The Effect of Different Colistin Dosing Regimens on Nephrotoxicity: A Cohort Study
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Outcomes
2.3. Predictors of AKI—All Patients
2.4. Predictors of AKI—Propensity Score–Matched Cohort
3. Discussion
4. Patients and Methods
4.1. Study Design
4.2. Patient Population (Participants)
4.3. Outcomes
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassetti, M.; Vena, A.; Sepulcri, C.; Giacobbe, D.R.; Peghin, M. Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. Antibiotics 2020, 9, 632. [Google Scholar] [CrossRef] [PubMed]
- Oliota, A.F.; Penteado, S.T.; Tonin, F.S.; Fernandez-Llimos, F.; Sanches, A.C. Nephrotoxicity prevalence in patients treated with polymyxins: A systematic review with meta-analysis of observational studies. Diagn. Microbiol. Infect. Dis. 2019, 94, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Sisay, M.; Hagos, B.; Edessa, D.; Tadiwos, Y.; Mekuria, A.N. Polymyxin-induced nephrotoxicity and its predictors: A systematic review and meta-analysis of studies conducted using RIFLE criteria of acute kidney injury. Pharm. Res. 2020, 163, 105328. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.; Lucenteforte, E.; Pea, F.; Soriano, A.; Tavoschi, L.; Steele, V.R.; Henriksen, A.S.; Longshaw, C.; Manissero, D.; Pecini, R.; et al. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin. Microbiol. Infect. 2021, 27, 671–686. [Google Scholar] [CrossRef]
- Kim, J.; Lee, K.H.; Yoo, S.; Pai, H. Clinical characteristics and risk factors of colistin-induced nephrotoxicity. Int. J. Antimicrob Agents 2009, 34, 434–438. [Google Scholar] [CrossRef]
- Pogue, J.M.; Lee, J.; Marchaim, D.; Yee, V.; Zhao, J.J.; Chopra, T.; Lephart, P.; Kaye, K.S. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin. Infect. Dis. 2011, 53, 879–884. [Google Scholar] [CrossRef]
- Cheah, S.E.; Wang, J.; Nguyen, V.T.; Turnidge, J.D.; Li, J.; Nation, R.L. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: Smaller response in lung infection. J. Antimicrob. Chemother. 2015, 70, 3291–3297. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar] [CrossRef]
- Dudhani, R.V.; Turnidge, J.D.; Nation, R.L.; Li, J. fAUC/MIC is the most predictive pharmacokinetic/pharmacodynamic index of colistin against Acinetobacter baumannii in murine thigh and lung infection models. J. Antimicrob. Chemother. 2010, 65, 1984–1990. [Google Scholar] [CrossRef]
- Zabidi, M.S.; Abu Bakar, R.; Musa, N.; Mustafa, S.; Wan Yusuf, W.N. Population Pharmacokinetics of Colistin Methanesulfonate Sodium and Colistin in Critically Ill Patients: A Systematic Review. Pharmacology 2021, 14, 903. [Google Scholar] [CrossRef]
- Garonzik, S.M.; Li, J.; Thamlikitkul, V.; Paterson, D.L.; Shoham, S.; Jacob, J.; Silveira, F.P.; Forrest, A.; Nation, R.L. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob. Agents Chemother. 2011, 55, 3284–3294. [Google Scholar] [CrossRef]
- Tsala, M.; Vourli, S.; Georgiou, P.C.; Pournaras, S.; Tsakris, A.; Daikos, G.L.; Mouton, J.W.; Meletiadis, J. Exploring colistin pharmacodynamics against Klebsiella pneumoniae: A need to revise current susceptibility breakpoints. J. Antimicrob. Chemother. 2018, 73, 953–961. [Google Scholar] [CrossRef]
