Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Phenotype Categorization
2.3. Definitions
2.4. Statistical Analysis
3. Results
3.1. Patient-Related Risk Factors
3.2. Hospitalization-Related Risk Factors
3.3. Infection-Related Risk Factors
4. Discussion
4.1. Modifiable Risk Factors
4.2. Non-Modifiable Risk Factors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seputiene, V.; Povilonis, J.; Suziedeliene, E. Novel variants of AbaR resistance islands with a common backbone in Acinetobacter baumannii isolates of European clone II. Antimicrob. Agents Chemother. 2012, 56, 1969–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, N.C.; Wareham, D.W. Multidrug-resistant Acinetobacter baumannii: Mechanisms of virulence and resistance. Int. J. Antimicrob. Agents 2010, 35, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Wisplinghoff, H.; Edmond, M.B.; Pfaller, M.A.; Jones, R.N.; Wenzel, R.P.; Seifert, H. Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: Clinical features, molecular epidemiology, and antimicrobial susceptibility. Clin. Infect. Dis. 2000, 31, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, B.; Arslan, F.; Sipahi, O.R.; Sunbul, M.; Ormen, B.; Hakyemez, I.N.; Turunc, T.; Yildiz, Y.; Karsen, H.; Karagoz, G.; et al. Variables determining mortality in patients with Acinetobacter baumannii meningitis/ventriculitis treated with intrathecal colistin. Clin. Neurol. Neurosurg. 2017, 153, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Balkhair, A.; Al-Muharrmi, Z.; Al’Adawi, B.; Al Busaidi, I.; Taher, H.B.; Al-Siyabi, T.; Al Amin, M.; Hassan, K.S. Prevalence and 30-day all-cause mortality of carbapenem and colistin resistant bacteraemias caused by Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae: A description of a decade long trend. Int. J. Infect. Dis. 2019, 85, 10–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Rice, L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2013. CDC Website. 16 September 2013. Available online: www.cdc.gov/drugresistance/threatreport-2013 (accessed on 30 November 2013).
- Hidron, A.I.; Edwards, J.R.; Patel, J.; Horan, T.C.; Sievert, D.M.; Pollock, D.A.; Fridkin, S.K. NHSN annual update: Antimicrobial-resistant pathogens associated with healthcare-associated infections: Annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect. Control Hosp. Epidemiol. 2008, 29, 996–1011. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Ye, H.; Liu, S. Risk factors for extensive drug-resistance and mortality in geriatric inpatients with bacteremia caused by Acinetobacter baumannii. Am. J. Infect. Control 2015, 43, 857–860. [Google Scholar] [CrossRef]
- Freire, M.P.; de Oliveira Garcia, D.; Garcia, C.P.; Campagnari Bueno, M.F.; Camargo, C.H.; Kono Magri, A.S.G.; Francisco, G.R.; Reghini, R.; Vieira, M.F.; Ibrahim, K.Y.; et al. Bloodstream infection caused by extensively drug-resistant Acinetobacter baumannii in cancer patients: High mortality associated with delayed treatment rather than with the degree of neutropenia. Clin. Microbiol. Infect. 2016, 22, 352–358. [Google Scholar] [CrossRef]
- Punpanich, W.; Nithitamsakun, N.; Treeratweeraphong, V.; Suntarattiwong, P. Risk factors for carbapenem non-susceptibility and mortality in Acinetobacter baumannii bacteremia in children. Int. J. Infect. Dis. 2012, 16, e811–e815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alrahmany, D.; Omar, A.F.; Harb, G.; El Nekidy, W.S.; Ghazi, I.M. Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes. Antibiotics 2021, 10, 630. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Standards Development Policies and Process October 2013. Available online: https://www.cdc.gov/labtraining/training-courses/master/antimicrobial-susceptibility-clsi-standards.html (accessed on 15 June 2022).
