Use of Antibiotics in Preterm Newborns
Abstract
:1. Introduction
2. Definition of Preterm Neonates
3. Physiological Aspects of Preterm Neonates
4. Pharmacological Considerations in Preterm Newborns
PK Process | Physiological Hallmark | Pharmacological Implication | Reference |
---|---|---|---|
Absorption | Reduction in gastric acid secretion | Reduced oral bioavailability of weak acids | [2,44] |
Absorption | Reduction in bile acid secretion | Reduced oral bioavailability of fat-soluble drugs | [2,44] |
Absorption | Impaired gastrointestinal motility and low maturation degree of intestinal mucosa | Impaired ability to absorb drugs via gastrointestinal tract | [45] |
Absorption | High extent of cutaneous vascularization | Higher degree of absorption trough the percutaneous route | [46] |
Distribution | High body water composition | Hydrophilic drugs could be much more distributed | [49] |
Distribution | Low percentage of fat deposition | Limited distribution of fat-soluble molecules | [49] |
Distribution | Hypoalbuminemia | Increased plasma concentration of “free” (protein unbound) drugs’ fraction | [49] |
Metabolism | Impaired maturation of phase I and II enzymes | Reduced drugs’ metabolism and/or pro-drug activation | [57] |
Excretion | Uncompleted nephrogenesis and reduced renal perfusion rate | Impaired renal excretion and lower tubular secretion for drugs eliminated through kidneys | [62,63] |
5. Population Pharmacokinetic (popPK) Modeling Approaches in Preterm Infants
Physiologically Based Pharmacokinetic (PBPK) Modeling to Predict PK Parameters in Preterm Infants
6. PK of Antibiotics in Preterms
6.1. Aminoglycosides
6.2. Beta-Lactams
6.2.1. Penicillins
6.2.2. Carbapenems
6.2.3. Cephalosporins
6.3. Glycopeptides
6.3.1. Vancomycin
6.3.2. Teicoplanin
6.4. Fluoroquinolones
Antibiotic | GA 1 (Range) | PK Model | Type of Study | PK/PD Target Evaluated | Suggested Dosing Strategy | Reference |
---|---|---|---|---|---|---|
Meropenem | 23–40 | PBPK | Developed ex novo | 50% T>MIC for a MIC = 4 mg/L and 75% T > MIC for a MIC = 2 mg/L | PBPK model supports the meropenem dosing regimens recommended in the product label for infants <3 months of age (MERREM(R) IV) | [143] |
Meropenem | <32 | popPK | Developed ex novo | 100% fT>MIC for a MIC = 2 mg/L | 20 mg/kg given as a 30-min infusion | [147] |
Imipenem | 24–41 | popPK | Developed ex novo | 100% of the T>MIC | 20–25 mg/kg every 6–12 h according to PNA | [151] |
Gentamicin | 30–34 * | PBPK | Developed ex novo | Ctrough < 1 μg/mL to reduce risks of toxicity | 5 mg/kg intravenously administered every 36 h in neonates with a PMA of 30 to 34 and ≥35 weeks | [98] |
Gentamicin and tobramycin | 0–27 days ** | popPK | Validation of previously published models | Cmax concentrations of 5–12 mg/L and Ctrough < 0.5 mg/L | 4.5 mg/kg for gentamicin and 5.5 mg/kg for tobramycin intravenously administered every 72 h | [112] |
Gentamicin | ≤28 to 36 | / | Cross-sectional observational study | Cmax/MIC ratio at least 8–10 | 5 mg/kg, q24–48 h | [117] |
Amikacin | ≤24 to 41 | / | Prospective evaluation of a model-ased dosing regimen | Ctrough, <3 mg/L; Cmax, >24 mg/L | 15-mg/kg every 36 h instead of 30 h and 30 h instead of 24 h according to PNA | [123] |
Ampicillin | <34 or >34 | popPK | Developed ex novo | T>MIC for 50%, 75%, and 100% of the dosing interval | 50 mg/kg every 12 h for GA of <34 weeks and PNA of <7 days, 75 mg/kg every 12 h for GA of <34 weeks and PNA of >8 and <28 days, and 50 mg/kg every 8 h for GA of >34 weeks and PNA of <28 | [128] |
Ampicillin | 32–42 | NCA and popPK | Developed ex novo | 40% fT > MIC; 100% fT > MIC and the safety margin of Cmax > 140 mg/L assuming100% and 80% of unbound ampicillin fractions | In neonates with GA ≥32 weeks, iv dose of 50 mg/kg q12h or q8h in case of pathogens with higher susceptibility breakpoint | [129] |
Ampicillin and gentamicin | 22–27 | / | Validation of previously published models | Post-discontinuation antibiotic exposure (PDAE) for specific MIC values | Short-course ampicillin (2 doses, 50 mg/kg every 12 h) have provided a PDAE of 34 h for E. coli and 82 h for group B streptococcal (GBS). Single-dose 5 mg/kg gentamicin provided PDAE > MIC = 2 for 26 h | [130] |
Amoxicillin | 29–39 | / | Comparison between different dosing regimens by using Monte Carlo simulations | 100% fT >MIC for efficacy Cmax > 140 mg/L value as threshold for safety | Simulation results have revealed that none of the dosing regimens guidelines have achieved targets of ≥100%fT >MIC at any of the relevant MICs for a desired probability of target attainment (PTA) of ≥90% | [136] |
Piperacillin-tazobactam | <61 days ** | popPK | Developed ex novo | 50% and 75% T >MIC (considering unbound piperacillin concentrations) | 100 mg/kg q 8 h, 80 mg/kg q 6 h, and 80 mg/kg q 4 h for PMA of <30, 30 to 35, and 35 to 49 weeks, respectively | [138] |
Piperacillin-tazobactam | median 36.04 | popPK | Developed ex novo | Unbound piperacillin concentrations >4 mg/L for more than 50 % of the dosing interval | Piperacillin/tazobactam 44.44/5.56 mg/kg/dose every 8 or 12 h allows researchers to achieve the PD target in about 67% of infants | [139] |
Cefazolin | 1–30 days ** | popPK | Developed ex novo | 60% T >MIC (for unbound cefazolin concentrations > MIC = 8 mg/L) | 25–50 mg/kg every 8 or 12 h according to PNA and current body weight | [153] |
Cefotaxime | 23–42 | popPK | Developed ex novo | fT>MIC for 75% of the dosing interval | 50 mg/kg twice a day to four times a day, according to GA and PNA | [156] |
Vancomycin | 24.6–44 * | popPK | Developed ex novo | serum Ctrough 5–15 mg/L or 15–20 mg/L for methicillin-resistant S. aureus | Serum-creatinine-based dosing shows the highest chance of reaching the target trough concentrations range of 5–15 mg/L | [178] |
Vancomycin | 22.3–42.1 | popPK | Developed ex novo | AUC 0–24 of 400 mg*h/L at steady-state | A loading dose (25 mg/kg) and a maintenance dose (15 mg/kg q12h or 15 mg/kg q8h based on PMA) | [185] |
Vancomycin | 23–34 | / | Validation of previously published model | AUC 0–24/MIC ≥ 267 at steady state (considering unbound vancomycin concentrations | 10 mg/kg BID for neonates with a PMA of less than 30 weeks and 10 mg/kg TID for neonates with a PMA of 30 weeks | [184] |
Vancomycin | median 30.0 | / | Validation of previously published model | Trough concentrations (approximately 10 mg/L) are predictive of an AUC 0–24/MIC ≥400 | 15 mg/kg every 6, 8, or 12 h and 20 mg/kg every 12 or 24 h according to PMA and serum creatinine level | [189] |
Vancomycin | mean 31.1 | / | Validation of previously published model | serum Ctrough 15–25 mg/L | A loading dose of 11.1 mg/kg/day infused over 60 min followed by the maintenance dose of 28.3 mg/kg/day administered as a continuous infusion over 24 h | [190] |
Vancomycin | median 32.0 | / | Validation of previously published models | AUC 0–24/MIC > 400 | For infants aged <1 year, doses between 32 and 60 mg/kg/day over four doses, while above 1 year of age, 60 mg/kg/day seems appropriate | [192] |
Vancomycin | 24–42 | / | Retrospective evaluation of different model-based dosing approaches | AUC 0–24/MIC ratio of >400, while reducing trough concentrations of >20 mg/L (toxicity target) | Neo-Vanco derived dosing strategy based on weight, PMA, and serum creatinine level | [197] |
Teicoplanin | 26–43 * | popPK | Developed ex novo | AUC/MIC ratio of ≥ 400 | A loading dose of 16 mg/kg and a maintenance dose up to 10 mg/kg and 11 mg/kg for preterm neonates with a BW of 1 to <2 kg and <1 kg, respectively | [211] |
Moxifloxacin | 25 | / | Case report | Cmax/MIC: >10 AUC 0–24/MIC: ≥100 | 5 mg/kg iv every 24 h | [214] |
7. Therapeutic Drug Monitoring (TDM) of Antibiotics in Preterms
Microsampling Strategies Applied to PK Studies in Preterms
8. Conclusions and Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADME = Absorption, Distribution, Metabolism, Excretion |
BID = Bis in die |
CL = Clearance |
Cmax = Peak concentration |
DBS = Dried Blood Spot |
GA = Gestational Age |
GFR = Glomerular filtration rate |
IV = Intravenous administration |
MIC = minimum inhibitory concentration |
NICUs = Neonatal Intensive Care Units |
PBPK = Physiologically Based Pharmacokinetic |
PD = Pharmacodynamic |
PK = Pharmacokinetic |
PMA = Postmenstrual Age |
PNA = Postnatal Age |
popPK = Population pharmacokinetic |
TDM = Therapeutic Drug Monitoring |
TID = Tris in die |
VAMS = Volumetric Absorptive Micro-samplings |
Vd = Distribution volume |
References
- Allegaert, K.; Peeters, M.Y.; Verbesselt, R.; Tibboel, D.; Naulaers, G.; de Hoon, J.N.; Knibbe, C.A. Inter-individual variability in propofol pharmacokinetics in preterm and term neonates. Br. J. Anaesth. 2007, 99, 864–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somani, A.A.; Thelen, K.; Zheng, S.; Trame, M.N.; Coboeken, K.; Meyer, M.; Schnizler, K.; Ince, I.; Willmann, S.; Schmidt, S. Evaluation of changes in oral drug absorption in preterm and term neonates for Biopharmaceutics Classification System (BCS) class I and II compounds. Br. J. Clin. Pharmacol. 2016, 81, 137–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, B.J.; Larsson, P.; Lerman, J. Anesthesia and Ancillary Drugs and the Neonate. In Neonatal Anesthesia, 1st ed.; Springer: New York, NY, USA, 2015; Volume 458. [Google Scholar]
- Anderson, B.J.; van Lingen, R.A.; Hansen, T.G.; Lin, Y.C.; Holford, N.H. Acetaminophen developmental pharmacokinetics in premature neonates and infants: A pooled population analysis. Anesthesiology 2002, 96, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Mannan, M.A.; Shahidulla, M.; Salam, F.; Alam, M.S.; Hossain, M.A.; Hossain, M. Postnatal development of renal function in preterm and term neonates. Mymensingh Med. J. 2012, 21, 103–108. [Google Scholar]
- Costa, H.; Costa, T.X.; Martins, R.R.; Oliveira, A.G. Use of off-label and unlicensed medicines in neonatal intensive care. PLoS ONE 2018, 13, e0204427. [Google Scholar] [CrossRef]
- Wright, P.M. Population based pharmacokinetic analysis: Why do we need it; what is it; and what has it told us about anaesthetics? Br. J. Anaesth. 1998, 80, 488–501. [Google Scholar] [CrossRef] [Green Version]
- EMEA/536810/2008; Guideline on the Investigation of Medicinal Products in the Term and Preterm Neonate. European Medicines Agency: London, UK, 2009.
