur. J. Clin. Microbiol. Infect. Dis. 2001, 20, 820–823. [Google Scholar] [CrossRef]
- Megraud, F.; Coenen, S.; Versporten, A.; Kist, M.; Lopez-Brea, M.; Hirschl, A.M.; Andersen, L.P.; Goossens, H.; Glupczynski, Y.; Study Group participants. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 2013, 62, 34–42. [Google Scholar] [CrossRef]
- Jukic, I.; Vukovic, J.; Rusic, D.; Bozic, J.; Bukic, J.; Leskur, D.; Seselja Perisin, A.; Modun, D. Adherence to Maastricht V/Florence consensus report for the management of Helicobacter pylori infection among primary care phy-sicians and medical students in Croatia: A cross-sectional study. Helicobacter 2021, 26, e12775. [Google Scholar] [CrossRef]
- Gisbert, J.P.; McNicholl, A.G. Optimization strategies aimed to increase the efficacy of H. pylori eradication therapies. Helicobacter 2017, 22, 12392. [Google Scholar] [CrossRef]
- Gisbert, J.P. Optimization strategies aimed to increase the efficacy of Helicobacter pylori eradication therapies with quinolones. Molecules 2020, 25, 5084. [Google Scholar] [CrossRef]
- Khan, S.; Hasan, S.S.; Bond, S.E.; Conway, B.R.; Aldeyab, M.A. Antimicrobial consumption in patients with COVID-19: A systematic review and meta-analysis. Expert Rev. Anti-Infect. Ther. 2022, 20, 749–772. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Shiotani, A.; Graham, D.Y. Current and Future Treatment of Helicobacter pylori Infections. Adv. Exp. Med. Biol. 2019, 1149, 211–225. [Google Scholar] [PubMed]
- Fallone, C.A.; Chiba, N.; Van Zanten, S.V.; Fischbach, L.; Gisbert, J.P.; Hunt, R.H.; Jones, N.L.; Render, C.; Leontiadis, G.I.; Moayyedi, P.; et al. The Toronto consensus for the treatment of Helicobacter pylori infection in adults. Gastroenterology 2016, 151, 51–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liou, J.M.; Chen, P.Y.; Kuo, Y.T.; Wu, M.S. Toward population specific and personalized treatment of Helicobacter pylori infection. J. Biomed. Sci. 2018, 25, 70. [Google Scholar] [CrossRef]
- Megraud, F.; Lehours, P. Helicobacter pylori detection and antimicrobial susceptibility testing. Clin. Microbiol. Rev. 2007, 20, 280–322. [Google Scholar] [CrossRef] [Green Version]
- Liou, J.M.; Wu, M.S.; Lin, J.T. Treatment of Helicobacter pylori infection: Where are we now? J. Gastroenterol. Hepatol. 2016, 31, 1918–1926. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.Y. Hp-normogram (normo-graham) for assessing the outcome of H. pylori therapy: Effect of resistance, duration, and CYP2C19 genotype. Helicobacter 2016, 21, 85–90. [Google Scholar] [CrossRef]
- Romano, M.; Gravina, A.G.; Nardone, G.; Federico, A.; Dallio, M.; Martorano, M.; Mucherino, C.; Romiti, A.; Avallone, L.; Granata, L. Non-bismuth and bismuth quadruple therapies based on previous clarithromycin exposure are as effective and safe in an area of high clarithromycin resistance: A real-life study. Helicobacter 2020, 25, e12694. [Google Scholar] [CrossRef]
- Chen, H.; Dang, Y.; Zhou, X.; Liu, B.; Liu, S.; Zhang, G. Tailored Therapy Versus Empiric Chosen Treatment for Helicobacter pylori Eradication: A Meta-Analysis. Medicine 2016, 95, e2750. [Google Scholar] [CrossRef]