- Thorne, A.; Luo, T.; Durairajan, N.K.; Kaye, K.S.; Foxman, B. Risk factors for endemic Acinetobacter Baumannii colonization: A case-case study. Am. J. Infect. Control 2019, 47, 1294–1297. [Google Scholar] [CrossRef]
- The cost of antibiotic resistance: Effect of resistance among Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudmonas aeruginosa on length of hospital stay. Infect. Control Hosp. Epidemiol. 2002, 23, 106–108. [CrossRef]
- World Health Organization. Prevention of Hospital-Acquired Infections: A Practical Guide; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Zanetti, G.; Blanc, D.S.; Federli, I.; Raffoul, W.; Petignat, C.; Maravic, P.; Francioli, P.; Berger, M.M. Importation of Acinetobacter baumannii into a burn unit: A recurrent outbreak of infection associated with widespread environmental contamination. Infect. Control Hosp. Epidemiol. 2007, 28, 723–725. [Google Scholar] [CrossRef] [PubMed]
- Choe, Y.J.; Lee, H.J.; Choi, E.H. Risk Factors for Mortality in Children with Acinetobacter baumannii Bacteremia in South Korea: The Role of Carbapenem Resistance. Microb. Drug Resist. 2019, 25, 1210–1218. [Google Scholar] [CrossRef]
- Blanco, N.; Harris, A.D.; Rock, C.; Johnson, J.K.; Pineles, L.; Bonomo, R.A.; Srinivasan, A.; Pettigrew, M.M.; Thom, K.A.; the CDCEP. Risk Factors and Outcomes Associated with Multidrug-Resistant Acinetobacter baumannii upon Intensive Care Unit Admission. Antimicrob. Agents Chemother. 2018, 62, e01631-17. [Google Scholar] [CrossRef] [Green Version]
- Ganesan, V.; Sundaramurthy, R., Sr.; Thiruvanamalai, R.; Sivakumar, V.A.; Udayasankar, S.; Arunagiri, R.; Charles, J.; Chavan, S.K.; Balan, Y.; Sakthivadivel, V. Device-Associated Hospital-Acquired Infections: Does Active Surveillance with Bundle Care Offer a Pathway to Minimize Them? Cureus 2021, 13, e19331. [Google Scholar] [CrossRef]
- Mehta, Y.; Gupta, A.; Todi, S.; Myatra, S.; Samaddar, D.P.; Patil, V.; Bhattacharya, P.K.; Ramasubban, S. Guidelines for prevention of hospital acquired infections. Indian J. Crit. Care Med. 2014, 18, 149–163. [Google Scholar]
- Ellis, D.; Cohen, B.; Liu, J.; Larson, E. Risk factors for hospital-acquired antimicrobial-resistant infection caused by Acinetobacter baumannii. Antimicrob. Resist. Infect. Control 2015, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Chusri, S.; Chongsuvivatwong, V.; Silpapojakul, K.; Singkhamanan, K.; Hortiwakul, T.; Charernmak, B.; Doi, Y. Clinical characteristics and outcomes of community and hospital-acquired Acinetobacter baumannii bacteremia. J. Microbiol. Immunol. Infect. 2019, 52, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Ku, W.-W.; Yang, Y.-S.; Kao, C.-C.; Kang, F.-Y.; Kuo, S.-C.; Chiu, C.-H.; Chen, T.-L.; Wang, F.