- Mahmood, I. Prediction of drug clearance in children from adults: A comparison of several allometric methods. Br. J. Clin. Pharmacol. 2006, 61, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Charles, B. Population pharmacokinetics: An overview. Aust. Prescr. 2014, 37, 210–213. [Google Scholar] [CrossRef]
- De Cock, R.F.; Piana, C.; Krekels, E.H.; Danhof, M.; Allegaert, K.; Knibbe, C.A. The role of population PK-PD modeling in paediatric clinical research. Eur. J. Clin. Pharmacol. 2011, 67 (Suppl. 1), 5–16. [Google Scholar] [CrossRef] [Green Version]
- Marsot, A.; Boulamery, A.; Bruguerolle, B.; Simon, N. Population pharmacokinetic analysis during the first 2 years of life: An overview. Clin. Pharmacokinet. 2012, 51, 787–798. [Google Scholar] [CrossRef]
- van den Anker, J.; Allegaert, K. Considerations for Drug Dosing in Premature Infants. J. Clin. Pharmacol. 2021, 61 (Suppl. 1), S141–S151. [Google Scholar] [PubMed]
- Gijsen, M.; Vlasselaers, D.; Spriet, I.; Allegaert, K. Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Ramasethu, J. Prevention and treatment of neonatal nosocomial infections. Matern. Health Neonatol. Perinatol. 2017, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auriti, C.; Piersigilli, F.; Ronchetti, M.P.; Campi, F.; Amante, P.G.; Falcone, M.; Goffredo, B.M. Shunt lock therapy with micafungin to treat shunt-associated Candida albicans meningitis in an infant. J. Antimicrob. Chemother. 2016, 71, 2060–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chace, D.H.; Millington, D.S.; Terada, N.; Kahler, S.G.; Roe, C.R.; Hofman, L.F. Rapid diagnosis of phenylketonuria by quantitative analysis for phenylalanine and tyrosine in neonatal blood spots by tandem mass spectrometry. Clin. Chem. 1993, 39, 66–71. [Google Scholar] [CrossRef]
- Capiau, S.; Bolea-Fernandez, E.; Balcaen, L.; Van Der Straeten, C.; Verstraete, A.G.; Vanhaecke, F.; Stove, C.P. Development, validation and application of an inductively coupled plasma—Mass spectrometry method to determine cobalt in metal-on-metal prosthesis patients using volumetric absorptive microsampling. Talanta 2020, 208, 120055. [Google Scholar] [CrossRef]
- De Kesel, P.M.; Sadones, N.; Capiau, S.; Lambert, W.E.; Stove, C.P. Hemato-critical issues in quantitative analysis of dried blood spots: Challenges and solutions. Bioanalysis 2013, 5, 2023–2041. [Google Scholar] [CrossRef]
- Koster, R.A.; Alffenaar, J.W.; Botma, R.; Greijdanus, B.; Touw, D.J.; Uges, D.R.; Kosterink, J.G. What is the right blood hematocrit preparation procedure for standards and quality control samples for dried blood spot analysis? Bioanalysis 2015, 7, 345–351. [Google Scholar] [CrossRef]
- Denniff, P.; Spooner, N. Volumetric absorptive microsampling: A dried sample collection technique for quantitative bioanalysis. Anal. Chem. 2014, 86, 8489–8495. [Google Scholar] [CrossRef]
- Spooner, N.; Denniff, P.; Michielsen, L.; De Vries, R.; Ji, Q.C.; Arnold, M.E.; Woods, K.; Woolf, E.J.; Xu, Y.; Boutet, V.; et al. A device for dried blood microsampling in quantitative bioanalysis: Overcoming the issues associated blood hematocrit. Bioanalysis 2015, 7, 653–659. [Google Scholar] [CrossRef]
- Sciberras, D.; Otoul, C.; Lurquin, F.; Smeraglia, J.; Lappert, A.; De Bruyn, S.; Jaap van Lier, J. A pharmacokinetic study of radiprodil oral suspension in healthy adults comparing conventional venous blood sampling with two microsampling techniques. Pharmacol. Res. Perspect. 2019, 7, e00459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, J.D.; Neodo, A.; Coulibaly, J.T.; Keiser, J. Pharmacokinetics of Albendazole, Albendazole Sulfoxide, and Albendazole Sulfone Determined from Plasma, Blood, Dried-Blood Spots, and Mitra Samples of Hookworm-Infected Adolescents. Antimicrob. Agents Chemother. 2019, 63, e02489-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velghe, S.; Stove, C.P. Volumetric absorptive microsampling as an alternative tool for therapeutic drug monitoring of first-generation anti-epileptic drugs. Anal. Bioanal Chem. 2018, 410, 2331–2341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Urso, A.; Rudge, J.; Patsalos, P.N.; de Grazia, U. Volumetric Absorptive Microsampling: A New Sampling Tool for Therapeutic Drug Monitoring of Antiepileptic Drugs. Ther. Drug Monit. 2019, 41, 681–692. [Google Scholar] [CrossRef]
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–2015: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- Riviere, D.; McKinlay, C.J.D.; Bloomfield, F.H. Adaptation for life after birth: A review of neonatal physiology. Anaesth. Intensive Care Med. 2017, 18, 59–67. [Google Scholar] [CrossRef]
- Swanson, J.R.; Sinkin, R.A. Transition from fetus to newborn. Pediatr. Clin. N. Am. 2015, 62, 329–343. [Google Scholar] [CrossRef]
- Machado, J.S.; Ferreira, T.S.; Lima, R.C.G.; Vieira, V.C.; Medeiros, D.S. Premature birth: Topics in physiology and pharmacological characteristics. Rev. Assoc. Med. Bras. 2021, 67, 150–155. [Google Scholar] [CrossRef]
- Nakayama, D.K. Management of the surgical newborn: Physiological foundations and practical considerations. J. Pediatr. Urol. 2010, 6, 232–238. [Google Scholar] [CrossRef]
- Hyman, S.J.; Novoa, Y.; Holzman, I. Perinatal endocrinology: Common endocrine disorders in the sick and premature newborn. Pediatr. Clin. N. Am. 2011, 58, 1083–1098, ix. [Google Scholar] [CrossRef] [PubMed]
- Wassner, A.J.; Modi, B.P. Endocrine physiology in the newborn. Semin. Pediatr. Surg. 2013, 22, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.P.; Mychaliska, G.B. Neonatal pulmonary physiology. Semin. Pediatr. Surg. 2013, 22, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Atik, A.; Harding, R.; De Matteo, R.; Kondos-Devcic, D.; Cheong, J.; Doyle, L.W.; Tolcos, M. Caffeine for apnea of prematurity: Effects on the developing brain. Neurotoxicology 2017, 58, 94–102. [Google Scholar] [CrossRef]
- Marodi, L. Neonatal innate immunity to infectious agents. Infect. Immun. 2006, 74, 1999–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newnam, K.M.; McGrath, J.M. Understanding the inflammatory response of the neonate: Clinical implications for caregivers in the neonatal intensive care unit. Newborn Infant Nurs. Rev. 2010, 10, 165–176. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Weaver, L.; Tobin, R.; Henderson, S.; Beeram, M.; Newell-Rogers, M.K.; Perger, L. Intrauterine growth restriction and prematurity influence regulatory T cell development in newborns. J. Pediatr. Surg. 2014, 49, 727–732. [Google Scholar] [CrossRef]
- Sulemanji, M.; Vakili, K. Neonatal renal physiology. Semin. Pediatr. Surg. 2013, 22, 195–198. [Google Scholar] [CrossRef]
- Grijalva, J.; Vakili, K. Neonatal liver physiology. Semin. Pediatr. Surg. 2013, 22, 185–189. [Google Scholar] [CrossRef]
- Allegaert, K.; Mian, P.; van den Anker, J.N. Developmental Pharmacokinetics in Neonates: Maturational Changes and Beyond. Curr. Pharm. Des. 2017, 23, 5769–5778. [Google Scholar] [CrossRef]
- Smits, A.; Kulo, A.; de Hoon, J.N.; Allegaert, K. Pharmacokinetics of Drugs in Neonates: Pattern Recognition Beyond Compound Specific Observations. Curr. Pharm. Des. 2012, 18, 3119–3146. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.M. Drug disposition in the late preterm (“near-term”) newborn. Semin. Perinatol. 2006, 30, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Tayman, C.; Rayyan, M.; Allegaert, K. Neonatal pharmacology: Extensive interindividual variability despite limited size. J. Pediatr. Pharmacol. Ther. 2011, 16, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Kearns, G.L.; Abdel-Rahman, S.M.; Alander, S.W.; Blowey, D.L.; Leeder, J.S.; Kauffman, R.E. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N. Engl. J. Med. 2003, 349, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- De Rose, D.U.; Cairoli, S.; Dionisi, M.; Santisi, A.; Massenzi, L.; Goffredo, B.M.; Dionisi-Vici, C.; Dotta, A.; Auriti, C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. Int. J. Mol. Sci. 2020, 21, 5898. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.J. Neonatal pharmacology. Anaesth. Intensive Care Med. 2017, 18, 68–74. [Google Scholar] [CrossRef]
