The Role of Biomarkers in Influenza and COVID-19 Community-Acquired Pneumonia in Adults
Abstract
:1. Introduction
2. Procalcitonin and C-Reactive Protein as Biomarkers of Infection
2.1. Procalcitonin: Physiology and Kinetics
2.2. C-Reactive Protein: Physiology and Kinetics
3. The Role of Procalcitonin and C-Reactive Protein in Identifying Influenza Pneumonia, SARS-CoV-2 Pneumonia and Mixed Bacterial and Viral Respiratory Co-Infection
3.1. Procalcitonin Diagnostic Ability
3.2. C-Reactive Protein Diagnostic Ability
4. The Prognostic Value of Procalcitonin and C-Reactive Protein in Influenza and SARS-CoV-2 Pneumonia
4.1. PCT as Severity Predictor
4.2. CRP as Severity Predictor
5. Other Biomarkers in Influenza and SARS-CoV-2 Pneumonia
6. Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rello, J.; Ollendorf, D.A.; Oster, G.; Bellm, L.; Redman, R.; Kollef, M.H.; Outcomes, V.A.P.; Advisory, S. Epidemiology and Outcomes of Ventilator-Associated Pneumonia in a Large US Database. Chest 2002, 122, 2115–2121. [Google Scholar] [CrossRef] [Green Version]
- Cillóniz, C.; Rodríguez-hurtado, D. Clinical Approach to Community-acquired Pneumonia. J. Thorac. Imaging 2018, 33, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.K.; Shukla, S.J.; Olsen, M.A.; Kollef, M.H.; Hollenbeak, C.S.; Cox, M.J.; Cohen, M.M.; Fraser, V.J. Outcome and attributable cost of ventilator-associated pneumonia among intensive care unit patients in a suburban medical center. Crit. Care Med. 2003, 31, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- WHO. The Top 10 Causes of Death. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 20 December 2022).
- Burk, M.; El-kersh, K.; Saad, M.; Wiemken, T.; Ramirez, J.; Cavallazzi, R. Viral infection in community-acquired pneumonia: A systematic review and meta-analysis. Eur. Respir. J. 2016, 25, 178–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S. Epidemiology of Viral Pneumonia Respiratory viruses Pneumonia Epidemiology. Clin. Chest Med. 2017, 38, 1–9. [Google Scholar] [CrossRef]
- Ruuskanen, O.; Lahti, E.; Jennings, L.C.; Murdoch, D.R. Viral pneumonia. Lancet 2011, 377, 1264–1275. [Google Scholar] [CrossRef]
- Simonsen, L.; Spreeuwenberg, P.; Lustig, R.; Taylor, R.J.; Fleming, D.M.; Kroneman, M.; Van Kerkhove, M.D.; Mounts, A.W.; Paget, W.J. Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study. PLoS Med. 2013, 10, e1001558. [Google Scholar] [CrossRef] [Green Version]
- Adil, T.; Rahman, R.; Whitelaw, D.; Jain, V.; Al-taan, O.; Rashid, F.; Munasinghe, A.; Jambulingam, P. SARS-CoV-2 and the pandemic of COVID-19. Postgrad. Med. J. 2021, 97, 110–116. [Google Scholar] [CrossRef]
- Kwan, Y.; Joo, O.; Ryoun, H.; Kim, T.; Lee, M. Impact of bacterial and viral coinfection in community-acquired pneumonia in adults. Diagn. Microbiol. Infect. Dis. 2019, 94, 50–54. [Google Scholar]
- Macintyre, C.R.; Chughtai, A.A.; Barnes, M.; Ridda, I.; Seale, H.; Toms, R.; Heywood, A. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a (H1N1) pdm09. BMC Infect. Dis. 2018, 18, 637. [Google Scholar] [CrossRef] [Green Version]
- Garnacho-Montero, J.; Barrero-Garcia, I.; Gómez-Prieto, M.D.G.; Martin-Loeches, I. Severe community-acquired pneumonia: Current management and future therapeutic alternatives, Expert Review of Anti-infective Therapy. Expert Rev. Anti-Infect. Ther. 2018, 16, 667–677. [Google Scholar] [CrossRef]
- Carbonell, R.; Urgelés, S.; Rodríguez, A.; Bodí, M.; Martín-Loeches, I.; Solé-Violán, J.; Díaz, E.; Gómez, J.; Trefler, S.; Vallverdú, M.; et al. Mortality comparison between the first and second/third waves among 3795 critical COVID-19 patients with pneumonia admitted to the ICU: A multicentre retrospective cohort study. Lancet Reg. Health-Eur. 2021, 11, 100243. [Google Scholar] [CrossRef]