-D.; Lee; et al. Is Polymicrobial Bacteremia an Independent Risk Factor for Mortality in Acinetobacter baumannii Bacteremia? J. Clin. Med. 2020, 9, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyres, K.L.; Holt, K.E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Shamna, M.; Dilip, C.; Ajmal, M.; Linu Mohan, P.; Shinu, C.; Jafer, C.P.; Mohammed, Y. A prospective study on Adverse Drug Reactions of antibiotics in a tertiary care hospital. Saudi Pharm. J. 2014, 22, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, I.Y.; Kim, J.J.; Lee, S.J.; Kim, J.; Seong, H.; Jeong, W.; Choi, H.; Jeong, S.J.; Ku, N.S.; Han, S.H.; et al. Antibiotic-Related Adverse Drug Reactions at a Tertiary Care Hospital in South Korea. BioMed Res. Int. 2017, 2017, 4304973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.; Fan, L.; Lai, X.; Tan, L.; Zhang, X. Estimating extra length of stay and risk factors of mortality attributable to healthcare-associated infection at a Chinese university hospital: A multi-state model. BMC Infect. Dis. 2019, 19, 975. [Google Scholar] [CrossRef]
- Djordjevic, Z.M.; Folic, M.M.; Folic, N.D.; Gajovic, N.; Gajovic, O.; Jankovic, S.M. Risk factors for hospital infections caused by carbapanem-resistant Acinetobacter baumannii. J. Infect. Dev. Ctries. 2016, 10, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-P.; Shih, S.-C.; Wang, N.-Y.; Wu, A.Y.; Sun, F.-J.; Chow, S.-F.; Chen, T.-L.; Yan, T.-R. Risk factors of mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia. J. Microbiol. Immunol. Infect. 2016, 49, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Xu, X.; Yao, J.; Deng, K.; Chen, S.; Shen, Z.; Yang, L.; Feng, G. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. Am. J. Infect. Control 2019, 47, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Jang, T.N.; Lee, S.H.; Huang, C.H.; Lee, C.L.; Chen, W.Y. Risk factors and impact of nosocomial Acinetobacter baumannii bloodstream infections in the adult intensive care unit: A case-control study. J. Hosp. Infect. 2009, 73, 143–150. [Google Scholar] [CrossRef]
- Kumar, Y.; Gupta, N.; Vaish, V.B.; Gupta, S. Distribution trends & antibiogram pattern of Salmonella enterica serovar Newport in India. Indian J. Med. Res. 2016, 144, 82–86. [Google Scholar] [PubMed]
- Wisplinghoff, H.; Perbix, W.; Seifert, H. Risk factors for nosocomial bloodstream infections due to Acinetobacter baumannii: A case-control study of adult burn patients. Clin. Infect. Dis. 1999, 28, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Sunenshine, R.H.; Wright, M.O.; Maragakis, L.L.; Harris, A.D.; Song, X.; Hebden, J.; Cosgrove, S.E.; Anderson, A.; Carnell, J.; Jernigan, D.B.; et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 2007, 13, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Munier, A.L.; Biard, L.; Legrand, M.; Rousseau, C.; Lafaurie, M.; Donay, J.L.; Flicoteaux, R.; Mebazaa, A.; Mimoun, M.; Molina, J.M. Incidence, risk factors and outcome of multi-drug resistant Acinetobacter baumannii nosocomial infections during an outbreak in a burn unit. Int. J. Infect. Dis. 2019, 79, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, B.; Liu, J.; Cohen, A.R.; Larson, E. Association between Healthcare-Associated Infection and Exposure to Hospital Roommates and Previous Bed Occupants with the Same Organism. Infect. Control Hosp. Epidemiol. 2018, 39, 541–546. [Google Scholar] [CrossRef]