- Alcorn, J.; McNamara, P.J. Pharmacokinetics in the newborn. Adv. Drug Deliv. Rev. 2003, 55, 667–686. [Google Scholar] [CrossRef]
- Ignjatovic, V.; Lai, C.; Summerhayes, R.; Mathesius, U.; Tawfilis, S.; Perugini, M.A.; Monagle, P. Age-related differences in plasma proteins: How plasma proteins change from neonates to adults. PLoS ONE 2011, 6, e17213. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, J.; Choonara, I. Drug toxicity in the neonate. Biol. Neonate 2004, 86, 218–221. [Google Scholar] [CrossRef]
- O’Hara, K.; Wright, I.M.; Schneider, J.J.; Jones, A.L.; Martin, J.H. Pharmacokinetics in neonatal prescribing: Evidence base, paradigms and the future. Br. J. Clin. Pharmacol. 2015, 80, 1281–1288. [Google Scholar] [CrossRef] [Green Version]
- Allegaert, K.; Verbesselt, R.; Naulaers, G.; van den Anker, J.N.; Rayyan, M.; Debeer, A.; de Hoon, J. Developmental pharmacology: Neonates are not just small adults. Acta Clin. Belg. 2007, 63, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.F. Reflections on errors in neonatology III. The “experienced” years, 1970 to 2000. J. Perinatol. 2003, 23, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.F. Reflections on errors in neonatology: I. The “Hands-Off” years, 1920 to 1950. J. Perinatol. 2003, 23, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, A.F. Reflections on errors in neonatology: II. The “Heroic” years, 1950 to 1970. J. Perinatol. 2003, 23, 154–161. [Google Scholar] [CrossRef]
- Allegaert, K.; Vanhaesebrouck, S.; Verbesselt, R.; van den Anker, J.N. In vivo glucuronidation activity of drugs in neonates: Extensive interindividual variability despite their young age. Ther. Drug Monit. 2009, 31, 411–415. [Google Scholar] [CrossRef]
- Van den Anker, J.N.; Hop, W.C.; de Groot, R.; van der Heijden, B.J.; Broerse, H.M.; Lindemans, J.; Sauer, P.J. Effects of prenatal exposure to betamethasone and indomethacin on the glomerular filtration rate in the preterm infant. Pediatr. Res. 1994, 36, 578–581. [Google Scholar] [CrossRef]
- Smith, F.G.; Wade, A.W.; Lewis, M.L.; Qi, W. Cyclooxygenase (COX) Inhibitors and the Newborn Kidney. Pharmaceuticals 2012, 5, 1160–1176. [Google Scholar] [CrossRef] [Green Version]
- Allegaert, K.; Cossey, V.; Debeer, A.; Langhendries, J.P.; Van Overmeire, B.; de Hoon, J.; Devlieger, H. The impact of ibuprofen on renal clearance in preterm infants is independent of the gestational age. Pediatr. Nephrol. 2005, 20, 740–743. [Google Scholar] [CrossRef]
- Skinner, A. Neonatal pharmacology. Anaesth. Intensive Care Med. 2008, 9, 99–103. [Google Scholar] [CrossRef]
- Matalova, P.; Urbanek, K.; Anzenbacher, P. Specific features of pharmacokinetics in children. Drug Metab. Rev. 2016, 48, 70–79. [Google Scholar] [CrossRef]
- Allegaert, K.; Anderson, B.J.; van den Anker, J.N.; Vanhaesebrouck, S.; de Zegher, F. Renal drug clearance in preterm neonates: Relation to prenatal growth. Ther. Drug Monit. 2007, 29, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Rhodin, M.M.; Anderson, B.J.; Peters, A.M.; Coulthard, M.G.; Wilkins, B.; Cole, M.; Chatelut, E.; Grubb, A.; Veal, G.J.; Keir, M.J.; et al. Human renal function maturation: A quantitative description using weight and postmenstrual age. Pediatr. Nephrol. 2009, 24, 67–76. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, K.; Martin, J.H.; Schneider, J.J. Barriers and Challenges in Performing Pharmacokinetic Studies to Inform Dosing in the Neonatal Population. Pharmacy 2020, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Anker, J.N.; de Groot, R.; Broerse, H.M.; Sauer, P.J.; van der Heijden, B.J.; Hop, W.C.; Lindemans, J. Assessment of glomerular filtration rate in preterm infants by serum creatinine: Comparison with inulin clearance. Pediatrics 1995, 96, 1156–1158. [Google Scholar] [CrossRef]
- Ward, R.M.; Benitz, W.E.; Benjamin, D.K., Jr.; Blackmon, L.; Giacoia, G.P.; Hudak, M.; Lasky, T.; Rodriguez, W.; Selen, A. Criteria supporting the study of drugs in the newborn. Clin. Ther. 2006, 28, 1385–1398. [Google Scholar] [CrossRef]
- Cohen-Wolkowiez, M.; Benjamin, D.K., Jr.; Ross, A.; James, L.P.; Sullivan, J.E.; Walsh, M.C.; Zadell, A.; Newman, N.; White, N.R.; Kashuba, A.D.; et al. Population pharmacokinetics of piperacillin using scavenged samples from preterm infants. Ther. Drug Monit. 2012, 34, 312–319. [Google Scholar] [CrossRef] [Green Version]
- Pfister, M.; D’Argenio, D.Z. The emerging scientific discipline of pharmacometrics. J. Clin. Pharmacol. 2010, 50 (Suppl. 9), 6S. [Google Scholar] [CrossRef] [Green Version]
- Wilbaux, M.; Fuchs, A.; Samardzic, J.; Rodieux, F.; Csajka, C.; Allegaert, K.; van den Anker, J.N.; Pfister, M. Pharmacometric Approaches to Personalize Use of Primarily Renally Eliminated Antibiotics in Preterm and Term Neonates. J. Clin. Pharmacol. 2016, 56, 909–935. [Google Scholar] [CrossRef]
- Wang, J.; Edginton, A.N.; Avant, D.; Burckart, G.J. Predicting neonatal pharmacokinetics from prior data using population pharmacokinetic modeling. J. Clin. Pharmacol. 2015, 55, 1175–1183. [Google Scholar] [CrossRef]
- Anderson, B.J.; Allegaert, K.; Holford, N.H. Population clinical pharmacology of children: General principles. Eur. J. Pediatr. 2006, 165, 741–746. [Google Scholar] [CrossRef]
- Zhao, W.; Hill, H.; Le Guellec, C.; Neal, T.; Mahoney, S.; Paulus, S.; Castellan, C.; Kassai, B.; van den Anker, J.N.; Kearns, G.L.; et al. Population pharmacokinetics of ciprofloxacin in neonates and young infants less than three months of age. Antimicrob. Agents Chemother. 2014, 58, 6572–6580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Cock, R.F.; Allegaert, K.; Brussee, J.M.; Sherwin, C.M.; Mulla, H.; de Hoog, M.; van den Anker, J.N.; Danhof, M.; Knibbe, C.A. Simultaneous pharmacokinetic modeling of gentamicin, tobramycin and vancomycin clearance from neonates to adults: Towards a semi-physiological function for maturation in glomerular filtration. Pharm. Res. 2014, 31, 2643–2654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, B.J.; Allegaert, K.; Holford, N.H. Population clinical pharmacology of children: Modeling covariate effects. Eur. J. Pediatr. 2006, 165, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Mould, D.R.; Upton, R.N. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacomet. Syst. Pharmacol. 2012, 1, e6. [Google Scholar] [CrossRef]
- Mould, D.R.; Upton, R.N. Basic concepts in population modeling, simulation, and model-based drug development—Part 2: Introduction to pharmacokinetic modeling methods. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e38. [Google Scholar] [CrossRef]
- Mentre, F.; Mallet, A.; Baccar, D. Optimal design in random-effects regression models. Biometrika 1997, 84, 429–442. [Google Scholar] [CrossRef]
- Aarons, L.; Ogungbenro, K. Optimal design of pharmacokinetic studies. Basic Clin. Pharmacol. Toxicol. 2010, 106, 250–255. [Google Scholar] [CrossRef]
- Alcorn, J.; McNamara, P. Using ontogeny information to build predictive models for drug elimination. Drug Discov. Today 2008, 13, 507–512. [Google Scholar] [CrossRef]
- Mahmood, I. Dosing in children: A critical review of the pharmacokinetic allometric scaling and modeling approaches in paediatric drug development and clinical settings. Clin. Pharmacokinet. 2014, 53, 327–346. [Google Scholar] [CrossRef]