- Bergen, P.J.; Landersdorfer, C.B.; Zhang, J.; Zhao, M.; Lee, H.J.; Nation, R.L.; Li, J. Pharmacokinetics and pharmacodynamics of ‘old’ polymyxins: What is new? Diagn. Microbiol. Infect. Dis. 2012, 74, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.J.; Li, J.; Nation, R.L.; Spelman, D. In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates. J. Antimicrob. Chemother. 2007, 59, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Poudyal, A.; Howden, B.P.; Bell, J.M.; Gao, W.; Owen, R.J.; Turnidge, J.D.; Nation, R.L.; Li, J. In vitro pharmacodynamics of colistin against multidrug-resistant Klebsiella pneumoniae. J. Antimicrob. Chemother. 2008, 62, 1311–1318. [Google Scholar] [CrossRef]
- Sorli, L.; Luque, S.; Grau, S.; Berenguer, N.; Segura, C.; Montero, M.M.; Alvarez-Lerma, F.; Knobel, H.; Benito, N.; Horcajada, J.P. Trough colistin plasma level is an independent risk factor for nephrotoxicity: A prospective observational cohort study. BMC Infect. Dis. 2013, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Luque, S.; Grau, S.; Valle, M.; Sorli, L.; Horcajada, J.P.; Segura, C.; Alvarez-Lerma, F. Differences in pharmacokinetics and pharmacodynamics of colistimethate sodium (CMS) and colistin between three different CMS dosage regimens in a critically ill patient infected by a multidrug-resistant Acinetobacter baumannii. Int. J. Antimicrob. Agents 2013, 42, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Magreault, S.; Bassoulis, D.; Gregoire, N.; Skiada, A.; Marchand, S.; Couet, W.; Daikos, G. Pharmacokinetics of colistin administered at 9MIU once daily in intensive care unit patients with preserved renal function. In Proceedings of the 28th ECCMID, Madrid, Spain, 21–24 April 2018; p. 2232. [Google Scholar]
- Wallace, S.J.; Li, J.; Nation, R.L.; Rayner, C.R.; Taylor, D.; Middleton, D.; Milne, R.W.; Coulthard, K.; Turnidge, J.D. Subacute toxicity of colistin methanesulfonate in rats: Comparison of various intravenous dosage regimens. Antimicrob. Agents Chemother. 2008, 52, 1159–1161. [Google Scholar] [CrossRef] [PubMed]
- Couet, W.; Gregoire, N.; Marchand, S.; Mimoz, O. Colistin pharmacokinetics: The fog is lifting. Clin. Microbiol. Infect. 2012, 18, 30–39. [Google Scholar] [CrossRef]
- Okoduwa, A.; Ahmed, N.; Guo, Y.; Scipione, M.R.; Papadopoulos, J.; Eiras, D.P.; Dubrovskaya, Y. Nephrotoxicity Associated with Intravenous Polymyxin B Once- versus Twice-Daily Dosing Regimen. Antimicrob. Agents Chemother. 2018, 62, e00025-18. [Google Scholar] [CrossRef]
- Kwa, A.; Kasiakou, S.K.; Tam, V.H.; Falagas, M.E. Polymyxin B: Similarities to and differences from colistin (polymyxin E). Expert Rev. Anti Infect.Ther. 2007, 5, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Nation, R.L.; Velkov, T.; Li, J. Colistin and polymyxin B: Peas in a pod, or chalk and cheese? Clin. Infect. Dis. 2014, 59, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Pais, G.M.; Avedissian, S.N.; Gilchrist, A.; Lee, A.; Rhodes, N.J.; Hauser, A.R.; Scheetz, M.H. Evaluation of Dose-Fractionated Polymyxin B on Acute Kidney Injury Using a Translational In Vivo Rat Model. Antimicrob. Agents Chemother. 2020, 64, e02300–e02319. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative, w. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–212. [Google Scholar] [CrossRef] [PubMed]
- Brookhart, M.A.; Schneeweiss, S.; Rothman, K.J.; Glynn, R.J.; Avorn, J.; Sturmer, T. Variable selection for propensity score models. Am. J. Epidemiol. 2006, 163, 1149–1156. [Google Scholar] [CrossRef]