- Ma, Q.; Li, H.; Liao, J.; Cai, Z.; Zhang, B. Tailored therapy for Helicobacter pylori eradication: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 908202. [Google Scholar] [CrossRef]
- Gingold-Belfer, R.; Niv, Y.; Schmilovitz-Weiss, H.; Levi, Z.; Boltin, D. Susceptibility-guided versus empirical treatment for Helicobacter pylori infection: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 2649–2658. [Google Scholar] [CrossRef]
- Delchier, J.C.; Bastuji-Garin, S.; Raymond, J.; Megraud, F.; Amiot, A.; Cambau, E.; Burucoa, C.; HELICOSTIC Study Group. Efficacy of a tailored PCR-guided triple therapy in the treatment of Helicobacter pylori infection. Med. Mal. Infect. 2020, 50, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Ji, D.; Huang, R.; Zhang, F.; Huang, Y.; Xiang, P.; Kong, M.; Nan, L.; Zeng, X.; Wu, Y. Multiple Genetic Analysis System-Based Antibiotic Susceptibility Testing in Helicobacter pylori and High Eradication Rate with Phenotypic Resistance-Guided Quadruple Therapy. Medicine 2015, 94, e2056. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, J.; Song, Z.; He, L.; Li, Y.; Qian, J.; Bai, P.; Xue, Y.; Wang, Y.; Lin, S. Tailored versus Triple plus Bismuth or Concomitant Therapy as Initial Helicobacter pylori Treatment: A Randomized Trial. Helicobacter 2016, 21, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Long, X.; Ji, Y.; Liang, X.; Li, D.; Gao, H.; Xu, B.; Liu, M.; Chen, Y.; Sun, Y.; et al. Randomised controlled trial: Susceptibility-guided therapy versus empiric bismuth quadruple therapy for first-line Helicobacter pylori treatment. Aliment. Pharmacol. Ther. 2019, 49, 1385–1394. [Google Scholar] [CrossRef]
- Ong, S.; Kim, S.E.; Kim, J.H.; Yi, N.H.; Kim, T.Y.; Jung, K.; Park, M.I.; Jung, H.Y. Helicobacter pylori eradication rates with concomitant and tailored therapy based on 23S rRNA point mutation: A multicenter randomized controlled trial. Helicobacter 2019, 24, e12654. [Google Scholar] [CrossRef]
- Pan, J.; Shi, Z.; Lin, D.; Yang, N.; Meng, F.; Lin, L.; Jin, Z.; Zhou, Q.; Wu, J.; Zhang, J.; et al. Is tailored therapy based on antibiotic susceptibility effective? A multicenter, open-label, randomized trial. Front. Med. 2020, 14, 43–50. [Google Scholar] [CrossRef]
- Cho, J.H.; Jin, S.Y.; Park, S. Comparison of tailored Helicobacter pylori eradication versus modified bismuth quadruple therapy in Korea: A randomized controlled trial. Expert Rev. Anti-Infect. Ther. 2022, 20, 923–929. [Google Scholar] [CrossRef]
- Kim, S.J.; Jee, S.R.; Park, M.I.; Jung, K.; Kim, G.H.; Lee, M.W.; Lee, J.; Jang, J.S.; Koh, M.; Busan and Gyeongnam Society of Helicobacter and Upper Gastrointestinal Research. Busan and Gyeongnam Society of Helicobacter and Upper Gastrointestinal Research. A randomized controlled trial to compare Helicobacter pylori eradication rates between the empirical concomitant therapy and tailored therapy based on 23S rRNA point mutations. Medicine 2022, 101, e30069. [Google Scholar] [CrossRef]
