Impact of the Duration of Postoperative Antibiotics on the Prognosis of Patients with Infective Endocarditis
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. Outcomes According to the Duration of Postoperative Antibiotic Therapy
2.3. Comparison of the Postoperative Antibiotic Therapy Duration According to the 1-Year Composite Outcome in Patients with Infective Endocarditis Who Underwent Valve Surgery
2.4. Univariable and Multivariable Logistic Regression Analysis of the 1-Year Composite Outcome in Patients with Infective Endocarditis
3. Discussion
4. Materials and Methods
4.1. Patient Selection
4.2. Variables Definition
4.3. Primary and Secondary Endpoints
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habib, G.; Erba, P.A.; Iung, B.; Donal, E.; Cosyns, B.; Laroche, C.; Popescu, B.A.; Prendergast, B.; Tornos, P.; Sadeghpour, A.; et al. Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J. 2019, 40, 3222–3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talha, K.M.; Baddour, L.M.; Thornhill, M.H.; Arshad, V.; Tariq, W.; Tleyjeh, I.M.; Scott, C.G.; Hyun, M.C.; Bailey, K.R.; Anavekar, N.S.; et al. Escalating incidence of infective endocarditis in Europe in the 21st century. Open Heart 2021, 8, e001846. [Google Scholar] [CrossRef] [PubMed]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar] [CrossRef] [PubMed]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the American Heart Association. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef] [PubMed]
- Dickerman, S.A.; Abrutyn, E.; Barsic, B.; Bouza, E.; Cecchi, E.; Moreno, A.; Doco-Lecompte, T.; Eisen, D.P.; Fortes, C.Q.; Fowler, V.G.; et al. The relationship between the initiation of antimicrobial therapy and the incidence of stroke in infective endocarditis: An analysis from the ICE Prospective Cohort Study (ICE-PCS). Am. Heart J. 2007, 154, 1086–1094. [Google Scholar] [CrossRef]
- García-Cabrera, E.; Fernández-Hidalgo, N.; Almirante, B.; Ivanova-Georgieva, R.; Noureddine, M.; Plata, A.; Lomas, J.M.; Gálvez-Acebal, J.; Hidalgo-Tenorio, C.; Ruíz-Morales, J.; et al. Neurological complications of infective endocarditis: Risk factors, outcome, and impact of cardiac surgery: A multicenter observational study. Circulation 2013, 127, 2272–2284. [Google Scholar] [CrossRef] [Green Version]
- Iung, B.; Duval, X. Infective endocarditis: Innovations in the management of an old disease. Nat. Rev. Cardiol. 2019, 16, 623–635. [Google Scholar] [CrossRef]
- Thuny, F.; Giorgi, R.; Habachi, R.; Ansaldi, S.; Le Dolley, Y.; Casalta, J.-P.; Avierinos, J.-F.; Riberi, A.; Renard, S.; Collart, F.; et al. Excess mortality and morbidity in patients surviving infective endocarditis. Am. Heart J. 2012, 164, 94–101. [Google Scholar] [CrossRef]
- Spellberg, B.; Chambers, H.F.; Musher, D.M.; Walsh, T.L.; Bayer, A.S. Evaluation of a paradigm shift from intravenous antibiotics to oral step-down therapy for the treatment of infective endocarditis: A narrative review. JAMA Intern. Med. 2020, 180, 769–777. [Google Scholar] [CrossRef]