- Reynolds, J.H.; McDonald, G.; Alton, H.; Gordon, S.B. Pneumonia in the immunocompetent patient. Br. J. Radiol. 2010, 83, 998–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.J.; Lim, S.; Choe, J.; Choi, S.-H.; Sung, H.; Do, K.-H. Radiographic and CT Features of Viral Pneumonia. RadioGraphics 2018, 38, 719–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covington, E.W.; Drive, L.; Roberts, M.Z.; Drive, L. Procalcitonin monitoring as a guide for antimicrobial therapy: A review of current literature. Pharmacotherapy 2018, 38, 569–581. [Google Scholar] [CrossRef]
- Martı, R.; Reyes, S.; Mensa, J.; Filella, X.; Marcos, M.A.; Martı, A.; Esquinas, C.; Ramirez, P.; Torres, A. Biomarkers improve mortality prediction by prognostic scales in community-acquired pneumonia. Thorax 2009, 64, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Seligman, R.; Meisner, M.; Lisboa, T.C.; Hertz, F.T.; Filippin, T.B.; Fachel, J.M.G.; Teixeira, P.J.Z. Decreases in procalcitonin and C-reactive protein are strong predictors of survival in ventilator-associated pneumonia. Crit. Care 2006, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Cheng, C.; Zheng, X.; Jin, Y.; Duan, G.; Chen, M.; Chen, S. Elevated procalcitonin is positively associated with the severity of COVID-19: A meta-analysis based on 10 cohort studies. Medicina 2021, 57, 594. [Google Scholar] [CrossRef] [PubMed]
- Yitbarek, G.Y.; Walle Ayehu, G.; Asnakew, S.; Ayele, F.Y.; Bariso Gare, M.; Mulu, A.T.; Dagnaw, F.T.; Melesie, B.D. The role of C-reactive protein in predicting the severity of COVID-19 disease: A systematic review. SAGE Open Med. 2021, 9, 205031212110507. [Google Scholar] [CrossRef]
- Musher, D.M.; Thorner, A.R.; Europe, I. Community-Acquired Pneumonia. N. Engl. J. Med. 2019, 23, 1619–1628. [Google Scholar] [CrossRef]
- Definitions, B.; Group, W. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Self, W.H.; Balk, R.A.; Grijalva, C.G.; Williams, D.J.; Zhu, Y.; Anderson, E.J.; Waterer, G.W.; Courtney, D.M.; Bramley, A.M.; Trabue, C.; et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized with Community-Acquired Pneumonia. Clin. Infect. Dis. 2017, 65, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moya, F.; Nieto, A.; R-candela, J.L. Calcitonin Biosynthesis: Evidence for a Precursor. Eur. J. Biochem. 1975, 413, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Assicot, M.; Gendrel, D.; Carsin, H. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993, 341, 515–518. [Google Scholar] [CrossRef]
- White, J.; Nyle, E.S.; Snider, R.H.; Becker, K.L.; Habener, J.F. Ubiquitous Expression of the Calcitonin-I Gene in Multiple Tissues in Response to Sepsis. J. Clin. Endocrinol. Metab. 2001, 86, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Becze, Z. The molecular basis of procalcitonin synthesis in different infectious and non-infectious acute conditions. J. Hum. Virol. Retrovirol. 2016, 3, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Brodská, H.; Malíčková, K.; Adámková, V.; Benáková, H.; Šåastná, M.M.; Zima, T. Significantly higher procalcitonin levels could differentiate Gram-negative sepsis from Gram-positive and fungal sepsis. Clin. Exp. Med. 2013, 13, 165–170. [Google Scholar] [CrossRef]
- Linscheid, P.; Seboek, D.; Nylen, E.S.; Langer, I.; Schlatter, M.; Becker, K.L.; Keller, U.; Muller, B. In vitro and in vivo calcitonin-I gene expression in parenchymal cells: A novel product of human adipose tissue. Endocrinology 2003, 144, 5578–5584. [Google Scholar] [CrossRef]
- Oláh, A.; Belágyi, T.; Issekutz, A.; Makay, R.; Zaborszky, A. Value of procalcitonin quick test in the differentiation between sterile and infected forms of acute pancreatitis. Hepatogastroenterology 2005, 5, 243. [Google Scholar]
- Meisner, M.; Tschaikowsky, K.; Hutzler, A. Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med. 1998, 24, 680–684. [Google Scholar] [CrossRef]