- Choi, Y.I.; Chung, J.W.; Kim, K.O.; Kwon, K.A.; Kim, Y.J.; Kim, J.H.; Seo, J.Y.; Park, D.K. Tailored eradication strategy vs concomitant therapy for Helicobacter pylori eradication treatment in Korean patients. World J. Gastroenterol. 2021, 27, 5247–5258. [Google Scholar] [CrossRef]
- Vrebalov Cindro, P.; Bukic, J.; Pranic, S.; Leskur, D.; Rusic, D.; Seselja Perisin, A.; Božić, J.; Vuković, J.; Modun, D. Did an introduction of CONSORT for abstracts guidelines improve reporting quality of randomised controlled trials’ abstracts on Helicobacter pylori infection? Observational study. BMJ Open 2022, 12, e054978. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.Y.; Runke, D.; Anderson, S.Y.; Malaty, H.M.; Klein, P.D. Citric acid as the test meal for the 13C-urea breath test. Am. J. Gastroenterol. 1999, 94, 1214–1217. [Google Scholar] [CrossRef]
- Leodolter, A.; Domínguez-Muñoz, J.E.; Von Arnim, U.; Malfertheiner, P. Citric acid or orange juice for the 13C-urea breath test: The impact of pH and gastric emptying. Aliment. Pharmacol. Ther. 1999, 13, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P.; de la Morena, F.; Abraira, V. Accuracy of monoclonal stool antigen test for the diagnosis of H. pylori infection: A systematic review and meta-analysis. Am. J. Gastroenterol. 2006, 101, 1921–1930. [Google Scholar] [CrossRef]
- Lario, S.; Ramírez-Lázaro, M.J.; Montserrat, A.; Quílez, M.E.; Junquera, F.; Martínez-Bauer, E.; Sanfeliu, I.; Brullet, E.; Campo, R.; Segura, F.; et al. Diagnostic accuracy of three monoclonal stool tests in a large series of untreated Helicobacter pylori infected patients. Clin. Biochem. 2016, 49, 682–687. [Google Scholar] [CrossRef]
- Pohl, D.; Keller, P.M.; Bordier, V.; Wagner, K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J. Gastroenterol. 2019, 25, 4629–4660. [Google Scholar] [CrossRef]
- Monteiro, L.; de Mascarel, A.; Sarrasqueta, A.M.; Bergey, B.; Barberis, C.; Talby, P.; Roux, D.; Shouler, L.; Goldfain, D.; Lamouliatte, H.; et al. Diagnosis of Helicobacter pylori infection: Noninvasive methods compared to invasive methods and evaluation of two new tests. Am. J. Gastroenterol. 2001, 9, 353–358. [Google Scholar] [CrossRef]
- Tseng, C.A.; Wang, W.M.; Wu, D.C. Comparison of the clinical feasibility of three rapid urease tests in the diagnosis of Helicobacter pylori infection. Dig. Dis. Sci. 2005, 50, 449–452. [Google Scholar] [CrossRef]
- Li, Y.; Rimbara, E.; Thirumurthi, S.; Trespalacios, A.; Reddy, R.; Sabounchi, S.; Attumi, T.A.; Graham, D.Y. Detection of clarithromycin resistance in Helicobacter pylori following noncryogenic storage of rapid urease tests for 30 days. J. Dig. Dis. 2012, 13, 54–59. [Google Scholar] [CrossRef]
- Chung, W.C.; Jung, S.H.; Oh, J.H.; Kim, T.H.; Cheung, D.Y.; Kim, B.W.; Kim, S.S.; Kim, J.I.; Sin, E.Y. Dual-priming oligonucleotide-based multiplex PCR using tissue samples in rapid urease test in the detection of Helicobacter pylori infection. World J. Gastroenterol. 2014, 20, 6547–6553. [Google Scholar] [CrossRef]
- Pimentel-Nunes, P.; Libânio, D.; Lage, J.; Abrantes, D.; Coimbra, M.; Esposito, G.; Hormozdi, D.; Pepper, M.; Drasovean, S.; White, J.R.; et al. A multicenter prospective study of the real-time use of narrow-band imaging in the diagnosis of premalignant gastric conditions and lesions. Endoscopy 2016, 48, 723–730. [Google Scholar] [CrossRef]