- Daikos, G.L.; Skiada, A.; Pavleas, J.; Vafiadi, C.; Salatas, K.; Tofas, P.; Tzanetou, K.; Markogiannakis, A.; Thomopoulos, G.; Vafiadi, I.; et al. Serum bactericidal activity of three different dosing regimens of colistin with implications for optimum clinical use. J. Chemother. 2010, 22, 175–178. [Google Scholar] [CrossRef]
Variable | All Patients (n = 306) | Regimen A (n = 132) | Regimen B or C (n = 174) | |
---|---|---|---|---|
n, (%) | n, (%) | n, (%) | p | |
Patient Variables | ||||
Gender, male | 207, (67.6) | 86, (65.2) | 121, (69.5) | 0.46 |
Age, years (median, IQR) | 60, (47–69) | 61, (48–70.5) | 59, (47–68) | 0.59 |
Weight, Kg (median, IQR) | 73, (65–80) | 75, (65–80) | 72, (66–80) | 0.70 |
BMI, (median, IQR) | 25.0, (22.5–26.8) | 24.8, (22.6–26.9) | 25.2, (22.5–26.7) | 0.72 |
Obesity (BMI > 30) | 21, (6.9) | 10, (7.6) | 11, (6.4) | 0.27 |
Ward | <0.001 | |||
Medical | 84, (27.5) | 28, (21.2) | 56, (32.2) | 0.033 |
Surgical | 113, (36.9) | 71, (53.8) | 42, (24.1) | <0.001 |
ICU | 109, (35.6) | 33, (25.0) | 76, (43.7) | 0.001 |
Charlson Comorbidity Index > 3 | 135, (44.1) | 63, (46.7) | 72, (53.3) | 0.26 |
APACHE score, (median, IQR) | 11, (7–16) | 10, (6–15) | 12, (7–17) | 0.005 |
Diabetes | 48, (15.7) | 15, (11.4) | 33, (19.0) | 0.07 |
Heart failure | 32, (10.5) | 10, (7.6) | 22, (12.6) | 0.151 |
Neutropenia (PMN < 500/μL) | 30, (9.8) | 11, (8.3) | 19, (10.9) | 0.45 |
Serum creatinine at day 0, mg/dL (median, IQR) | 0.7, (0.5–0.9) | 0.64, (0.5–0.83) | 0.7, (0.5–0.9) | 0.37 |
eGFR at baseline mL/min (median, IQR) | 118.3, (84.7–148.0) | 121.8, (83.1–147.1) | 116.9, (85–148.3) | 0.75 |
Baseline eGFR > 80 mL/min | 240, (78.4) | 104, (78.8) | 136, (78.2) | 0.97 |
Infection Variables | ||||
Site of infection * | <0.001 | |||
Primary bacteraemia | 55, (18.0) | 14, (10.6) | 41, (23.6) | 0.003 * |
UTI | 19, (6.2) | 7, (5.3) | 12, (6.9) | ns |
Pneumonia/VAP | 112, (36.6) | 44, (33.3) | 68, (39.1) | ns |
Abdominal infection | 52, (17.0) | 36, (27.3) | 16, (9.2) | <0.001 * |
SSTI | 25, (8.2) | 14, (10.6) | 11, (6.3) | ns |
Other sites | 43 (20.9) | 17 (12.9) | 26 (14.5%) | |
Pathogen * | 0.14 | |||
Acinetobacter spp. | 105, (34.3) | 54, (40.9) | 51, (29.3) | 0.034 * |
Pseudomonas spp. | 39, (12.7) | 11, (8.3) | 28, (16.1) | 0.044 * |
Klebsiella spp. | 70, (22.9) | 30, (22.7) | 40, (23.0) | ns |
Other bacteria | 11 (3.6) | 5 (3.8) | 6 (3.4) | |
No bacteria isolated | 81, (26.5) | 32, (24.2) | 49, (28.2) | ns |
Septic shock | 64, (20.9) | 26, (19.7) | 38, (21.8) | 0.67 |
Hemodynamic instability | 85, (27.8) | 36, (27.3) | 49, (28.2) | 0.86 |
Mechanical Ventilation | 107, (35.0) | 33, (25.0) | 74, (42.5) | 0.001 |
Treatment Variables | ||||
Empirical Treatment | 91, (29.7) | 33, (25.0) | 58, (33.3) | 0.13 |
Administration of loading dose | 194, (63.4) | 132, (100) | 118, (67.8) | <0.001 |
Duration of treatment, days (median, IQR) | 14, (10–22) | 15, (9–23) | 14, (10–21) | 0.82 |
Colistin total dose, MU (median, IQR) | 126, (90–189) | 135, (90–198) | 126, (81–180) | 0.124 |
Concomitant nephrotoxic agents | ||||
Diuretics | 121, (39.5) | 54, (40.9) | 67, (38.5) | 0.67 |
Aminoglycosides | 50, (16.3) | 27, (20.5) | 23, (13.2) | 0.09 |
Amphotericin | 17, (5.6) | 9, (6.8) | 8, (4.6) | 0.40 |
Glycopeptides | 104, (34.0) | 48, (36.4) | 56, (32.2) | 0.44 |
Chemotherapy | 58, (19.0) | 20, (15.2) | 38, (21.8) | 0.13 |
Radiocontrast Agents | 88, (28.8) | 47, (35.6) | 41, (23.6) | 0.021 |
Non-steroidal anti-inflammatory drug | 36, (11.8) | 18, (13.6) | 18, (10.3) | 0.37 |