- Parli, S.E.; Trivedi, G.; Woodworth, A.; Chang, P.K. Procalcitonin: Usefulness in Acute Care Surgery and Trauma. Surg. Infect. 2018, 19, 131–136. [Google Scholar] [CrossRef] [PubMed]
- De Werra, I.; Jaccard, C.; Corradin, S.B.; Chiolero, R.; Yersin, B.; Gallati, H.; Assicot, M.; Bohuon, C.; Baumgartner, J.-D.; Heumann, D.; et al. Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: Comparisons in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Crit. Care Med. 1997, 25, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Annborn, M.; Dankiewicz, J.; Erlinge, D.; Hertel, S.; Rundgren, M.; Smith, J.G.; Struck, J.; Friberg, H. Procalcitonin after cardiac arrest—An indicator of severity of illness, ischemia-reperfusion injury and outcome. Resuscitation 2013, 84, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, A.K.A.; Girio-fragkoulakis, C.; Nakouti, T. Procalcitonin: A New Biomarker for Medullary Thyroid Cancer? A Systematic Review. Anticancer. Res. 2016, 3810, 3803–3810. [Google Scholar]
- Grace, E.; Turner, R.M.; Carolina, S. Use of Procalcitonin in Patients With Various Degrees of Chronic Kidney Disease Including Renal Replacement Therapy. Clin. Infect. Dis. 2014, 59, 1761–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sungurlu, S.; Balk, R.A. The Role of Biomarkers in the diagnosis and Management of Pneumonia. Clin. Chest Med. 2018, 39, 691–701. [Google Scholar] [CrossRef] [PubMed]
- Raess, N.; Schuetz, P.P.; Cesana-nigro, N.; Winzeler, B.; Urwyler, S.A.; Schaedelin, S.; Nicolas, P.; Blum, M.R.; Briel, P.M. Influence of Prednisone on Inflammatory Biomarkers in Community-Acquired Pneumonia: Secondary Analysis of a Randomized Trial. J. Clin. Pharmacol. 2021, 61, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Tillett, W.S.; Francis, T., Jr. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J. Exp. Med. 1930, 52, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, R.F. C-reactive protein, inflammation, and innate immunity. Immunol. Res. 2001, 24, 163–176. [Google Scholar] [CrossRef]
- Peisajovich, A.; Marnell, L.; Mold, C.; Du Clos, T.W. C-reactive protein at the interface between innate immunity and inflammation. Expert Rev. Clin. Immunol. 2008, 4, 379–390. [Google Scholar] [CrossRef]
- Ansar, W.; Ghosh, S. C-reactive protein and the biology of disease. Immunol. Res. 2013, 56, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Pieri, G.; Agarwal, B.; Burroughs, A.K. C-reactive protein and bacterial infection in cirrhosis. Ann. Gastroenterol. 2014, 27, 113–120. [Google Scholar]
- Póvoa, P. C-reactive protein: A valuable marker of sepsis. Intensive Care Med. 2002, 28, 235–243. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Schuetz, P.; Müller, B.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; Tubach, F.; et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst. Rev. 2012, CD007498. [Google Scholar] [CrossRef] [Green Version]
- Christ-crain, M.; Stolz, D.; Bingisser, R.; Mu, C.; Miedinger, D.; Huber, P.R.; Zimmerli, W.; Harbarth, S.; Tamm, M.; Mu, B. Procalcitonin Guidance of Antibiotic Therapy in Community-acquired Pneumonia. Am. J. Respir. Crit. Care Med. 2006, 174, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuetz, P.; Wirz, Y.; Sager, R.; Christ-Crain, M.; Stolz, D.; Tamm, M.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; et al. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst. Rev. 2017, 10, CD007498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA. Clears Test to Help Manage Antibiotic Treatment for Lower Respiratory Tract Infections and Sepsis. Available online: https://www.fda.gov/news-events/press-announcements/fda-clears-test-help-manage-antibiotic-treatment-lower-respiratory-tract-infection (accessed on 20 December 2022).