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Fernandez-Hinojosa, E.; Aldabo-Pallas, T.; Cayuela, A.; Marquez-Vacaro, J.A.; Garcia-Curiel, A.; Jimenez-Jimenez, F.J. Acinetobacter baumannii ventilator-associated pneumonia: Epidemiological and clinical findings. Intensive Care Med. 2005, 31, 649–655. [Google Scholar] [CrossRef]
All-Cause in-Hospital Mortality n = 140 (44%) | 14-Day Mortality n = 37 (12%) | 28-Day Mortality n = 41 (13%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | % | p | OR | CI | No | % | p | OR | CI | No | % | p | OR | CI | |
Age, median (IQR) | 69 | (60–76) | 0.000 | 1.04 | 1.03–1.06 | 73 | (60–77) | 0.006 | 1.03 | 1.01–1.05 | 68 | (56–76) | 0.020 | 1.02 | 1.00–1.04 |
Age > 65 years | 88 | 62.9% | 0.000 | 3.41 | 2.15–5.42 | 23 | 62.2% | 0.040 | 2.09 | 1.03–4.23 | 25 | 61.0% | 0.044 | 1.99 | 1.02–3.90 |
Male | 93 | 66.4% | 0.001 | 2.14 | 1.35–3.37 | 24 | 64.9% | 0.254 | 1.51 | 0.74–3.09 | 31 | 75.6% | 0.009 | 2.73 | 1.29–5.77 |
Female | 47 | 33.6% | 0.47 | 0.30–0.74 | 13 | 35.1% | 0.66 | 0.32–1.35 | 10 | 24.4% | 0.009 | 0.37 | 0.17–0.78 | ||
Any comorbidities | 126 | 90.0% | 0.000 | 5.29 | 2.82–9.92 | 34 | 91.9% | 0.018 | 4.29 | 1.28–14.37 | 35 | 85.4% | 0.101 | 2.13 | 0.86–5.28 |
Diabetes | 74 | 52.9% | 0.000 | 2.38 | 1.51–3.75 | 19 | 51.4% | 0.182 | 1.60 | 0.80–3.18 | 22 | 53.7% | 0.084 | 1.79 | 0.93–3.46 |
Chronic renal failure | 32 | 22.9% | 0.070 | 1.69 | 0.96–2.98 | 10 | 27.0% | 0.153 | 1.78 | 0.81–3.91 | 8 | 19.5% | 0.841 | 1.09 | 0.47–2.50 |
Active malignancy | 7 | 5.0% | 0.623 | 1.31 | 0.45–3.82 | 2 | 5.4% | 0.742 | 1.30 | 0.28–6.03 | 1 | 2.4% | 0.526 | 0.51 | 0.07–4.03 |
Immuno-suppressed | 4 | 2.9% | 0.959 | 1.04 | 0.27–3.93 | 1 | 2.7% | 0.968 | 0.96 | 0.12–7.89 | 0 | 0.0% | * | * | * |
Chronic cardiac diseases | 97 | 69.3% | 0.000 | 2.72 | 1.71–4.33 | 28 | 75.7% | 0.012 | 2.74 | 1.25–6.02 | 27 | 65.9% | 0.166 | 1.62 | 0.82–3.23 |
HIV follow-up/AIDS | 1 | 0.7% | 0.855 | 1.30 | 0.08–20.89 | 1 | 2.7% | 0.148 | 7.86 | 0.48–128.43 | 0 | 0.0% | * | * | * |
Chronic respiratory disease | 23 | 16.4% | 0.007 | 2.77 | 1.33–5.78 | 6 | 16.2% | 0.275 | 1.70 | 0.66–4.42 | 9 | 22.0% | 0.019 | 2.75 | 1.18–6.38 |
All-Cause in-Hospital Mortality n = 140 (44%) | 14-Day Mortality n = 37 (12%) | 28-Day Mortality n = 41 (13%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | % | p | OR | CI | No. | % | p | OR | CI | No. | % | p | OR | CI | |
LOS, median (IQR) | 23 | (13–50) | 0.193 | 1.00 | 1.00–1.00 | 7 | (5–11) | 0.000 | 0.86 | 0.81–0.92 | 18 | (16–22) | 0.024 | 0.98 | 0.96–1.00 |
LOS > 7 days | 121 | 86.4% | 0.023 | 1.98 | 1.10–3.59 | 18 | 48.6% | 0.000 | 0.17 | 0.08–0.35 | 41 | 100.0% | * | * | * |
Referred from another hospital | 65 | 46.4% | 0.997 | 1.00 | 0.64–1.56 | 17 | 45.9% | 0.951 | 0.98 | 0.49–1.95 | 17 | 41.5% | 0.496 | 0.79 | 0.41–1.54 |
Admitted from community | 75 | 53.6% | 1.00 | 0.64–1.56 | 20 | 54.1% | 1.02 | 0.51–2.03 | 24 | 58.5% | 1.26 | 0.65–2.45 | |||
Admission to critical care area | 57 | 40.7% | 0.000 | 2.86 | 1.74–4.72 | 13 | 35.1% | 0.356 | 1.41 | 0.68–2.90 | 14 | 34.1% | 0.407 | 1.34 | 0.67–2.69 |