- Marcos, P.; Brito-Gonçalves, G.; Libânio, D.; Pita, I.; Castro, R.; Sá, I.; Dinis-Ribeiro, M.; Pimentel-Nunes, P. Endoscopic grading of gastric intestinal metaplasia on risk assessment for early gastric neoplasia: Can we replace histology assessment also in the West? Gut 2020, 69, 1762–1768. [Google Scholar] [CrossRef]
- Ogata, S.K.; Gales, A.C.; Kawakami, E. Antimicrobial susceptibility testing for Helicobacter pylori isolates from Brazilian children and adolescents: Comparing agar dilution, E-test, and disk diffusion. Braz. J. Microbiol. 2014, 45, 1439–1448. [Google Scholar] [CrossRef] [Green Version]
- Liou, J.M.; Chang, C.Y.; Sheng, W.H.; Wang, Y.C.; Chen, M.J.; Lee, Y.C.; Hung, H.W.; Chian, H.; Chang, S.C.; Wu, M.S.; et al. Genotypic resistance in Helicobacter pylori strains correlates with susceptibility test and treatment outcomes after levofloxacin- and clarithromycin-based therapies. Antimicrob. Agents Chemother. 2011, 55, 1123–1129. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ye, L.; Jin, L.; Xu, X.; Xu, P.; Wang, X.; Li, H. Application of next generation sequencing to characterize novel mutations in clarithromycin susceptible Helicobacter pylori strains with A2143G of 23S rRNA gene. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 10. [Google Scholar] [CrossRef] [Green Version]
- Nezami, B.G.; Jani, M.; Alouani, D.; Rhoads, D.D.; Sadri, N. Helicobacter pylori mutations detected by next-generation sequencing in formalinfixed, paraffin-embedded gastric biopsy specimens are associated with treatment failure. J. Clin. Microbiol. 2018, 57, e01834-18. [Google Scholar]
- Hu, Y.; Zhang, M.; Lu, B.; Dai:, J. Helicobacter pylori and Antibiotic Resistance, A Continuing and Intractable Problem. Helicobacter 2016, 21, 349–363. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Li, Z.; Wang, L.; Zhu-Ge, L.Y.; Zhao, R.L.; Wu, S.; Wang, Y.; An, Y.; Xie, Y. A systematic review and meta-analysis of genotypic methods for detecting antibiotic resistance in Helicobacter pylori. Helicobacter 2018, 23, e12467. [Google Scholar] [CrossRef]
- Egli, K.; Wagner, K.; Keller, P.M.; Risch, L.; Risch, M.; Bodmer, T. Comparison of the Diagnostic Performance of qPCR, Sanger Sequencing, and Whole-Genome Sequencing in Determining Clarithromycin and Levofloxacin Resistance in Helicobacter pylori. Front. Cell. Infect. Microbiol. 2020, 10, 596371. [Google Scholar] [CrossRef]
- Beresniak, A.; Malfertheiner, P.; Franceschi, F.; Liebaert, F.; Salhi, H.; Gisbert, J.P. Helicobacter pylori “Test-and-Treat” strategy with urea breath test: A cost-effective strategy for the management of dyspepsia and the prevention of ulcer and gastric cancer in Spain-Results of the Hp-Breath initiative. Helicobacter 2020, 25, e12693. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.Y.; Moss, S.F. Antimicrobial susceptibility testing for Helicobacter pylori is now widely available: When, how, why. Am. J. Gastroenterol. 2022, 117, 524–528. [Google Scholar] [CrossRef]