- Werdan, K.; Dietz, S.; Löffler, B.; Niemann, S.; Bushnaq, H.; Silber, R.-E.; Peters, G.; Müller-Werdan, U. Mechanisms of infective endocarditis: Pathogen-host interaction and risk states. Nat. Rev. Cardiol. 2014, 11, 35–50. [Google Scholar] [CrossRef]
- Levine, D.P. Vancomycin: A history. Clin. Infect Dis. 2006, 42 (Suppl. 1), S5–S12. [Google Scholar] [CrossRef]
- Olaison, L.; Belin, L.; Hogevik, H.; Alestig, K. Incidence of beta-lactam-induced delayed hypersensitivity and neutropenia during treatment of infective endocarditis. Arch. Intern. Med. 1999, 159, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Rupnik, M.; Wilcox, M.H.; Gerding, D.N. Clostridium difficile infection: New developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 526–536. [Google Scholar] [CrossRef]
- Rao, V.P.; Wu, J.; Gillott, R.; Baig, M.W.; Kaul, P.; Sandoe, J.A.T. Impact of the duration of antibiotic therapy on relapse and survival following surgery for active infective endocarditis. Eur. J. Cardiothorac. Surg. 2019, 55, 760–765. [Google Scholar] [CrossRef]
- Morris, A.J.; Drinković, D.; Pottumarthy, S.; MacCulloch, D.; Kerr, A.R.; West, T. Bacteriological outcome after valve surgery for active infective endocarditis: Implications for duration of treatment after surgery. Clin. Infect. Dis. 2005, 41, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, P.; Giannella, M.; Scoti, F.; Predomingo, M.; Puga, D.; Pinto, A.; Roda, J.; Marin, M.; Bouza, E. Two weeks of postsurgical therapy may be enough for high-risk cases of endocarditis caused by Streptococcus viridans or Streptococcus bovis. Clin. Microbiol. Infect. 2012, 18, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Gisler, V.; Dürr, S.; Irincheeva, I.; Limacher, A.; Droz, S.; Carrel, T.; Englberger, L.; Sendi, P. Duration of pre-operative antibiotic treatment and culture results in patients with infective endocarditis. J. Am. Coll. Cardiol. 2020, 76, 31–40. [Google Scholar] [CrossRef]
- Heiro, M.; Helenius, H.; Mäkilä, S.; Hohenthal, U.; Savunen, T.; Engblom, E.; Nikoskelainen, J.; Kotilainen, P. Infective endocarditis in a Finnish teaching hospital: A study on 326 episodes treated during 1980–2004. Heart 2006, 92, 1457–1462. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.S.; McAllister, D.A.; Gallacher, P.; Astengo, F.; Pérez, J.A.R.; Hall, J.; Lee, K.K.; Bing, R.; Anand, A.; Nathwani, D.; et al. Incidence, microbiology, and outcomes in patients hospitalized with infective endocarditis. Circulation 2020, 141, 2067–2077. [Google Scholar] [CrossRef]
- Freitas-Ferraz, A.B.; Tirado, G.; Vilacosta, I.; Olmos, C.; Sáez, C.; López, J.; Sarriá, C.; Pérez-García, C.N.; García-Arribas, D.; Ciudad, M.; et al. Contemporary epidemiology and outcomes in recurrent infective endocarditis. Heart 2020, 106, 596–602. [Google Scholar] [CrossRef]
- Manne, M.B.; Shrestha, N.; Lytle, B.W.; Nowicki, E.R.; Blackstone, E.; Gordon, S.M.; Pettersson, G.; Fraser, T.G. Outcomes after surgical treatment of native and prosthetic valve infective endocarditis. Ann. Thorac. Surg. 2012, 93, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Abramczuk, E.; Hryniewiecki, T.; Stepińska, J. Effects of pathogenic factors on prognosis in patients with prosthetic valve endocarditis. Kardiol. Pol. 2007, 65, 115–122. [Google Scholar] [PubMed]