- Second WHO Model List of Essential In Vitro Diagnostics. Available online: https://www.who.int/publications/i/item/WHO-MVP-EMP-2019.05 (accessed on 20 December 2022).
- Michaelidis, C.I.; Zimmerman, R.K.; Nowalk, M.P.; Fine, M.J.; Smith, K.J. Cost-Effectiveness of Procalcitonin-Guided Antibiotic Therapy for Outpatient Management of Acute Respiratory Tract Infections in Adults. J. Gen. Intern. Med. 2014, 29, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Pfister, R.; Kochanek, M.; Leygeber, T.; Brun-Buisson, C.; Cuquemelle, E.; Machado, M.P.; Piacentini, E.; Hammond, N.E.; Ingram, P.R.; Michels, G. Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: A prospective cohort study, systematic review and individual patient data meta-analysis. Crit. Care 2014, 18, R44. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, R.; Moreno, G.; Mart, I.; Gomez-bertomeu, F.; Sarvis, C.; Josep, G.; Emili, D.; Papiol, E.; Trefler, S.; Nieto, M.; et al. Prognostic Value of Procalcitonin and C-Reactive Protein in 1608 Critically Ill Patients with Severe Influenza Pneumonia. Antibiotics 2021, 10, 350. [Google Scholar] [CrossRef]
- Wu, M.-H.; Lin, C.-C.; Huang, S.-L.; Shih, H.-M.; Wang, C.-C.; Lee, C.-C.; Wu, J.-Y. Can procalcitonin tests aid in identifying bacterial infections associated with influenza pneumonia? A systematic review and meta-analysis. Influenza Other Respir. Viruses 2013, 7, 349–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, A.H.; Avilés-Jurado, F.X.; Díaz, E.; Schuetz, P.; Trefler, S.I.; Solé-Violán, J.; Cordero, L.; Vidaur, L.; Estella, Á.; Pozo Laderas, J.C.; et al. Procalcitonin (PCT) levels for ruling-out bacterial coinfection in ICU patients with influenza: A CHAID decision-tree analysis. J. Infect. 2016, 72, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Cuquemelle, E.; Soulis, F.; Villers, D.; Somohano, C.A.; Fartoukh, M.; Schmidt, M.; Boulain, T. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study. Intensive Care Med. 2011, 37, 796–800. [Google Scholar] [CrossRef]
- Soltani, S.; Faramarzi, S.; Zandi, M.; Shahbahrami, R.; Jafarpour, A.; Akhavan Rezayat, S.; Pakzad, I.; Abdi, F.; Malekifar, P.; Pakzad, R. Bacterial coinfection among coronavirus disease 2019 patient groups: An updated systematic review and meta-analysis. New Microbes New Infect. 2021, 43, 1–11. [Google Scholar] [CrossRef]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; Du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Boulle Geronimi, C.; Nieszkowska, A.; et al. Early Bacterial Identification among Intubated Patients with COVID-19 or Influenza Pneumonia: A European Multicenter Comparative Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 546–556. [Google Scholar] [CrossRef]
- Carbonell, R.; Urgelés, S.; Salgado, M.; Rodríguez, A.; Felipe, L.; Fuentes, Y.V.; Serrano, C.C.; Caceres, E.L.; Bodí, M.; Martín-loeches, I.; et al. Negative predictive value of procalcitonin to rule out bacterial respiratory co-infection in critical covid-19 patients. J. Infect. 2022, 85, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S.; Cohen, A.J.; Stahl, Y.; Valda Toro, P.; Young, G.M.; Datta, R.; Yan, X.; Ristic, N.T.; Bermejo, S.D.; Sharma, L.; et al. Severe respiratory viral infection induces procalcitonin in the absence of bacterial pneumonia. Thorax 2020, 75, 974–981. [Google Scholar] [CrossRef]