Admission to general ward | 83 | 59.3% | 0.35 | 0.21–0.58 | 24 | 64.9% | 0.71 | 0.35–1.47 | 27 | 65.9% | 0.74 | 0.37–1.49 | |||
Admission with ID diagnosis | 97 | 69.3% | 0.000 | 3.12 | 1.96–4.96 | 28 | 75.7% | 0.006 | 2.98 | 1.36–6.55 | 30 | 73.2% | 0.010 | 2.61 | 1.26–5.42 |
Admission with a non-ID diagnosis | 43 | 30.7% | 0.32 | 0.20–0.51 | 9 | 24.3% | 0.34 | 0.15–0.74 | 11 | 26.8% | 0.38 | 0.18–0.79 | |||
6 months H/O invasive procedure | 55 | 39.3% | 0.280 | 0.78 | 0.50–1.22 | 12 | 32.4% | 0.184 | 0.61 | 0.30–1.26 | 12 | 29.3% | 0.067 | 0.51 | 0.25–1.05 |
90-day H/O hospitalization | 45 | 32.1% | 0.985 | 1.00 | 0.63–1.61 | 18 | 48.6% | 0.024 | 2.22 | 1.11–4.43 | 14 | 34.1% | 0.762 | 1.11 | 0.56–2.22 |
Hospitalization due to chronic illness | 26 | 18.6% | 0.096 | 2.41 | 1.09–5.35 | 10 | 27.0% | 0.046 | 1.62 | 0.58–4.51 | 12 | 29.3% | 0.008 | 9.26 | 1.95–43.89 |
Hospitalization due to acute illness | 19 | 13.6% | 0.096 | 0.41 | 0.19–0.92 | 8 | 21.6% | 0.046 | 0.62 | 0.22–1.72 | 2 | 4.9% | 0.008 | 0.11 | 0.02–0.51 |
All-Cause in-Hospital Mortality n = 140 (44%) | 14-Day Mortality n = 37 (12%) | 28-Day Mortality n = 41 (13%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | % | p | OR | CI | No. | % | p | OR | CI | No. | % | p | OR | CI | |
Blood sample | 12 | 8.6% | 0.288 | 1.60 | 0.67–3.83 | 4 | 10.8% | 0.317 | 1.79 | 0.57–5.61 | 6 | 14.6% | 0.042 | 2.83 | 1.04–7.71 |
Patient-related device sample | 2 | 1.4% | 0.207 | 0.36 | 0.07–1.76 | 0 | 0.0% | * | * | * | 1 | 2.4% | 0.880 | 0.85 | 0.10–6.98 |
Respiratory sample | 82 | 58.6% | 0.000 | 2.85 | 1.81–4.50 | 19 | 51.4% | 0.356 | 1.38 | 0.70–2.74 | 20 | 48.8% | 0.531 | 1.23 | 0.64–2.38 |
Skin & soft tissue sample | 41 | 29.3% | 0.211 | 0.74 | 0.46–1.19 | 14 | 37.8% | 0.509 | 1.27 | 0.63–2.58 | 14 | 34.1% | 0.870 | 1.06 | 0.53–2.12 |
Urine sample | 3 | 2.1% | 0.000 | 0.08 | 0.02–0.26 | 0 | 0.0% | * | * | * | 0 | 0.0% | * | * | * |
Infection with MDRAB | 127 | 90.7% | 0.000 | 3.43 | 1.77–6.63 | 29 | 78.4% | 0.627 | 0.81 | 0.35–1.88 | 37 | 90.2% | 0.125 | 2.31 | 0.79–6.76 |
Infection with sensitive AB | 13 | 9.3% | 0.29 | 0.15–0.56 | 8 | 21.6% | 1.23 | 0.53–2.85 | 4 | 9.8% | 0.43 | 0.15–1.26 | |||
Hospital-acquired infection | 93 | 66.4% | 0.027 | 1.68 | 1.06–2.65 | 9 | 24.3% | 0.000 | 0.18 | 0.08–0.40 | 29 | 70.7% | 0.120 | 1.76 | 0.86–3.59 |
Community-acquired infection | 47 | 33.6% | 0.60 | 0.38–0.94 | 28 | 75.7% | 5.55 | 2.52–12.22 | 12 | 29.3% | 0.57 | 0.28–1.16 | |||
90-day recurrence of infection | 10 | 7.1% | 0.082 | 0.50 | 0.23–1.09 | 0 | 0.0% | * | * | * | 0 | 0.0% | * | * | * |
H/O exposure to Gram-negative | 29 | 20.7% | 0.951 | 0.98 | 0.57–1.69 | 13 | 35.1% | 0.026 | 2.31 | 1.10–4.82 | 9 | 22.0% | 0.856 | 1.08 | 0.49–2.38 |
Any H/O exposure to infection | 33 | 23.6% | 0.704 | 0.91 | 0.54–1.51 | 14 | 37.8% | 0.050 | 2.05 | 1.00–4.21 | 10 | 24.4% | 0.972 | 0.99 | 0.46–2.12 |
H/O exposure to K. pneumoniae | 8 | 5.7% | 0.295 | 0.63 | 0.26–1.51 | 4 | 10.8% | 0.416 | 1.60 | 0.52–4.97 | 4 | 9.8% | 0.554 | 1.41 | 0.46–4.34 |