- Fagerholm, U. Prediction of human pharmacokinetics—improving microsome-based predictions of hepatic metabolic clearance. J. Pharm. Pharmacol. 2007, 59, 1427–1431. [Google Scholar] [CrossRef]
- T’Jollyn, H.; Snoeys, J.; Vermeulen, A.; Michelet, R.; Cuyckens, F.; Mannens, G.; Van Peer, A.; Annaert, P.; Allegaert, K.; Van Bocxlaer, J.; et al. Physiologically Based Pharmacokinetic Predictions of Tramadol Exposure Throughout Pediatric Life: An Analysis of the Different Clearance Contributors with Emphasis on CYP2D6 Maturation. AAPS J. 2015, 17, 1376–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, M.Y.; Allegaert, K.; Blusse van Oud-Alblas, H.J.; Cella, M.; Tibboel, D.; Danhof, M.; Knibbe, C.A. Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin. Pharmacokinet. 2010, 49, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Krekels, E.H.; van Hasselt, J.G.; Tibboel, D.; Danhof, M.; Knibbe, C.A. Systematic evaluation of the descriptive and predictive performance of paediatric morphine population models. Pharm. Res. 2011, 28, 797–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suri, A.; Chapel, S.; Lu, C.; Venkatakrishnan, K. Physiologically based and population PK modeling in optimizing drug development: A predict-learn-confirm analysis. Clin. Pharmacol. Ther. 2015, 98, 336–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grillo, J.A.; Zhao, P.; Bullock, J.; Booth, B.P.; Lu, M.; Robie-Suh, K.; Berglund, E.G.; Pang, K.S.; Rahman, A.; Zhang, L.; et al. Utility of a physiologically-based pharmacokinetic (PBPK) modeling approach to quantitatively predict a complex drug-drug-disease interaction scenario for rivaroxaban during the drug review process: Implications for clinical practice. Biopharm. Drug Dispos. 2012, 33, 99–110. [Google Scholar] [CrossRef]
- Li, J.; Kim, S.; Sha, X.; Wiegand, R.; Wu, J.; LoRusso, P. Complex disease-, gene-, and drug-drug interactions: Impacts of renal function, CYP2D6 phenotype, and OCT2 activity on veliparib pharmacokinetics. Clin. Cancer Res. 2014, 20, 3931–3944. [Google Scholar] [CrossRef] [Green Version]
- Khalil, F.; Laer, S. Physiologically based pharmacokinetic models in the prediction of oral drug exposure over the entire pediatric age range-sotalol as a model drug. AAPS J. 2014, 16, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.M.; Chen, Y.; Gibson, C.; Heimbach, T.; Parrott, N.; Peters, S.A.; Snoeys, J.; Upreti, V.V.; Zheng, M.; Hall, S.D. Physiologically based pharmacokinetic modeling in drug discovery and development: A pharmaceutical industry perspective. Clin. Pharmacol. Ther. 2015, 97, 247–262. [Google Scholar] [CrossRef]
- Maharaj, A.R.; Edginton, A.N. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacomet. Syst. Pharmacol. 2014, 3, e150. [Google Scholar] [CrossRef] [Green Version]
- Samant, T.S.; Mangal, N.; Lukacova, V.; Schmidt, S. Quantitative clinical pharmacology for size and age scaling in pediatric drug development: A systematic review. J. Clin. Pharmacol. 2015, 55, 1207–1217. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, L.; Grillo, J.A.; Liu, Q.; Bullock, J.M.; Moon, Y.J.; Song, P.; Brar, S.S.; Madabushi, R.; Wu, T.C.; et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin. Pharmacol. Ther. 2011, 89, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Gaohua, L.; Wedagedera, J.; Small, B.G.; Almond, L.; Romero, K.; Hermann, D.; Hanna, D.; Jamei, M.; Gardner, I. Development of a Multicompartment Permeability-Limited Lung PBPK Model and Its Application in Predicting Pulmonary Pharmacokinetics of Antituberculosis Drugs. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Abduljalil, K.; Pan, X.; Pansari, A.; Jamei, M.; Johnson, T.N. Preterm Physiologically Based Pharmacokinetic Model. Part II: Applications of the Model to Predict Drug Pharmacokinetics in the Preterm Population. Clin. Pharmacokinet. 2020, 59, 501–518. [Google Scholar] [CrossRef] [PubMed]
- Allegaert, K.; van den Anker, J. Neonates are not just little children and need more finesse in dosing of antibiotics. Acta Clin. Belg. 2019, 74, 157–163. [Google Scholar] [CrossRef]
- Keij, F.M.; Achten, N.B.; Tramper-Stranders, G.A.; Allegaert, K.; van Rossum, A.M.C.; Reiss, I.K.M.; Kornelisse, R.F. Stratified Management for Bacterial Infections in Late Preterm and Term Neonates: Current Strategies and Future Opportunities Toward Precision Medicine. Front. Pediatr. 2021, 9, 590969. [Google Scholar] [CrossRef]
- Neeli, H.; Hanna, N.; Abduljalil, K.; Cusumano, J.; Taft, D.R. Application of Physiologically Based Pharmacokinetic-Pharmacodynamic Modeling in Preterm Neonates to Guide Gentamicin Dosing Decisions and Predict Antibacterial Effect. J. Clin. Pharmacol. 2021, 61, 1356–1365. [Google Scholar] [CrossRef]
- Barclay, M.L.; Begg, E.J. Aminoglycoside adaptive resistance: Importance for effective dosage regimens. Drugs 2001, 61, 713–721. [Google Scholar] [CrossRef]
- Freeman, C.D.; Nicolau, D.P.; Belliveau, P.P.; Nightingale, C.H. Once-daily dosing of aminoglycosides: Review and recommendations for clinical practice. J. Antimicrob. Chemother. 1997, 39, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Moon, J.E.; Park, S.H. Longitudinal Changes in Serum Creatinine Levels and Urinary Biomarkers in Late Preterm Infants during the First Postnatal Week: Association with Acute Kidney Injury and Treatment with Aminoglycoside. Children 2021, 8, 896. [Google Scholar]
- Van den Anker, J.N.; Allegaert, K. Pharmacokinetics of Aminoglycosides in the Newborn. Curr. Pharm. Des. 2012, 18, 3114–3118. [Google Scholar]
- Leekha, S.; Terrell, C.L.; Edson, R.S. General principles of antimicrobial therapy. Mayo Clin. Proc. 2011, 86, 156–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegaert, K.; van de Velde, M.; van den Anker, J. Neonatal clinical pharmacology. Paediatr. Anaesth. 2014, 24, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, C.M.; Broadbent, R.S.; Medlicott, N.J.; Reith, D.M. Individualising netilmicin dosing in neonates. Eur. J. Clin. Pharmacol. 2008, 64, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Crcek, M.; Zdovc, J.; Kerec Kos, M. A review of population pharmacokinetic models of gentamicin in paediatric patients. J. Clin. Pharm. Ther. 2019, 44, 659–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv. Neonatal Care 2021, 21, 49–60. [Google Scholar] [CrossRef]
- Pacifici, G.M. Clinical pharmacokinetics of aminoglycosides in the neonate: A review. Eur. J. Clin. Pharmacol. 2009, 65, 419–427. [Google Scholar] [CrossRef] [Green Version]
- El-Chaar, G.M.; Supaswud-Franks, T.; Venugopalan, L.; Kohn, N.; Castro-Alcaraz, S. Extended-interval gentamicin administration in neonates: A simplified approach. J. Perinatol. 2016, 36, 660–665. [Google Scholar] [CrossRef]
- Mohamed, A.F.; Nielsen, E.I.; Cars, O.; Friberg, L.E. Pharmacokinetic-pharmacodynamic model for gentamicin and its adaptive resistance with predictions of dosing schedules in newborn infants. Antimicrob. Agents Chemother. 2012, 56, 179–188. [Google Scholar] [CrossRef] [Green Version]
- van Donge, T.; Pfister, M.; Bielicki, J.; Csajka, C.; Rodieux, F.; van den Anker, J.; Fuchs, A. Quantitative Analysis of Gentamicin Exposure in Neonates and Infants Calls into Question Its Current Dosing Recommendations. Antimicrob. Agents Chemother. 2018, 62, e02004-17. [Google Scholar] [CrossRef] [Green Version]
- Valitalo, P.A.; van den Anker, J.N.; Allegaert, K.; de Cock, R.F.; de Hoog, M.; Simons, S.H.; Mouton, J.W.; Knibbe, C.A. Novel model-based dosing guidelines for gentamicin and tobramycin in preterm and term neonates. J. Antimicrob. Chemother. 2015, 70, 2074–2077. [Google Scholar]
- Dutch Knowledge Centre for Pharmacotherapy in Children. Dutch National Formulary for Children/Kinderformularium. Available online: http://www.kinderformularium.nl/ (accessed on 21 June 2022).