- May, M.; Chang, M.; Dietz, D.; Shoucri, S.; Laracy, J.; Sobieszczyk, M.E.; Uhlemann, A.C.; Zucker, J.; Kubin, C.J. Limited utility of procalcitonin in identifying community-associated bacterial infections in patients presenting with coronavirus disease 2019. Antimicrob. Agents Chemother. 2021, 65, 1–5. [Google Scholar] [CrossRef]
- Dolci, A.; Robbiano, C.; Aloisio, E.; Chibireva, M.; Serafini, L.; Falvella, F.S.; Pasqualetti, S.; Panteghini, M. Searching for a role of procalcitonin determination in COVID-19: A study on a selected cohort of hospitalized patients. Clin. Chem. Lab. Med. 2021, 59, 433–440. [Google Scholar] [CrossRef]
- Wu, C.-P.; Adhi, F.; Highland, K. Recognition and management of respiratory co-infection and secondary bacterial pneumonia in patients with COVID-19. Cleve. Clin. J. Med. 2020, 87, 659–663. [Google Scholar] [CrossRef]
- van der Meer, V.; Neven, A.K.; van den Broek, P.J.; Assendelft, W.J. Primary care Diagnostic value of C reactive protein in infections of the lower respiratory tract: Systematic review. BMJ 2005, 331, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Self, W.H.; Grijalva, C.G.; Williams, D.J.; Woodworth, A.; Balk, R.A.; Fakhran, S.; Zhu, Y.; Courtney, D.M.; Chappell, J.; Anderson, E.J.; et al. Procalcitonin as an Early Marker of the Need for Invasive Respiratory or Vasopressor Support in Adults With Community-Acquired Pneumonia. Chest 2016, 150, 819–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melbye, H.; Hvidsten, D.; Holm, A.; Nordbø, S.A.; Brox, J. The course of C-reactive protein response in untreated upper respiratory tract infection. Br. J. Gen. Pract. 2004, 54, 653–658. [Google Scholar]
- Schuetz, P.; Suter-Widmer, I.; Chaudri, A.; Christ-Crain, M.; Zimmerli, W.; Mueller, B. Prognostic value of procalcitonin in community-acquired pneumonia. Eur. Respir. J. 2011, 37, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Branche, A.; Neeser, O.; Mueller, B.; Schuetz, P. Procalcitonin to guide antibiotic decision making. Curr. Opin. Infect. Dis. 2019, 32, 130–135. [Google Scholar] [CrossRef] [PubMed]
- De Jong, E.; Van Oers, J.A.; Beishuizen, A.; Vos, P.; Vermeijden, W.J.; Haas, L.E.; Loef, B.G.; Dormans, T.; Van Melsen, G.C.; Kluiters, Y.C.; et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: A randomised, controlled, open-label trial. Lancet Infect. Dis. 2016, 16, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A.; Syed, U.; Strollo, S. Swine influenza (H1N1) pneumonia: Elevated serum procalcitonin levels not due to superimposed bacterial pneumonia. Int. J. Antimicrob. Agents 2010, 35, 515–516. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.; Wan, T.-T.; Guo, S.-B.; Liu, X.; Cai, J.-F.; Qi, X.; Liu, W.-X. Outcome prediction using the Mortality in Emergency Department Sepsis score combined with procalcitonin for influenza patients. Med. Clin. 2019, 153, 411–417. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chim. Acta 2020, 505, 190–191. [Google Scholar] [CrossRef]
- Li, J.; He, X.; Yuan, Y.; Zhang, W.; Li, X.; Zhang, Y.; Li, S.; Guan, C.; Gao, Z.; Dong, G.; et al. Meta-analysis investigating the relationship between clinical features, outcomes, and severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia. Am. J. Infect. Control 2021, 49, 82–89. [Google Scholar] [CrossRef]
- Heer, R.S.; Mandal, A.K.J.; Kho, J.; Szawarski, P.; Csabi, P.; Grenshaw, D.; Walker, I.A.L.; Missouris, C.G. Elevated procalcitonin concentrations in severe Covid-19 may not reflect bacterial co-infection. Ann. Clin. Biochem. 2021, 58, 520–527. [Google Scholar] [CrossRef]