- Tchana-Sato, V.; Hans, G.; Frippiat, F.; Zekhnini, I.; Dulgheru, R.; Lavigne, J.P.; Defraigne, J.O. Surgical management of Staphylococcus capitis prosthetic valve infective endocarditis: Retrospective review of a 10-year single center experience and review of the literature. J. Infect. Public Health 2020, 13, 1705–1709. [Google Scholar] [CrossRef] [PubMed]
- Chu, V.H.; Woods, C.W.; Miro, J.M.; Hoen, B.; Cabell, C.H.; Pappas, P.A.; Federspiel, J.; Athan, E.; Stryjewski, M.; Nacinovich, F.; et al. Emergence of coagulase-negative Staphylococci as a cause of native valve endocarditis. Clin. Infect. Dis. 2008, 46, 232–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.S.; Sexton, D.J.; Mick, N.; Nettles, R.; Fowler, V.G., Jr.; Ryan, T.; Bashore, T.; Corey, G.R. Proposed modifications to the Duke criteria for the diagnosis of infective endocarditis. Clin. Infect. Dis. 2000, 30, 633–638. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Bolger, A.F.; Levison, M.E.; Ferrieri, P.; Gerber, M.A.; Tani, L.Y.; Gewitz, M.H.; et al. Infective endocarditis: Diagnosis, antimicrobial therapy, and management of complications: A statement for healthcare professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, and the Councils on Clinical Cardiology, Stroke, and Cardiovascular Surgery and Anesthesia, American Heart Association: Endorsed by the Infectious Diseases Society of America. Circulation 2005, 111, e394–e434. [Google Scholar]
- Kim, J.; Kim, J.H.; Lee, H.J.; Lee, S.J.; Lee, K.H.; Lee, E.H.; Baek, Y.J.; Ahn, J.Y.; Jeong, S.J.; Ku, N.S.; et al. Impact of valve culture positivity on prognosis in patients with infective endocarditis who underwent valve surgery. Infect. Dis. Ther. 2022, 11, 1253–1265. [Google Scholar] [CrossRef]
- Chu, V.H.; Sexton, D.J.; Cabell, C.H.; Barth, R.L.; Pappas, P.A.; Singh, R.; Fowler, V.G.; Ralph, C.G.; Aksoy, O.; Woods, C.W. Repeat infective endocarditis: Differentiating relapse from reinfection. Clin. Infect. Dis. 2005, 41, 406–409. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012, 41, 734–744. [Google Scholar] [CrossRef]
Variable | Total (n = 216) | Postoperative Antibiotics Duration | p Value | |
---|---|---|---|---|
≤2wks (n = 60, 27.8%) | >2wks (n = 156, 72.2%) | |||
Age (years) | 53 (38–62) | 53 (35–66) | 52 (38–62) | 0.762 |
<60 | 151 (69.9%) | 41 (68.3%) | 110 (70.5%) | |
60–80 | 62 (28.7%) | 18 (30.0%) | 44 (28.2%) | |
>80 | 3 (1.4%) | 1 (1.7%) | 2 (1.3%) | |
Male sex | 145 (67.1%) | 39 (65.0%) | 106 (67.9%) | 0.679 |
Nosocomial infection | 20 (9.3%) | 3 (5.0%) | 17 (10.9%) | 0.180 |
Previous infective endocarditis | 8 (3.7%) | 2 (3.3%) | 6 (3.8%) | 0.999 |
Previous history of valves | 85 (39.4%) | 21 (35.0%) | 64 (41.0%) | 0.417 |
Prosthetic valve | 25 (11.6%) | 5 (8.3%) | 20 (12.8%) | 0.356 |
Previous valve surgery | 32 (14.8%) | 8 (13.3%) | 24 (15.4%) | 0.704 |
Cardiac devices | 3 (1.4%) | 0 (0.0%) | 3 (1.9%) | 0.562 |
Affected valve | ||||