- Pickering, L.K.; Baker, C.J.; Kimberlin, D.W. Red Book: 2012 Report of the Committee on Infectious Diseases; American Academy of Pediatrics: Elk Grove Village, IL, USA, 2012. [Google Scholar]
- Young, T.E. Neofax; Thomson Reuters: Montvale, NJ, USA, 2011. [Google Scholar]
- Paediatric Formulary Committee. British National Formulary for Children; BMJ Group: London, UK, 2009. [Google Scholar]
- Low, Y.S.; Tan, S.L.; Wan, A.S. Extended-interval gentamicin dosing in achieving therapeutic concentrations in malaysian neonates. J. Pediatr. Pharmacol. Ther. 2015, 20, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Fjalstad, J.W.; Laukli, E.; van den Anker, J.N.; Klingenberg, C. High-dose gentamicin in newborn infants: Is it safe? Eur. J. Pediatr. 2014, 173, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, A.; Guidi, M.; Giannoni, E.; Werner, D.; Buclin, T.; Widmer, N.; Csajka, C. Population pharmacokinetic study of gentamicin in a large cohort of premature and term neonates. Br. J. Clin. Pharmacol. 2014, 78, 1090–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasvold, J.; Bradford, L.; Nelson, C.; Harrison, C.; Attar, M.; Stillwell, T. Gentamicin resistance among Escherichia coli strains isolated in neonatal sepsis. J. Neonatal Perinatal Med. 2013, 6, 173–177. [Google Scholar] [CrossRef] [PubMed]
- De Cock, R.F.; Allegaert, K.; Schreuder, M.F.; Sherwin, C.M.; de Hoog, M.; van den Anker, J.N.; Danhof, M.; Knibbe, C.A. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin. Pharmacokinet. 2012, 51, 105–117. [Google Scholar] [CrossRef]
- De Cock, R.F.; Allegaert, K.; Sherwin, C.M.; Nielsen, E.I.; de Hoog, M.; van den Anker, J.N.; Danhof, M.; Knibbe, C.A. A neonatal amikacin covariate model can be used to predict ontogeny of other drugs eliminated through glomerular filtration in neonates. Pharm. Res. 2014, 31, 754–767. [Google Scholar] [CrossRef]
- Smits, A.; De Cock, R.F.; Allegaert, K.; Vanhaesebrouck, S.; Danhof, M.; Knibbe, C.A. Prospective Evaluation of a Model-Based Dosing Regimen for Amikacin in Preterm and Term Neonates in Clinical Practice. Antimicrob. Agents Chemother. 2015, 59, 6344–6351. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, C.M.; Broadbent, R.S.; Medlicott, N.J.; Reith, D.M. Individualised dosing of amikacin in neonates. Eur. J. Clin. Pharmacol. 2009, 65, 1267–1268. [Google Scholar] [CrossRef]
- Cristea, S.; Smits, A.; Kulo, A.; Knibbe, C.A.J.; van Weissenbruch, M.; Krekels, E.H.J.; Allegaert, K. Amikacin Pharmacokinetics To Optimize Dosing in Neonates with Perinatal Asphyxia Treated with Hypothermia. Antimicrob. Agents Chemother. 2017, 61, e01282-17. [Google Scholar] [CrossRef] [Green Version]
- Claassen, K.; Thelen, K.; Coboeken, K.; Gaub, T.; Lippert, J.; Allegaert, K.; Willmann, S. Development of a Physiologically-Based Pharmacokinetic Model for Preterm Neonates: Evaluation with In Vivo Data. Curr. Pharm. Des. 2015, 21, 5688–5698. [Google Scholar] [CrossRef]
- Pacifici, G.M. Clinical Pharmacology of Ampicillin in Neonates and Infants: Effects and Pharmacokinetics. Int. J. Pediatr. 2017, 5, 6383–6410. [Google Scholar]
- Tremoulet, A.; Le, J.; Poindexter, B.; Sullivan, J.E.; Laughon, M.; Delmore, P.; Salgado, A.; Ian, U.C.S.; Melloni, C.; Gao, J.; et al. Characterization of the population pharmacokinetics of ampicillin in neonates using an opportunistic study design. Antimicrob. Agents Chemother. 2014, 58, 3013–3020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padari, H.; Soeorg, H.; Tasa, T.; Metsvaht, T.; Kipper, K.; Herodes, K.; Oselin, K.; Hallik, M.; Ilmoja, M.L.; Lutsar, I. Ampicillin Pharmacokinetics During First Week of Life in Preterm and Term Neonates. Pediatr. Infect. Dis. J. 2021, 40, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Greenberg, R.G.; Benjamin, D.K.; Yoo, Y.; Zimmerman, K.O.; Cohen-Wolkowiez, M.; Wade, K.C. Prolonged Post-Discontinuation Antibiotic Exposure in Very Low Birth Weight Neonates at Risk for Early-Onset Sepsis. J. Pediatr. Infect. Dis. Soc. 2021, 10, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Hornik, C.P.; Benjamin, D.K., Jr.; Smith, P.B.; Pencina, M.J.; Tremoulet, A.H.; Capparelli, E.V.; Ericson, J.E.; Clark, R.H.; Cohen-Wolkowiez, M. Electronic Health Records and Pharmacokinetic Modeling to Assess the Relationship between Ampicillin Exposure and Seizure Risk in Neonates. J. Pediatr. 2016, 178, 125–129.e1. [Google Scholar] [CrossRef] [Green Version]
- Pacifici, G.M.; Allegaert, K. Clinical pharmacokinetics of amoxicillin in neonates. J. Chemother. 2017, 29, 57–59. [Google Scholar] [CrossRef]
- Barker, C.I.; Germovsek, E.; Hoare, R.L.; Lestner, J.M.; Lewis, J.; Standing, J.F. Pharmacokinetic/pharmacodynamic modeling approaches in paediatric infectious diseases and immunology. Adv. Drug Deliv. Rev. 2014, 73, 127–139. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.H.; Wu, Y.E.; Kou, C.; Qi, Y.J.; Qi, H.; Xu, H.Y.; Leroux, S.; Huang, X.; Zhou, Y.; Zheng, Y.; et al. Population Pharmacokinetics and Dosing Optimization of Amoxicillin in Neonates and Young Infants. Antimicrob. Agents Chemother. 2019, 63, e02336-18. [Google Scholar] [CrossRef] [Green Version]
- Versporten, A.; Bielicki, J.; Drapier, N.; Sharland, M.; Goossens, H. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: Developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 2016, 71, 1106–1117. [Google Scholar] [CrossRef] [Green Version]
- Van Donge, T.; Fuchs, A.; Leroux, S.; Pfister, M.; Rodieux, F.; Atkinson, A.; Giannoni, E.; van den Anker, J.; Bielicki, J. Amoxicillin Dosing Regimens for the Treatment of Neonatal Sepsis: Balancing Efficacy and Neurotoxicity. Neonatology 2020, 117, 619–627. [Google Scholar] [CrossRef]
- Wade, K.C.; Wu, D.; Kaufman, D.A.; Ward, R.M.; Benjamin, D.K., Jr.; Sullivan, J.E.; Ramey, N.; Jayaraman, B.; Hoppu, K.; Adamson, P.C.; et al. Population pharmacokinetics of fluconazole in young infants. Antimicrob. Agents Chemother. 2008, 52, 4043–4049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Wolkowiez, M.; Watt, K.M.; Zhou, C.; Bloom, B.T.; Poindexter, B.; Castro, L.; Gao, J.; Capparelli, E.V.; Benjamin, D.K., Jr.; Smith, P.B. Developmental pharmacokinetics of piperacillin and tazobactam using plasma and dried blood spots from infants. Antimicrob. Agents Chemother. 2014, 58, 2856–2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Chen, Y.; Li, Q.; Cao, D.; Shi, W.; Cao, Y.; Wu, D.; Zhu, Y.; Wang, Y.; Chen, C. Population pharmacokinetics of piperacillin/tazobactam in neonates and young infants. Eur. J. Clin. Pharmacol. 2013, 69, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Wolkowiez, M.; Poindexter, B.; Bidegain, M.; Weitkamp, J.H.; Schelonka, R.L.; Randolph, D.A.; Ward, R.M.; Wade, K.; Valencia, G.; Burchfield, D.; et al. Safety and effectiveness of meropenem in infants with suspected or complicated intra-abdominal infections. Clin. Infect. Dis. 2012, 55, 1495–1502. [Google Scholar] [CrossRef] [Green Version]
- Hussain, K.; Salat, M.S.; Mohammad, N.; Mughal, A.; Idrees, S.; Iqbal, J.; Ambreen, G. Meropenem-induced pancytopenia in a preterm neonate: A case report. J. Med. Case Rep. 2021, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- MERREM® IV (Meropenem for Injection), for Intravenous Use. 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/050706s037lbl.pdf (accessed on 25 May 2022).
- Ganguly, S.; Edginton, A.N.; Gerhart, J.G.; Cohen-Wolkowiez, M.; Greenberg, R.G.; Gonzalez, D. Physiologically Based Pharmacokinetic Modeling of Meropenem in Preterm and Term Infants. Clin. Pharmacokinet. 2021, 60, 1591–1604. [Google Scholar] [CrossRef]
- Smith, P.B.; Cohen-Wolkowiez, M.; Castro, L.M.; Poindexter, B.; Bidegain, M.; Weitkamp, J.H.; Schelonka, R.L.; Ward, R.M.; Wade, K.; Valencia, G.; et al. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr. Infect. Dis. J. 2011, 30, 844–849. [Google Scholar] [CrossRef]
- Lutsar, I.; Trafojer, U.M.; Heath, P.T.; Metsvaht, T.; Standing, J.; Esposito, S.; de Cabre, V.M.; Oeser, C.; Aboulker, J.P. Meropenem vs standard of care for treatment of late onset sepsis in children of less than 90 days of age: Study protocol for a randomised controlled trial. Trials 2011, 12, 215. [Google Scholar] [CrossRef]
- van den Anker, J.N.; Pokorna, P.; Kinzig-Schippers, M.; Martinkova, J.; de Groot, R.; Drusano, G.L.; Sorgel, F. Meropenem pharmacokinetics in the newborn. Antimicrob. Agents Chemother. 2009, 53, 3871–3879. [Google Scholar] [CrossRef] [Green Version]
- Padari, H.; Metsvaht, T.; Korgvee, L.T.; Germovsek, E.; Ilmoja, M.L.; Kipper, K.; Herodes, K.; Standing, J.F.; Oselin, K.; Lutsar, I. Short versus long infusion of meropenem in very-low-birth-weight neonates. Antimicrob. Agents Chemother. 2012, 56, 4760–4764. [Google Scholar] [CrossRef] [Green Version]
- Shabaan, A.E.; Nour, I.; Elsayed Eldegla, H.; Nasef, N.; Shouman, B.; Abdel-Hady, H. Conventional Versus Prolonged Infusion of Meropenem in Neonates with Gram-negative Late-onset Sepsis: A Randomized Controlled Trial. Pediatr. Infect. Dis. J. 2017, 36, 358–363. [Google Scholar] [CrossRef]