H/O exposure to P. aeruginosa | 14 | 10.0% | 0.723 | 1.15 | 0.54–2.44 | 7 | 18.9% | 0.039 | 2.65 | 1.05–6.69 | 5 | 12.2% | 0.504 | 1.42 | 0.51–3.94 |
H/O exposure to E. coli | 13 | 9.3% | 0.282 | 1.58 | 0.69–3.65 | 6 | 16.2% | 0.039 | 2.86 | 1.06–7.74 | 3 | 7.3% | 0.967 | 0.97 | 0.28–3.42 |
H/O exposure to Gram-positive | 15 | 10.7% | 0.950 | 1.02 | 0.50–2.09 | 6 | 16.2% | 0.243 | 1.77 | 0.68–4.61 | 6 | 14.6% | 0.371 | 1.54 | 0.60–3.99 |
H/O exposure to MRSA | 4 | 2.9% | 0.468 | 0.64 | 0.19–2.16 | 2 | 5.4% | 0.573 | 1.57 | 0.33–7.44 | 1 | 2.4% | 0.642 | 0.61 | 0.08–4.86 |
H/O exposure to MSSA | 4 | 2.9% | 0.468 | 0.64 | 0.19–2.16 | 0 | 0.0% | * | * | * | 3 | 7.3% | 0.209 | 2.38 | 0.62–9.17 |
Polymicrobial infection | 118 | 84.3% | 0.000 | 2.66 | 1.53–4.61 | 21 | 56.8% | 0.010 | 0.40 | 0.20–0.81 | 35 | 85.4% | 0.093 | 2.17 | 0.88–5.37 |
Concurrent infection with Gram-negative | 107 | 76.4% | 0.000 | 2.57 | 1.58–4.18 | 16 | 43.2% | 0.005 | 0.37 | 0.18–0.73 | 30 | 73.2% | 0.232 | 1.56 | 0.75–3.25 |
Concurrent infection K. pneumoniae | 70 | 50.0% | 0.001 | 2.18 | 1.38–3.43 | 6 | 16.2% | 0.004 | 0.26 | 0.11–0.64 | 20 | 48.8% | 0.199 | 1.54 | 0.80–2.97 |
Concurrent infection P. aeruginosa | 64 | 45.7% | 0.022 | 1.70 | 1.08–2.67 | 9 | 24.3% | 0.062 | 0.47 | 0.21–1.04 | 12 | 29.3% | 0.190 | 0.621 | 0.30–1.27 |
Concurrent infection E. coli | 29 | 20.7% | 0.343 | 1.32 | 0.75–2.32 | 4 | 10.8% | 0.214 | 0.50 | 0.17–1.48 | 7 | 17.1% | 0.817 | 0.903 | 0.38–2.15 |
Concurrent infection with Gram-positive | 69 | 49.3% | 0.016 | 1.73 | 1.11–2.72 | 11 | 29.7% | 0.119 | 0.55 | 0.26–1.16 | 17 | 41.5% | 0.969 | 0.99 | 0.51–1.92 |
Concurrent infection MRSA | 20 | 14.3% | 0.791 | 1.09 | 0.58–2.07 | 2 | 5.4% | 0.136 | 0.33 | 0.08–1.42 | 6 | 14.6% | 0.853 | 1.09 | 0.43–2.77 |
Concurrent infection MSSA | 8 | 5.7% | 0.060 | 1.31 | 0.48–3.58 | 3 | 8.1% | 0.360 | 1.84 | 0.50–6.78 | 1 | 2.4% | 0.435 | 0.44 | 0.06–3.44 |
Antibiotic-related ADE | 86 | 61.4% | 0.000 | 3.13 | 1.98–4.96 | 16 | 43.2% | 0.741 | 0.89 | 0.45–1.78 | 24 | 58.5% | 0.082 | 1.80 | 0.93–3.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrahmany, D.; Omar, A.F.; Alreesi, A.; Harb, G.; Ghazi, I.M. Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics 2022, 11, 1086. https://doi.org/10.3390/antibiotics11081086
Alrahmany D, Omar AF, Alreesi A, Harb G, Ghazi IM. Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics. 2022; 11(8):1086. https://doi.org/10.3390/antibiotics11081086
Chicago/Turabian StyleAlrahmany, Diaa, Ahmed F. Omar, Aisha Alreesi, Gehan Harb, and Islam M. Ghazi. 2022. "Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions" Antibiotics 11, no. 8: 1086. https://doi.org/10.3390/antibiotics11081086
APA StyleAlrahmany, D., Omar, A. F., Alreesi, A., Harb, G., & Ghazi, I. M. (2022). Acinetobacter baumannii Infection-Related Mortality in Hospitalized Patients: Risk Factors and Potential Targets for Clinical and Antimicrobial Stewardship Interventions. Antibiotics, 11(8), 1086. https://doi.org/10.3390/antibiotics11081086