- Vanhomwegen, C.; Veliziotis, I.; Malinverni, S.; Konopnicki, D.; Dechamps, P.; Claus, M.; Roman, A.; Cotton, F.; Dauby, N. Procalcitonin accurately predicts mortality but not bacterial infection in COVID-19 patients admitted to intensive care unit. Ir. J. Med. Sci. 2021, 190, 1649–1652. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Singh, L.; McAlister, J., III; Jo, Y.; Makaryan, T.T.; Hussain, S.; Trenschel, R.W.; Kesselman, M.M. Serum Procalcitonin as a Predictive Biomarker in COVID-19: A Retrospective Cohort Analysis. Cureus 2022, 14, e27816. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Owens, M.B.; Restrepo, M.; Povoa, P.; Martin-Loeches, I. Tools for outcome prediction in patients with community acquired pneumonia. Expert Rev. Clin. Pharmacol. 2017, 10, 201–211. [Google Scholar] [CrossRef]
- Menéndez, R.; Martinez, R.; Reyes, S.; Mensa, J.; Polverino, E.; Filella, X.; Esquinas, C.; Martinez, A.; Ramirez, P.; Torres, A. Stability in community-acquired pneumonia: One step forward with markers? Thorax 2009, 64, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Paling, F.P.; Hoepelman, A.I.M.; Van Der Meer, V.; Oosterheert, J.J. Evaluating the evidence for the implementation of C-reactive protein measurement in adult patients with suspected lower respiratory tract infection in primary care: A systematic review. Fam. Pract. 2012, 318, 1393. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, O.; Rogowski, O.; Aviram, G.; Mizrahi, M.; Zeltser, D.; Justo, D.; Dahan, E.; Arad, R.; Touvia, O.; Tau, L.; et al. C-reactive protein serum levels as an early predictor of outcome in patients with pandemic H1N1 influenza A virus infection. BMC Infect. Dis. 2010, 10, 288. [Google Scholar] [CrossRef] [Green Version]
- Krüger, S.; Ewig, S.; Giersdorf, S.; Hartmann, O.; Suttorp, N.; Welte, T. Cardiovascular and Inflammatory Biomarkers to Predict Short- and Long-Term Survival in Community-acquired Pneumonia. Am. J. Respir. Crit. Care Med. 2010, 182, 1426–1434. [Google Scholar] [CrossRef]
- Bello, S.; Lasierra, A.B.; Mincholé, E.; Fandos, S.; Ruiz, M.A.; Vera, E.; de Pablo, F.; Ferrer, M.; Menendez, R.; Torres, A. Prognostic power of proadrenomedullin in community-acquired pneumonia is independent of aetiology. Eur. Respir. J. 2012, 39, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela-Méndez, B.; Valenzuela-Sánchez, F.; Rodríguez-Gutiérrez, J.F.; Bohollo-de-Austria, R.; Estella, Á.; Martínez-García, P.; González-García, M.Á.; Rello, J. Plasma Levels of Mid-Regional Proadrenomedullin Accurately Identify H1N1pdm09 Influenza Virus Patients with Risk of Intensive Care Admission and Mortality in the Emergency Department. J. Pers. Med. 2022, 12, 84. [Google Scholar] [CrossRef]
- Valero Cifuentes, S.; García Villalba, E.; Alcaraz García, A.; Alcaraz García, M.J.; Muñoz Pérez, Á.; Piñera Salmerón, P.; Bernal Morell, E. Prognostic value of pro-adrenomedullin and NT-proBNP in patients referred from the emergency department with influenza syndrome. Emergencias 2019, 31, 180–184. [Google Scholar]
- Montrucchio, G.; Balzani, E.; Lombardo, D.; Giaccone, A.; Vaninetti, A.; D’Antonio, G.; Rumbolo, F.; Mengozzi, G.; Brazzi, L. Proadrenomedullin in the Management of COVID-19 Critically Ill Patients in Intensive Care Unit: A Systematic Review and Meta-Analysis of Evidence and Uncertainties in Existing Literature. J. Clin. Med. 2022, 11, 4543. [Google Scholar] [CrossRef] [PubMed]