- Cirillo, I.; Vaccaro, N.; Castaneda-Ruiz, B.; Redman, R.; Cossey, V.; Bradley, J.S.; Allegaert, K. Open-Label Study To Evaluate the Single-Dose Pharmacokinetics, Safety, and Tolerability of Doripenem in Infants Less than 12 Weeks in Chronological Age. Antimicrob. Agents Chemother. 2015, 59, 4742–4749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, J.W.; Patel, M. Management of antibiotic-resistant infection in the newborn. Arch. Dis. Child Educ. Pract. Ed. 2011, 96, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Dao, K.; Fuchs, A.; Andre, P.; Giannoni, E.; Decosterd, L.A.; Marchetti, O.; Asner, S.A.; Pfister, M.; Widmer, N.; Buclin, T.; et al. Dosing strategies of imipenem in neonates based on pharmacometric modeling and simulation. J. Antimicrob. Chemother. 2022, 77, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Hemels, M.A.; van den Hoogen, A.; Verboon-Maciolek, M.A.; Fleer, A.; Krediet, T.G. A seven-year survey of management of coagulase-negative staphylococcal sepsis in the neonatal intensive care unit: Vancomycin may not be necessary as empiric therapy. Neonatology 2011, 100, 180–185. [Google Scholar] [CrossRef] [PubMed]
- De Cock, R.F.; Smits, A.; Allegaert, K.; de Hoon, J.; Saegeman, V.; Danhof, M.; Knibbe, C.A. Population pharmacokinetic modeling of total and unbound cefazolin plasma concentrations as a guide for dosing in preterm and term neonates. J. Antimicrob. Chemother. 2014, 69, 1330–1338. [Google Scholar] [CrossRef] [Green Version]
- Pacifici, G.M. Pharmacokinetics of cephalosporins in the neonate: A review. Clinics 2011, 66, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Spyridis, N.; Syridou, G.; Goossens, H.; Versporten, A.; Kopsidas, J.; Kourlaba, G.; Bielicki, J.; Drapier, N.; Zaoutis, T.; Tsolia, M.; et al. Variation in paediatric hospital antibiotic guidelines in Europe. Arch. Dis. Child. 2016, 101, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Leroux, S.; Roue, J.M.; Gouyon, J.B.; Biran, V.; Zheng, H.; Zhao, W.; Jacqz-Aigrain, E. A Population and Developmental Pharmacokinetic Analysis To Evaluate and Optimize Cefotaxime Dosing Regimen in Neonates and Young Infants. Antimicrob. Agents Chemother. 2016, 60, 6626–6634. [Google Scholar] [CrossRef] [Green Version]
- Ang, J.Y.; Arrieta, A.; Bradley, J.S.; Zhang, Z.; Yu, B.; Rizk, M.L.; Johnson, M.G.; Rhee, E.G. Ceftolozane/Tazobactam in Neonates and Young Infants: The Challenges of Collecting Pharmacokinetics and Safety Data in This Vulnerable Patient Population. Am. J. Perinatol. 2021, 38, 804–809. [Google Scholar] [CrossRef]
- Van den Anker, J.N.; Schoemaker, R.C.; Hop, W.C.; van der Heijden, B.J.; Weber, A.; Sauer, P.J.; Neijens, H.J.; de Groot, R. Ceftazidime pharmacokinetics in preterm infants: Effects of renal function and gestational age. Clin. Pharmacol. Ther. 1995, 58, 650–659. [Google Scholar] [CrossRef] [Green Version]
- Van den Anker, J.N.; Schoemaker, R.C.; van der Heijden, B.J.; Broerse, H.M.; Neijens, H.J.; de Groot, R. Once-daily versus twice-daily administration of ceftazidime in the preterm infant. Antimicrob. Agents Chemother. 1995, 39, 2048–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Anker, J.N.; Hop, W.C.; Schoemaker, R.C.; van der Heijden, B.J.; Neijens, H.J.; de Groot, R. Ceftazidime pharmacokinetics in preterm infants: Effect of postnatal age and postnatal exposure to indomethacin. Br. J. Clin. Pharmacol. 1995, 40, 439–443. [Google Scholar] [PubMed]
- Iosifidis, E.; Chorafa, E.; Agakidou, E.; Kontou, A.; Violaki, A.; Volakli, E.; Christou, E.I.; Zarras, C.; Drossou-Agakidou, V.; Sdougka, M.; et al. Use of Ceftazidime-avibactam for the Treatment of Extensively drug-resistant or Pan drug-resistant Klebsiella pneumoniae in Neonates and Children <5 Years of Age. Pediatr. Infect. Dis. J. 2019, 38, 812–815. [Google Scholar] [CrossRef]
- Bradley, J.S.; Armstrong, J.; Arrieta, A.; Bishai, R.; Das, S.; Delair, S.; Edeki, T.; Holmes, W.C.; Li, J.; Moffett, K.S.; et al. Phase I Study Assessing the Pharmacokinetic Profile, Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients. Antimicrob. Agents Chemother. 2016, 60, 6252–6259. [Google Scholar] [CrossRef] [Green Version]
- Franzese, R.C.; McFadyen, L.; Watson, K.J.; Riccobene, T.; Carrothers, T.J.; Vourvahis, M.; Chan, P.L.S.; Raber, S.; Bradley, J.S.; Lovern, M. Population Pharmacokinetic Modeling and Probability of Pharmacodynamic Target Attainment for Ceftazidime-Avibactam in Pediatric Patients Aged 3 Months and Older. Clin. Pharmacol. Ther. 2022, 111, 635–645. [Google Scholar] [CrossRef]
- Coskun, Y.; Atici, S. Successful Treatment of Pandrug-resistant Klebsiella pneumoniae Infection With Ceftazidime-avibactam in a Preterm Infant: A Case Report. Pediatr. Infect. Dis. J. 2020, 39, 854–856. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Hansford, K.A.; Butler, M.S.; Jia, Z.; Mark, A.E.; Cooper, M.A. Developments in Glycopeptide Antibiotics. ACS Infect. Dis. 2018, 4, 715–735. [Google Scholar] [CrossRef] [Green Version]
- Zeng, D.; Debabov, D.; Hartsell, T.L.; Cano, R.J.; Adams, S.; Schuyler, J.A.; McMillan, R.; Pace, J.L. Approved Glycopeptide Antibacterial Drugs: Mechanism of Action and Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a026989. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.L. Coagulase-negative staphylococcal infections in neonates. Pediatr. Infect. Dis. J. 1991, 10, 57–67. [Google Scholar] [CrossRef]
- Spears, R.L.; Koch, R. The use of vancomycin in pediatrics. Antibiot. Annu. 1959, 7, 798–803. [Google Scholar] [PubMed]
- Anderson, B.J.; Allegaert, K.; Van den Anker, J.N.; Cossey, V.; Holford, N.H. Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br. J. Clin. Pharmacol. 2007, 63, 75–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.M.; Yang, S.; Kang, S.; Chang, M.J. Population pharmacokinetics and dose optimization of vancomycin in neonates. Sci. Rep. 2021, 11, 6168. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, G.M.; Allegaert, K. Clinical pharmacokinetics of vancomycin in the neonate: A review. Clinics 2012, 67, 831–837. [Google Scholar] [CrossRef]
- Cusumano, J.A.; Klinker, K.P.; Huttner, A.; Luther, M.K.; Roberts, J.A.; LaPlante, K.L. Towards precision medicine: Therapeutic drug monitoring-guided dosing of vancomycin and beta-lactam antibiotics to maximize effectiveness and minimize toxicity. Am. J. Health Syst. Pharm. 2020, 77, 1104–1112. [Google Scholar] [CrossRef]
- Lee, S.; Song, M.; Han, J.; Lee, D.; Kim, B.H. Application of Machine Learning Classification to Improve the Performance of Vancomycin Therapeutic Drug Monitoring. Pharmaceutics 2022, 14, 1023. [Google Scholar] [CrossRef]
- Gwee, A.; Cranswick, N.; Metz, D.; Coghlan, B.; Daley, A.J.; Bryant, P.A.; Curtis, N. Neonatal vancomycin continuous infusion: Still a confusion? Pediatr. Infect. Dis. J. 2014, 33, 600–605. [Google Scholar] [CrossRef]
- Gwee, A.; Cranswick, N.; McMullan, B.; Perkins, E.; Bolisetty, S.; Gardiner, K.; Daley, A.; Ward, M.; Chiletti, R.; Donath, S.; et al. Continuous versus Intermittent Vancomycin Infusions in Infants: A Randomized Controlled Trial. Pediatrics 2019, 143, e20182179. [Google Scholar] [CrossRef] [Green Version]
- Cousin, V.L.; Laudouar, Q.; Le Sache, N.; Mokhtari, M.; Durand, P.; Furlan, V.; Tissieres, P. Role of fluid status markers as risk factors for suboptimal vancomycin concentration during continuous infusion in neonates: An observational study. Eur. J. Pediatr. 2022, 181, 2935–2942. [Google Scholar] [CrossRef]
- de Hoog, M.; Mouton, J.W.; van den Anker, J.N. Vancomycin: Pharmacokinetics and administration regimens in neonates. Clin. Pharmacokinet. 2004, 43, 417–440. [Google Scholar] [CrossRef]
- Mehrotra, N.; Tang, L.; Phelps, S.J.; Meibohm, B. Evaluation of vancomycin dosing regimens in preterm and term neonates using Monte Carlo simulations. Pharmacotherapy 2012, 32, 408–419. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Lomaestro, B.M.; Rotschafer, J.C.; Moellering, R.C., Jr.; Craig, W.A.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy 2009, 29, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: Executive summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Moise-Broder, P.A.; Forrest, A.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin. Pharmacokinet. 2004, 43, 925–942. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar]
- Chen, Q.; Wan, J.; Shen, W.; Lin, W.; Lin, X.; Huang, Z.; Lin, M.; Chen, Y. Optimal exposure targets for vancomycin in the treatment of neonatal coagulase-negative Staphylococcus infection: A retrospective study based on electronic medical records. Pediatr. Neonatol. 2022, 63, 247–254. [Google Scholar] [CrossRef]
- Leroux, S.; van den Anker, J.N.; Smits, A.; Pfister, M.; Allegaert, K. Maturational changes in vancomycin protein binding affect vancomycin dosing in neonates. Br. J. Clin. Pharmacol. 2019, 85, 865–867. [Google Scholar] [CrossRef]
- Jacqz-Aigrain, E.; Leroux, S.; Thomson, A.H.; Allegaert, K.; Capparelli, E.V.; Biran, V.; Simon, N.; Meibohm, B.; Lo, Y.L.; Marques, R.; et al. Population pharmacokinetic meta-analysis of individual data to design the first randomized efficacy trial of vancomycin in neonates and young infants. J. Antimicrob. Chemother. 2019, 74, 2128–2138. [Google Scholar] [CrossRef]