Aortic valve | 104 (48.1%) | 25 (41.7%) | 79 (50.6%) | 0.237 |
Mitral valve | 144 (66.7%) | 46 (76.7%) | 98 (62.8%) | 0.053 |
Tricuspid valve | 9 (4.2%) | 3 (5.0%) | 6 (3.8%) | 0.711 |
Pulmonary valve | 5 (2.3%) | 1 (1.7%) | 4 (2.6%) | 0.999 |
Multiple valves | 43 (19.9%) | 14 (23.3%) | 29 (18.6%) | 0.434 |
Other comorbidities | ||||
Diabetes mellitus | 29 (13.4%) | 7 (11.7%) | 22 (14.1%) | 0.638 |
Chronic heart failure | 9 (4.2%) | 2 (3.3%) | 7 (4.5%) | 0.999 |
End stage renal disease | 2 (0.9%) | 0 (0.0%) | 2 (1.3%) | 0.999 |
Liver disease | 9 (4.2%) | 0 (0.0%) | 9 (5.8%) | 0.065 |
Solid cancer | 12 (5.6%) | 3 (5.0%) | 9 (5.8%) | 0.999 |
Hematologic malignancy | 2 (0.9%) | 1 (1.7%) | 1 (0.6%) | 0.479 |
Connective tissue disease | 6 (2.8%) | 2 (3.3%) | 4 (2.6%) | 0.671 |
Immunosuppressive therapy | 5 (2.3%) | 1 (1.7%) | 4 (2.6%) | 0.999 |
Central venous access | 5 (2.3%) | 0 (0.0%) | 5 (3.2%) | 0.325 |
Charlson Comorbidity Index | 1 (0–3) | 1 (0–3) | 1 (0–3) | 0.548 |
EuroSCORE value | 2.04 (1.53–2.83) | 1.76 (1.53–2.82) | 2.06 (1.53–2.83) | 0.556 |
Clinical signs and symptoms (initial) | ||||
Fever (≥38 °C) | 153 (70.8%) | 42 (70.0%) | 111 (71.2%) | 0.867 |
Left ventricular dysfunction (EF < 50%) | 79 (36.6%) | 19 (31.7%) | 60 (38.5%) | 0.353 |
Sepsis (including septic shock) | 141 (65.3%) | 39 (65.0%) | 102 (65.4%) | 0.958 |
Skin lesions | 3 (1.4%) | 1 (1.7%) | 2 (1.3%) | 0.999 |
Embolic complications | ||||
CNS embolic complications | 64 (29.6%) | 19 (31.7%) | 45 (28.8%) | 0.684 |
Renal failure | 18 (8.3%) | 5 (8.3%) | 13 (8.3%) | 0.999 |
PAOD | 2 (0.9%) | 0 (0.0%) | 2 (1.3%) | 0.379 |
Other systemic emboli | 18 (8.3%) | 5 (8.3%) | 13 (8.3%) | 0.999 |
Microbiology | ||||
Coagulase negative staphylococci | 17 (7.9%) | 6 (10.0%) | 11 (7.1%) | 0.573 |
Staphylococcus aureus | 14 (6.5%) | 4 (6.7%) | 10 (6.4%) | 0.999 |
MSSA | 10 (4.6%) | 3 (5.0%) | 7 (4.5%) | 0.999 |
MRSA | 4 (1.9%) | 1 (1.7%) | 3 (1.9%) | 0.999 |
Enterococcus species | 15 (6.9%) | 3 (5.0%) | 12 (7.7%) | 0.765 |
Streptococcus species | 91 (42.1%) | 26 (43.3%) | 65 (41.7%) | 0.824 |
HACEK | 1 (0.5%) | 1 (1.7%) | 0 (0.0%) | 0.278 |
Gram negative bacilli (except HACEK) | 3 (1.5%) | 0 (0.0%) | 3 (1.9%) | 0.562 |
Others | 10 (4.6%) | 2 (3.3%) | 8 (5.1%) | 0.730 |
Culture-negative | 70 (32.4%) | 19 (31.7%) | 51 (32.7%) | 0.885 |
Antibiotics | ||||
Ampicillin/Sulbactam | 64 (29.6%) | 14 (23.3%) | 50 (32.1%) | 0.209 |
Penicillin | 67 (31.0%) | 20 (33.3%) | 47 (30.1%) | 0.648 |
Other β-lactams a | 123 (56.9%) | 35 (58.3%) | 88 (56.4%) | 0.798 |
Vancomycin | 106 (49.1%) | 25 (41.7%) | 81 (51.9%) | 0.177 |
Aminoglycoside | 162 (75.0%) | 48 (80.0%) | 114 (73.1%) | 0.293 |
Quinolone | 1 (0.5%) | 0 (0.0%) | 1 (0.6%) | 0.999 |
Use of more than one antibiotic | 187 (86.6%) | 52 (86.7%) | 135 (86.5%) | 0.980 |
Duration of antibiotic treatment | ||||
Duration of ampicillin/sulbactam (days) | 26 (11–39) | 17 (11–26) | 27 (13–40) | 0.096 |
Duration of penicillin (days) | 29 (25–35) | 28 (18–35) | 29 (26–35) | 0.361 |
Duration of other β-lactams (days) | 27 (14–40) | 17 (14–28) | 17 (5–36) | 0.059 |