- Klouche, K.; Cristol, J.P.; Devin, J.; Gilles, V.; Kuster, N.; Larcher, R.; Amigues, L.; Corne, P.; Jonquet, O.; Dupuy, A.M. Diagnostic and prognostic value of soluble CD14 subtype (Presepsin) for sepsis and community-acquired pneumonia in ICU patients. Ann. Intensive Care 2016, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guarino, M.; Perna, B.; Maritati, M.; Remelli, F.; Trevisan, C.; Spampinato, M.D.; Costanzini, A.; Volpato, S.; Contini, C.; De Giorgio, R. Presepsin levels and COVID-19 severity: A systematic review and meta-analysis. Clin. Exp. Med. 2022, 1–10. [Google Scholar] [CrossRef]
- Chalkias, A.; Skoulakis, A.; Papagiannakis, N.; Laou, E.; Tourlakopoulos, K.; Pagonis, A.; Michou, A.; Ntalarizou, N.; Mermiri, M.; Ragias, D.; et al. Circulating suPAR associates with severity and in-hospital progression of COVID-19. Eur. J. Clin. Investig. 2022, 52, e13794. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.T., Jr.; Lynfield, R.; Dwyer, D.E.; Losso, M.H.; Cozzi-Lepri, A.; Wentworth, D.; Lane, H.C.; Dewar, R.; Rupert, A.; Metcalf, J.A.; et al. The Association between Serum Biomarkers and Disease Outcome in Influenza A(H1N1)pdm09 Virus Infection: Results of Two International Observational Cohort Studies. PLoS ONE 2013, 8, e57121. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid.-Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef]
Biomarker of Infection | Procalcitonin | C-Reactive Protein |
---|---|---|
Production organ | Thyroid gland, lung, spleen, liver, kidney, fat, intestine, muscle, brain | Liver |
Infective stimulators factors | IL-1β, IL-6, TNF-α, LPS, microbial endotoxins (bacteria) | IL-6, IL-1 (infections) |
Infective Inhibitors factors | IFN-γ (virus and fungi) | |
Non-infective causes of biomarker production | Pancreatitis, surgery, severe trauma, cardiogenic shock, cardio-pulmonary resuscitation, certain malignancies, cytokine storms | Any systemic inflammation: trauma, surgery, burns, certain malignancies, immunological-mediated inflammatory diseases… |
Affected by | Kidney disease, CVVH | Systemic corticosteroids |
Production time from infection (hours) | 2–3 | 6–12 |
Half-life time (hours) | 25–30 | 19 |
Peak time from infection (hours) | 12 | 48 |
Main role in pneumonia | Exclude BRC in viral CAP, guide of duration of antibiotic, prognosis | Prognosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbonell, R.; Moreno, G.; Martín-Loeches, I.; Bodí, M.; Rodríguez, A. The Role of Biomarkers in Influenza and COVID-19 Community-Acquired Pneumonia in Adults. Antibiotics 2023, 12, 161. https://doi.org/10.3390/antibiotics12010161
Carbonell R, Moreno G, Martín-Loeches I, Bodí M, Rodríguez A. The Role of Biomarkers in Influenza and COVID-19 Community-Acquired Pneumonia in Adults. Antibiotics. 2023; 12(1):161. https://doi.org/10.3390/antibiotics12010161
Chicago/Turabian StyleCarbonell, Raquel, Gerard Moreno, Ignacio Martín-Loeches, María Bodí, and Alejandro Rodríguez. 2023. "The Role of Biomarkers in Influenza and COVID-19 Community-Acquired Pneumonia in Adults" Antibiotics 12, no. 1: 161. https://doi.org/10.3390/antibiotics12010161
APA StyleCarbonell, R., Moreno, G., Martín-Loeches, I., Bodí, M., & Rodríguez, A. (2023). The Role of Biomarkers in Influenza and COVID-19 Community-Acquired Pneumonia in Adults. Antibiotics, 12(1), 161. https://doi.org/10.3390/antibiotics12010161