- Sharland, M. Manual of Childhood Infections. The Blue Book; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Smits, A.; Pauwels, S.; Oyaert, M.; Peersman, N.; Spriet, I.; Saegeman, V.; Allegaert, K. Factors impacting unbound vancomycin concentrations in neonates and young infants. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1503–1510. [Google Scholar] [CrossRef]
- Frymoyer, A.; Hersh, A.L.; El-Komy, M.H.; Gaskari, S.; Su, F.; Drover, D.R.; Van Meurs, K. Association between vancomycin trough concentration and area under the concentration-time curve in neonates. Antimicrob. Agents Chemother. 2014, 58, 6454–6461. [Google Scholar] [CrossRef] [Green Version]
- Stockmann, C.; Hersh, A.L.; Roberts, J.K.; Bhongsatiern, J.; Korgenski, E.K.; Spigarelli, M.G.; Sherwin, C.M.; Frymoyer, A. Predictive Performance of a Vancomycin Population Pharmacokinetic Model in Neonates. Infect. Dis. Ther. 2015, 4, 187–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroux, S.; Jacqz-Aigrain, E.; Biran, V.; Lopez, E.; Madeleneau, D.; Wallon, C.; Zana-Taieb, E.; Virlouvet, A.L.; Rioualen, S.; Zhao, W. Clinical Utility and Safety of a Model-Based Patient-Tailored Dose of Vancomycin in Neonates. Antimicrob. Agents Chemother. 2016, 60, 2039–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Lopez, E.; Biran, V.; Durrmeyer, X.; Fakhoury, M.; Jacqz-Aigrain, E. Vancomycin continuous infusion in neonates: Dosing optimisation and therapeutic drug monitoring. Arch. Dis. Child. 2013, 98, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Janssen, E.J.; Valitalo, P.A.; Allegaert, K.; de Cock, R.F.; Simons, S.H.; Sherwin, C.M.; Mouton, J.W.; van den Anker, J.N.; Knibbe, C.A. Towards Rational Dosing Algorithms for Vancomycin in Neonates and Infants Based on Population Pharmacokinetic Modeling. Antimicrob. Agents Chemother. 2016, 60, 1013–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandendriessche, A.; Allegaert, K.; Cossey, V.; Naulaers, G.; Saegeman, V.; Smits, A. Prospective validation of neonatal vancomycin dosing regimens is urgently needed. Curr. Ther. Res. Clin. Exp. 2014, 76, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Young, T.E.; Mangum, B. Neofax; Thomas Reuters: Montvale, NJ, USA, 2009. [Google Scholar]
- Kimberlin, D.W.; Brady, M.T.; Jackson, M.A.; Long, S.S. AAP Red Book, 30th ed.; American Academy of Pediatrics: Elk Grove Village, IL, USA, 2015; Volume 2015, p. 1151. [Google Scholar]
- Taketomo, C.K.; Hurlburt Hodding, J.; Kraus, D.M. Pediatric & Neonatal Dosage Handbook: A Universal Resource for Clinicians Treating Pediatric and Neonatal Patients; Lexi-Comp, Inc.: Hudson, OH, USA, 2017. [Google Scholar]
- Frymoyer, A.; Stockmann, C.; Hersh, A.L.; Goswami, S.; Keizer, R.J. Individualized Empiric Vancomycin Dosing in Neonates Using a Model-Based Approach. J. Pediatr. Infect. Dis. Soc. 2019, 8, 97–104. [Google Scholar] [CrossRef]
- Frymoyer, A.; Guglielmo, B.J.; Hersh, A.L. Desired vancomycin trough serum concentration for treating invasive methicillin-resistant Staphylococcal infections. Pediatr. Infect. Dis. J. 2013, 32, 1077–1079. [Google Scholar] [CrossRef]
- Parasuraman, J.M.; Kloprogge, F.; Standing, J.F.; Albur, M.; Heep, A. Population Pharmacokinetics of Intraventricular Vancomycin in Neonatal Ventriculitis, A Preterm Pilot Study. Eur. J. Pharm. Sci. 2021, 158, 105643. [Google Scholar] [CrossRef]
- Bugano, D.D.G.; Cavalcanti, A.B.; Goncalves, A.R.; de Almeida, C.S.; Silva, E. Cochrane meta-analysis: Teicoplanin versus vancomycin for proven or suspected infection. Einstein 2011, 9, 265–282. [Google Scholar] [CrossRef] [Green Version]
- Rybak, M.J. The pharmacokinetic and pharmacodynamic properties of vancomycin. Clin. Infect. Dis. 2006, 42 (Suppl. 1), S35–S39. [Google Scholar] [CrossRef]
- Wilson, A.P. Clinical pharmacokinetics of teicoplanin. Clin. Pharmacokinet. 2000, 39, 167–183. [Google Scholar] [CrossRef] [PubMed]
- Svetitsky, S.; Leibovici, L.; Paul, M. Comparative efficacy and safety of vancomycin versus teicoplanin: Systematic review and meta-analysis. Antimicrob. Agents Chemother. 2009, 53, 4069–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalcanti, A.B.; Goncalves, A.R.; Almeida, C.S.; Bugano, D.D.; Silva, E. Teicoplanin versus vancomycin for proven or suspected infection. Cochrane Database Syst. Rev. 2010, 6, CD007022. [Google Scholar] [CrossRef] [PubMed]
- Metsvaht, T.; Nellis, G.; Varendi, H.; Nunn, A.J.; Graham, S.; Rieutord, A.; Storme, T.; McElnay, J.; Mulla, H.; Turner, M.A.; et al. High variability in the dosing of commonly used antibiotics revealed by a Europe-wide point prevalence study: Implications for research and dissemination. BMC Pediatr. 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Martin, V.; Paulus, S.; Siner, S.; Scott, E.; Padmore, K.; Newland, P.; Drew, R.J.; Felton, T.W.; Docobo-Perez, F.; Pizer, B.; et al. Population pharmacokinetics of teicoplanin in children. Antimicrob. Agents Chemother. 2014, 58, 6920–6927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Martin, V.; Neely, M.N.; McGowan, P.; Siner, S.; Padmore, K.; Peak, M.; Beresford, M.W.; Turner, M.A.; Paulus, S.; Hope, W.W. Population pharmacokinetics and pharmacodynamics of teicoplanin in neonates: Making better use of C-reactive protein to deliver individualized therapy. J. Antimicrob. Chemother. 2016, 71, 3168–3178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos-Martin, V.; Neely, M.N.; Padmore, K.; Peak, M.; Beresford, M.W.; Turner, M.A.; Paulus, S.; Lopez-Herce, J.; Hope, W.W. Tools for the Individualized Therapy of Teicoplanin for Neonates and Children. Antimicrob. Agents Chemother. 2017, 61, e00707-17. [Google Scholar] [CrossRef] [Green Version]
- Gustinetti, G.; Cangemi, G.; Bandettini, R.; Castagnola, E. Pharmacokinetic/pharmacodynamic parameters for treatment optimization of infection due to antibiotic resistant bacteria: A summary for practical purposes in children and adults. J Chemother. 2018, 30, 65–81. [Google Scholar] [CrossRef]
- Sanofi. Targocid 200 mg Powder for Solution for Injection/Infusion or Oral Solution. 2018. Available online: https://www.medicines.org.uk/emc/product/2926/smpc#PRODUCTINFO (accessed on 16 June 2022).
- Kontou, A.; Sarafidis, K.; Begou, O.; Gika, H.G.; Tsiligiannis, A.; Ogungbenro, K.; Dokoumetzidis, A.; Agakidou, E.; Roilides, E. Population Pharmacokinetics of Teicoplanin in Preterm and Term Neonates: Is It Time for a New Dosing Regimen? Antimicrob. Agents Chemother. 2020, 64, e01971-19. [Google Scholar] [CrossRef]
- Watt, K.M.; Massaro, M.M.; Smith, B.; Cohen-Wolkowiez, M.; Benjamin, D.K., Jr.; Laughon, M.M. Pharmacokinetics of moxifloxacin in an infant with Mycoplasma hominis meningitis. Pediatr. Infect. Dis. J. 2012, 31, 197–199. [Google Scholar] [CrossRef] [Green Version]
- Nohren, J.; Namtu, K.; Peloquin, C.; Messina, A.; Tuite, G.; Berman, D.M. The Pharmacokinetics of Moxifloxacin in Cerebrospinal Fluid Following Intravenous Administration: A Report of Successfully Treated Infant with Mycoplasma hominis Meningitis. Pediatr. Infect. Dis. J. 2020, 39, e183–e184. [Google Scholar] [CrossRef] [PubMed]
- Yeung, T.; Chung, E.; Chen, J.; Erdman, L.K.; Smiljkovic, M.; Wong, W.; Rolnitsky, A.; Morris, S.K.; El Shahed, A.; Banihani, R.; et al. Therapeutic Drug Monitoring of Moxifloxacin to Guide Treatment of Mycoplasma hominis Meningitis in an Extremely Preterm Infant. J. Pediatr. Pharmacol. Ther. 2021, 26, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Wicha, S.G.; Martson, A.G.; Nielsen, E.I.; Koch, B.C.P.; Friberg, L.E.; Alffenaar, J.W.; Minichmayr, I.K. From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. Clin. Pharmacol. Ther. 2021, 109, 928–941. [Google Scholar] [CrossRef] [PubMed]
- Zander, J.; Paal, M.; Vogeser, M. The role of mass spectrometry in antibiotic stewardship. Clin. Mass Spectrom. 2019, 14 Pt. A, 31–33. [Google Scholar] [CrossRef]
- Brandhorst, G.; Oellerich, M.; Maine, G.; Taylor, P.; Veen, G.; Wallemacq, P. Liquid chromatography-tandem mass spectrometry or automated immunoassays: What are the future trends in therapeutic drug monitoring? Clin. Chem. 2012, 58, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, R. Recent advances in analytical methods for the therapeutic drug monitoring of immunosuppressive drugs. Drug Test. Anal. 2018, 10, 81–94. [Google Scholar] [CrossRef]
- Tsoi, V.; Bhayana, V.; Bombassaro, A.M.; Tirona, R.G.; Kittanakom, S. Falsely Elevated Vancomycin Concentrations in a Patient Not Receiving Vancomycin. Pharmacotherapy 2019, 39, 778–782. [Google Scholar] [CrossRef]
- Cui, J.J.; Wang, L.Y.; Tan, Z.R.; Zhou, H.H.; Zhan, X.; Yin, J.Y. Mass Spectrometry-Based Personalized Drug Therapy. Mass Spectrom. Rev. 2020, 39, 523–552. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. Analytical Procedures and Methods Validation for Drugs and Biologics: Guidance for Industry. 2015. Available online: https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf (accessed on 4 May 2022).
- EMA, Guideline on Bioanalytical Method Validation. 2012. Available online: https://www.ema.europa.eu/en/bioanalytical-method-validation (accessed on 4 May 2022).