- Gong, R.J.; Xu, C.X.; Li, H.; Liu, X.M. Polymerase chain reaction-based tests for detecting Helicobacter pylori clarithromycin resistance in stool samples: A meta-analysis. World J. Clin. Cases 2021, 9, 133–147. [Google Scholar] [CrossRef]
- Kakiuchi, T.; Okuda, M.; Matsuo, M.; Fujimoto, K. Smart Gene™ as an effective non-invasive point-of-care test to detect Helicobacter pylori clarithromycin-resistant mutation. J. Gastroenterol. Hepatol. 2022, 37, 1719–1725. [Google Scholar] [CrossRef]
- Kuo, C.H.; Lu, C.Y.; Shih, H.Y.; Liu, C.J.; Wu, M.C.; Hu, H.M.; Hsu, W.H.; Yu, F.J.; Wu, D.C.; Kuo, F.C. CYP2C19 polymorphism influences Helicobacter pylori eradication. World J. Gastroenterol. 2014, 20, 16029–16036. [Google Scholar] [CrossRef]
- Ma Win, T.M.; Htun, M.; Phyu Myint, W.P.; Aung, M.M.; Ni, N. High-dose dual therapy and CYP2C19 polymorphism in Helicobacter pylori eradication. GastroHep 2021, 3, 379–383. [Google Scholar] [CrossRef]
- Kuo, C.H.; Wang, S.S.; Hsu, W.H.; Kuo, F.C.; Weng, B.C.; Li, C.J.; Hsu, P.I.; Chen, A.; Hung, W.C.; Yang, Y.C.; et al. Rabeprazole can overcome the impact of CYP2C19 polymorphism on quadruple therapy. Helicobacter 2010, 15, 265–272. [Google Scholar] [CrossRef]
- Ishizaki, T.; Sohn, D.R.; Kobayashi, K.; Chiba, K.; Lee, K.H.; Shin, S.G.; Andersson, T.; Regårdh, C.G.; Lou, Y.C.; Zhang, Y.; et al. Interethnic differences in omeprazole metabolism in the two S-mephenytoin hydroxylation phenotypes studied in Caucasians and Orientals. Ther. Drug Monit. 1994, 16, 214–215. [Google Scholar] [CrossRef]
- Tomalik-Scharte, D.; Lazar, A.; Fuhr, U.; Kirchheiner, J. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharm. J. 2008, 8, 4–15. [Google Scholar] [CrossRef]
- Hagymási, K.; Müllner, K.; Herszényi, L.; Tulassay, Z. Update on the pharmacogenomics of proton pump inhibitors. Pharmacogenomics 2011, 12, 873–888. [Google Scholar] [CrossRef]
- Padol, S.; Yuan, Y.; Thabane, M.; Padol, I.T.; Hunt, R.H. The effect of CYP2C19 polymorphisms on H. pylori eradication rate in dual and triple first-line PPI therapies: A meta-analysis. Am. J. Gastroenterol. 2006, 101, 1467–1475. [Google Scholar] [CrossRef]
- Shi, S.; Klotz, U. Proton pump inhibitors: An update of their clinical use and pharmacokinetics. Eur. J. Clin. Pharmacol. 2008, 64, 935–951. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Wang, H.L.; Chern, H.D.; Shun, C.T.; Lin, B.R.; Lin, C.J.; Wang, T.H. Role of omeprazole dosage and cytochrome P450 2C19 genotype in patients receiving omeprazole-amoxicillin dual therapy for Helicobacter pylori eradication. Pharmacotherapy 2011, 31, 227–238. [Google Scholar] [CrossRef]
- Pan, X.; Li, Y.; Qiu, Y.; Tang, Q.; Qian, B.; Yao, L.; Shi, R.; Zhang, G. Efficacy and tolerability of first-line triple therapy with levofloxacin and amoxicillin plus esomeprazole or rabeprazole for the eradication of Helicobacter pylori infection and the effect of CYP2C19 genotype: A 1-week, randomized, open-label study in Chinese adults. Clin. Ther. 2010, 32, 2003–2011. [Google Scholar]