Duration of vancomycin (days) | 24 (8–34) | 16 (12–28) | 12 (5–35) | 0.920 |
Duration of aminoglycoside (days) | 21 (14–29) | 26 (10–31) | 21 (14–32) | 0.849 |
Patients with vegetation (initial) | 202 (93.5%) | 56 (93.3%) | 146 (93.6%) | 0.999 |
Median maximal vegetation size (cm) | 1.1 (0.7–1.6) | 1.1 (0.7–1.8) | 1.1 (0.7–1.6) | 0.805 |
Postoperative Outcomes | Total (n = 216) | Postoperative Antibiotics Duration | p Value | |
---|---|---|---|---|
≤2wks (n = 60, 27.8%) | >2wks (n = 156, 72.2%) | |||
1-year Recurrence a | 3 (1.4%) | 1 (1.7%) | 2 (1.3%) | 0.829 |
Relapse b | 2 (0.9%) | 0 (0.0%) | 2 (1.3%) | 0.379 |
Reinfection c | 1 (0.5%) | 1 (1.7%) | 0 (0.0%) | 0.107 |
1-year Reoperation d | 4 (1.9%) | 1 (1.7%) | 3 (1.9%) | 0.901 |
1-year Mortality | 15 (6.9%) | 6 (10.0%) | 9 (5.8%) | 0.274 |
1-year Composite outcome e | 20 (9.3%) | 8 (13.3%) | 12 (7.7%) | 0.201 |
New-onset heart failure | 23 (10.6%) | 10 (16.7%) | 13 (8.3%) | 0.075 |
New conduction abnormality | 18 (8.3%) | 2 (3.3%) | 16 (10.3%) | 0.099 |
New paravalvular complications | 31 (14.4%) | 6 (10.0%) | 25 (16.0%) | 0.258 |
Characteristics | N | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
Sex | |||||||
Male | 145 | 1 | |||||
Female | 71 | 1.387 | 0.495–3.887 | 0.534 | |||
Previous infective endocarditis | 8 | 0.700 | 0.064–7.646 | 0.770 | |||
Prosthetic valve | 25 | 1.912 | 0.519–7.035 | 0.330 | |||
Multiple valve involvement | 43 | 2.253 | 0.740–6.864 | 0.153 | |||
Charlson comorbidity index | 1.110 | 0.940–1.311 | 0.220 | ||||
Microbiology | |||||||
Staphylococcus species a | 32 | 3.648 | 1.166–11.413 | 0.026 | 3.683 | 1.341–10.114 | 0.011 |
Culture-negative b | 70 | 1.184 | 0.357–3.931 | 0.783 | |||
Postoperative antibiotics duration (days) | 0.987 | 0.947–1.029 | 0.536 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, J.H.; Lee, H.J.; Lee, S.J.; Kim, C.; Lee, J.A.; Lee, K.H.; Pyo, W.K.; Ahn, J.Y.; Jeong, S.J.; et al. Impact of the Duration of Postoperative Antibiotics on the Prognosis of Patients with Infective Endocarditis. Antibiotics 2023, 12, 173. https://doi.org/10.3390/antibiotics12010173
Kim J, Kim JH, Lee HJ, Lee SJ, Kim C, Lee JA, Lee KH, Pyo WK, Ahn JY, Jeong SJ, et al. Impact of the Duration of Postoperative Antibiotics on the Prognosis of Patients with Infective Endocarditis. Antibiotics. 2023; 12(1):173. https://doi.org/10.3390/antibiotics12010173
Chicago/Turabian StyleKim, Jinnam, Jung Ho Kim, Hi Jae Lee, Se Ju Lee, Changhyup Kim, Jung Ah Lee, Ki Hyun Lee, Won Kyung Pyo, Jin Young Ahn, Su Jin Jeong, and et al. 2023. "Impact of the Duration of Postoperative Antibiotics on the Prognosis of Patients with Infective Endocarditis" Antibiotics 12, no. 1: 173. https://doi.org/10.3390/antibiotics12010173
APA StyleKim, J., Kim, J. H., Lee, H. J., Lee, S. J., Kim, C., Lee, J. A., Lee, K. H., Pyo, W. K., Ahn, J. Y., Jeong, S. J., Ku, N. S., Lee, S. H., Choi, J. Y., & Yeom, J. -S. (2023). Impact of the Duration of Postoperative Antibiotics on the Prognosis of Patients with Infective Endocarditis. Antibiotics, 12(1), 173. https://doi.org/10.3390/antibiotics12010173