- Cairoli, S.; Simeoli, R.; Tarchi, M.; Dionisi, M.; Vitale, A.; Perioli, L.; Dionisi-Vici, C.; Goffredo, B.M. A new HPLC-DAD method for contemporary quantification of 10 antibiotics for therapeutic drug monitoring of critically ill pediatric patients. Biomed. Chromatogr. 2020, 34, e4880. [Google Scholar] [CrossRef]
- McWhinney, B.C.; Wallis, S.C.; Hillister, T.; Roberts, J.A.; Lipman, J.; Ungerer, J.P. Analysis of 12 beta-lactam antibiotics in human plasma by HPLC with ultraviolet detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2039–2043. [Google Scholar] [CrossRef]
- Milla, P.; Ferrari, F.; Muntoni, E.; Sartori, M.; Ronco, C.; Arpicco, S. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1148, 122151. [Google Scholar] [CrossRef]
- Barco, S.; Mesini, A.; Barbagallo, L.; Maffia, A.; Tripodi, G.; Pea, F.; Saffioti, C.; Castagnola, E.; Cangemi, G. A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: Application to critically ill pediatric patients. J. Pharm. Biomed. Anal. 2020, 186, 113273. [Google Scholar] [CrossRef] [PubMed]
- Decosterd, L.A.; Mercier, T.; Ternon, B.; Cruchon, S.; Guignard, N.; Lahrichi, S.; Pesse, B.; Rochat, B.; Burger, R.; Lamoth, F.; et al. Validation and clinical application of a multiplex high performance liquid chromatography—Tandem mass spectrometry assay for the monitoring of plasma concentrations of 12 antibiotics in patients with severe bacterial infections. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1157, 122160. [Google Scholar] [CrossRef] [PubMed]
- Rakete, S.; Schuster, C.; Paal, M.; Vogeser, M. An isotope-dilution LC-MS/MS method for the simultaneous quantification of meropenem and its open-ring metabolite in serum. J. Pharm. Biomed. Anal. 2021, 197, 113944. [Google Scholar] [CrossRef] [PubMed]
- Rehm, S.; Rentsch, K.M. LC-MS/MS method for nine different antibiotics. Clin. Chim. Acta 2020, 511, 360–367. [Google Scholar] [CrossRef]
- Zheng, X.; Jongedijk, E.M.; Hu, Y.; Kuhlin, J.; Zheng, R.; Niward, K.; Paues, J.; Xu, B.; Davies Forsman, L.; Schon, T.; et al. Development and validation of a simple LC-MS/MS method for simultaneous determination of moxifloxacin, levofloxacin, prothionamide, pyrazinamide and ethambutol in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1158, 122397. [Google Scholar] [CrossRef]
- Magreault, S.; Leroux, S.; Touati, J.; Storme, T.; Jacqz-Aigrain, E. UPLC/MS/MS assay for the simultaneous determination of seven antibiotics in human serum-Application to pediatric studies. J. Pharm. Biomed. Anal. 2019, 174, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Kovac, J.; Panic, G.; Neodo, A.; Meister, I.; Coulibaly, J.T.; Schulz, J.D.; Keiser, J. Evaluation of a novel micro-sampling device, Mitra, in comparison to dried blood spots, for analysis of praziquantel in Schistosoma haematobium-infected children in rural Cote d’Ivoire. J. Pharm. Biomed. Anal. 2018, 151, 339–346. [Google Scholar] [CrossRef]
- Antunes, M.V.; Charao, M.F.; Linden, R. Dried blood spots analysis with mass spectrometry: Potentials and pitfalls in therapeutic drug monitoring. Clin. Biochem. 2016, 49, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Tanna, S.; Mulla, H.; Kairamkonda, V.; Pandya, H.; Lawson, G. Dexamethasone quantification in dried blood spot samples using LC-MS: The potential for application to neonatal pharmacokinetic studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 3277–3282. [Google Scholar] [CrossRef]
- Rower, J.E.; Anderson, D.J.; Sherwin, C.M.; Reilly, C.A.; Ballard, P.L.; McEvoy, C.T.; Wilkins, D.G. Development and validation of an assay for quantifying budesonide in dried blood spots collected from extremely low gestational age neonates. J. Pharm. Biomed. Anal. 2019, 167, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Lawson, A.J.; Bernstone, L.; Hall, S.K. Newborn screening blood spot analysis in the UK: Influence of spot size, punch location and haematocrit. J. Med. Screen. 2016, 23, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Velghe, S.; Delahaye, L.; Stove, C.P. Is the hematocrit still an issue in quantitative dried blood spot analysis? J. Pharm. Biomed. Anal. 2019, 163, 188–196. [Google Scholar] [CrossRef]
- Moorthy, G.S.; Vedar, C.; Downes, K.J.; Fitzgerald, J.C.; Scheetz, M.H.; Zuppa, A.F. Microsampling Assays for Pharmacokinetic Analysis and Therapeutic Drug Monitoring of Antimicrobial Drugs in Children: A Critical Review. Ther. Drug Monit. 2021, 43, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Anibaletto Dos Santos, A.L.; Cezimbra da Silva, A.C.; Feltraco Lizot, L.L.; Schneider, A.; Meireles, Y.F.; Hahn, R.Z.; Pagnussat, L.R.; Nonnenmacher, J.L.; Hahn, S.R.; Linden, R. Development and validation of an assay for the measurement of gentamicin concentrations in dried blood spots using UHPLC-MS/MS. J. Pharm. Biomed. Anal. 2022, 208, 114448. [Google Scholar] [CrossRef]
- Le, J.; Poindexter, B.; Sullivan, J.E.; Laughon, M.; Delmore, P.; Blackford, M.; Yogev, R.; James, L.P.; Melloni, C.; Harper, B.; et al. Comparative Analysis of Ampicillin Plasma and Dried Blood Spot Pharmacokinetics in Neonates. Ther. Drug Monit. 2018, 40, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Dorofaeff, T.; Bandini, R.M.; Lipman, J.; Ballot, D.E.; Roberts, J.A.; Parker, S.L. Uncertainty in Antibiotic Dosing in Critically Ill Neonate and Pediatric Patients: Can Microsampling Provide the Answers? Clin. Ther. 2016, 38, 1961–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andriguetti, N.B.; Lisboa, L.L.; Hahn, S.R.; Pagnussat, L.R.; Antunes, M.V.; Linden, R. Simultaneous determination of vancomycin and creatinine in plasma applied to volumetric absorptive microsampling devices using liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 2019, 165, 315–324. [Google Scholar] [CrossRef]
- Moorthy, G.S.; Vedar, C.; Zane, N.R.; Downes, K.J.; Prodell, J.L.; DiLiberto, M.A.; Zuppa, A.F. Development and validation of a volumetric absorptive microsampling- liquid chromatography mass spectrometry method for the analysis of cefepime in human whole blood: Application to pediatric pharmacokinetic study. J. Pharm. Biomed. Anal. 2020, 179, 113002. [Google Scholar] [CrossRef]
- Barco, S.; Castagnola, E.; Moscatelli, A.; Rudge, J.; Tripodi, G.; Cangemi, G. Volumetric adsorptive microsampling-liquid chromatography tandem mass spectrometry assay for the simultaneous quantification of four antibiotics in human blood: Method development, validation and comparison with dried blood spot. J. Pharm. Biomed. Anal. 2017, 145, 704–710. [Google Scholar] [CrossRef]
- Moorthy, G.S.; Downes, K.J.; Vedar, C.; Zuppa, A.F. A whole blood microsampling assay for vancomycin: Development, validation and application for pediatric clinical study. Bioanalysis 2020, 12, 1295–1310. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.L.; Wallis, S.C.; Fourie, C.; Lassig-Smith, M.; Starr, T.; Chikatamarla, A.; Dorofaeff, T.; Chatfield, M.D.; Lipman, J.; Roberts, J.A. Evaluation of low-volume plasma sampling for the analysis of meropenem in clinical samples. Anal. Bioanal. Chem. 2022, 414, 2155–2162. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, F.A.; Rolinski, B.; Busch, R.; Emmrich, P. Glucose monitoring with long-term subcutaneous microdialysis in neonates. Pediatrics 2001, 108, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- van der Mast, J.E.; Nijsten, M.W.; Alffenaar, J.C.; Touw, D.J.; Bult, W. In vitro evaluation of an intravenous microdialysis catheter for therapeutic drug monitoring of gentamicin and vancomycin. Pharmacol. Res. Perspect. 2019, 7, e00483. [Google Scholar] [CrossRef]
- Hutchinson, L.; Sinclair, M.; Reid, B.; Burnett, K.; Callan, B. A descriptive systematic review of salivary therapeutic drug monitoring in neonates and infants. Br. J. Clin. Pharmacol. 2018, 84, 1089–1108. [Google Scholar] [CrossRef]
- Dobson, N.R.; Liu, X.; Rhein, L.M.; Darnall, R.A.; Corwin, M.J.; McEntire, B.L.; Ward, R.M.; James, L.P.; Sherwin, C.M.; Heeren, T.C.; et al. Salivary caffeine concentrations are comparable to plasma concentrations in preterm infants receiving extended caffeine therapy. Br. J. Clin. Pharmacol. 2016, 82, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Londhe, V.; Rajadhyaksha, M. Opportunities and obstacles for microsampling techniques in bioanalysis: Special focus on DBS and VAMS. J. Pharm. Biomed. Anal. 2020, 182, 113102. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simeoli, R.; Cairoli, S.; Decembrino, N.; Campi, F.; Dionisi Vici, C.; Corona, A.; Goffredo, B.M. Use of Antibiotics in Preterm Newborns. Antibiotics 2022, 11, 1142. https://doi.org/10.3390/antibiotics11091142
Simeoli R, Cairoli S, Decembrino N, Campi F, Dionisi Vici C, Corona A, Goffredo BM. Use of Antibiotics in Preterm Newborns. Antibiotics. 2022; 11(9):1142. https://doi.org/10.3390/antibiotics11091142
Chicago/Turabian StyleSimeoli, Raffaele, Sara Cairoli, Nunzia Decembrino, Francesca Campi, Carlo Dionisi Vici, Alberto Corona, and Bianca Maria Goffredo. 2022. "Use of Antibiotics in Preterm Newborns" Antibiotics 11, no. 9: 1142. https://doi.org/10.3390/antibiotics11091142
APA StyleSimeoli, R., Cairoli, S., Decembrino, N., Campi, F., Dionisi Vici, C., Corona, A., & Goffredo, B. M. (2022). Use of Antibiotics in Preterm Newborns. Antibiotics, 11(9), 1142. https://doi.org/10.3390/antibiotics11091142