- Lee, J.H.; Jung, H.Y.; Choi, K.D.; Song, H.J.; Lee, G.H.; Kim, J.H. The Influence of CYP2C19 Polymorphism on Eradication of Helicobacter pylori: A Prospective Randomized Study of Lansoprazole and Rabeprazole. Gut Liver 2010, 4, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Villoria, A.; Garcia, P.; Calvet, X.; Gisbert, J.P.; Vergara, M. Meta-analysis: High-dose proton pump inhibitors vs. standard dose in triple therapy for Helicobacter pylori eradication. Aliment. Pharmacol. Ther. 2008, 28, 868–877. [Google Scholar] [CrossRef]
- Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Am. J. Gastroenterol. 2017, 112, 212–239. [Google Scholar] [CrossRef]
- Sugano, K.; Tack, J.; Kuipers, E.J.; Graham, D.Y.; El-Omar, E.M.; Miura, S.; Haruma, K.; Asaka, M.; Uemura, N.; Malfertheiner, P.; et al. Kyoto global consensus report on Helicobacter pylori gastritis. Gut 2015, 64, 1353–1367. [Google Scholar] [CrossRef] [Green Version]
- Safarov, T.; Kiran, B.; Bagirova, M.; Allahverdiyev, A.M.; Abamor, E.S. An overview of nanotechnology-based treatment approaches against Helicobacter Pylori. Expert Rev. Anti-Infect. Ther. 2019, 17, 829–840. [Google Scholar] [CrossRef]
- Qin, Y.; Lao, Y.H.; Wang, H.; Zhang, J.; Yi, K.; Chen, Z.; Han, J.; Song, W.; Tao, Y.; Li, M. Combatting Helicobacter pylori with oral nanomedicines. J. Mater. Chem. B 2021, 9, 9826–9838. [Google Scholar] [CrossRef]
- Lopes, D.; Nunes, C.; Martins, M.C.; Sarmento, B.; Reis, S. Eradication of Helicobacter pylori: Past, present and future. J. Control. Release 2014, 189, 169–186. [Google Scholar] [CrossRef]
- Kroll, A.V.; Fang, R.H.; Zhang, L. Biointerfacing and Applications of Cell Membrane-Coated Nanoparticles. Bioconj. Chem. 2017, 28, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debraekeleer, A.; Remaut, H. Future perspective for potential Helicobacter pylori eradication therapies. Future Microbiol. 2018, 13, 671–687. [Google Scholar] [CrossRef] [PubMed]
susceptibility-guided therapy in first-line treatment |
rationale empiric first-line treatment (e.g., avoiding clarithromycin if used previously) |
high-dose IPP |
novel antibiotics |
14-day therapy |
vonoprazan instead of PPI |
PCR in diagnostics (from stool sample, as non-invasive test) |
use of nanotechnology |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mestrovic, A.; Perkovic, N.; Tonkic, A.; Sundov, Z.; Kumric, M.; Bozic, J. Personalized Approach in Eradication of Helicobacter pylori Infection. Antibiotics 2023, 12, 7. https://doi.org/10.3390/antibiotics12010007
Mestrovic A, Perkovic N, Tonkic A, Sundov Z, Kumric M, Bozic J. Personalized Approach in Eradication of Helicobacter pylori Infection. Antibiotics. 2023; 12(1):7. https://doi.org/10.3390/antibiotics12010007
Chicago/Turabian StyleMestrovic, Antonio, Nikola Perkovic, Ante Tonkic, Zeljko Sundov, Marko Kumric, and Josko Bozic. 2023. "Personalized Approach in Eradication of Helicobacter pylori Infection" Antibiotics 12, no. 1: 7. https://doi.org/10.3390/antibiotics12010007
APA StyleMestrovic, A., Perkovic, N., Tonkic, A., Sundov, Z., Kumric, M., & Bozic, J. (2023). Personalized Approach in Eradication of Helicobacter pylori Infection. Antibiotics, 12(1), 7. https://doi.org/10.3390/antibiotics12010007