Other nephrotoxic drugs | 45, (14.7) | 3, (2.3) | 42, (24.1) | <0.001 |
Variable | Full Cohort | Propensity Matched Cohort | ||||||
---|---|---|---|---|---|---|---|---|
All Patients (n = 306) | Regimen A (n = 132) | Regimen B or C (n = 174) | All Patients (n = 234) | Regimen A (n = 117) | Regimen B or C (n = 117) | |||
n, (%) | n, (%) | n, (%) | p | n, (%) | n, (%) | n, (%) | p | |
RIFLE Nephrotoxicity (n, %) | 99, (32.4) | 45, (34.1) | 54, (31.0) | 0.57 | 76, (32.5) | 37, (31.6) | 39, (33.3) | 0.78 |
No RIFLE | 207, (67.6) | 87, (65.9) | 120, (69.0) | 0.43 * | 158, (67.5 | 80, (68.4) | 78, (66.7) | 0.94 * |
Risk | 38, (12.4) | 14, (10.6) | 24, (13.8) | 29, (12.4) | 11, (9.4) | 18, (15.4) | ||
Injury | 38, (12.4) | 20, (15.2) | 18, (10.3) | 32, (13.7) | 19, (16.2) | 13, (11.1) | ||
Failure | 23, (7.5) | 11, (8.3) | 12, (6.9) | 15, (6.4) | 7, (6.0) | 8, (6.8) | ||
Treatment discontinuation because of AKI | 32, (10.5) | 16, (12.1) | 16, (9.2) | 0.40 | 27, (11.5) | 15, (12.8) | 12, (10.3) | 0.68 |
Reversal of AKI § | 46/65, (70.8) | 18/24, (75.0) | 28/41, (68.3) | 0.56 | 35/48, (72.9) | 14/18, (77.8) | 21/30, (70) | 0.56 |
Day 30 mortality | 54, (17.6) | 19, (14.6) | 35, (20.1) | 0.21 | 39, (16.7) | 16, (13.9) | 23, (19.7) | 0.24 |
Variable | Full Cohort | Propensity Score Matched Cohort | ||||
---|---|---|---|---|---|---|
No RIFLE (n = 207) | Any RIFLE (n = 99) | No RIFLE (n = 158) | Any RIFLE (n = 76) | |||
n, % | n, % | p | n, % | n, % | p | |
Patient Variables | ||||||
Gender, male | 137, (66.2) | 70, (70.7) | 0.43 | 102, (64.6) | 51, (67.1) | 0.70 |
Age, years (median, IQR) | 59, (44–68) | 62, (51–74) | 0.011 | 60, (44–68) | 0.06 | |
Weight, Kg (median, IQR) | 74.5, (65–80) | 72, (65–80) | 0.59 | 75, (65–80) | 0.39 | |
BMI, (median, IQR) | 24.9, (22.4–26.9) | 25.6, (22.5–26.6) | 0.88 | 24.8, (22.1–26.6) | 0.80 | |
BMI Classification, Obese | 14, (6.8) | 7, (7.1) | 0.67 | 9, (59.7) | 5, (6.6) | 0.36 |
ICU Admission | 81, (39.1) | 28, (28.3) | 0.06 | 49, (31.0) | 17, (22.4) | 0.17 |
Diabetes | 23, (11.1) | 25, (25.3) | 0.001 | 11, (7.0) | 21, (27.6) | <0.001 |
Heart_Failure | 18, (8.7) | 14, (14.1) | 0.14 | 9, (5.7) | 9, (11.8) | 0.10 |
Neutropenia (PMN < 500/μL) | 19, (9.2) | 11, (11.1) | 0.59 | 14, (8.9) | 11, (14.5) | 0.19 |
Charlson Comorbidity Index > 3 | 87, (42.0) | 48, (48.5) | 0.29 | 68, (43.0) | 40, (52.6) | 0.16 |
Charlson Comorbidity Index (median, IQR) | 3, (1–4) | 3, (3–6) | 0.001 | 10, (6–15) | 9.5, (6.5–14) | 0.001 |
APACHE score, (median, IQR) | 11, (7–16) | 10, (7–16) | 0.91 | 3, (2–5) | 5, (2–6) | 0.45 |
Serum creatinine at day 0, mg/dL (median, IQR) | 0.62, (0.5–0.9) | 0.71, (0.52–0.9) | 0.26 | 0.69, (0.51–0.9) | 0.79, (0.56–0.9) | 0.23 |
eGFR at baseline ml/min (median, IQR) | 122.2, (87.4–156.6) | 112.5, (75.1–137.7) | 0.03 | 118.21, (86.11–147.96) | 104.26, (73.35–134.11) | 0.02 |
Baseline eGFR > 80 mL/min | 170, (82.5) | 70, (70.7) | 0.02 | 129, (81.6) | 51, (67.1) | 0.01 |
Infection Variables | ||||||
Site of infection * | 0.26 | 0.31 | ||||
Primary bacteremia | 35, (16.9) | 20, (20.2) | ns | 19, (12.0) | 13, (17.1) | ns |
UTI | 11, (5.3) | 8, (8.1) | ns | 8, (5.1) | 5, (6.6) | ns |
Pneumoniae, VAP | 78, (37.7) | 34, (34.3) | ns | 60, (38.0) | 23, (30.3) | ns |
Abdominal infection | 33, (15.9) | 19, (19.2) | ns | 30, (19.0) | 18, (23.7) | ns |
SSTI | 16, (7.7) | 9, (9.1) | ns | 12, (7.6) | 9, (11.8) | ns |
Pathogen (n, %) * | 0.50 | 0.42 | ||||
Acinetobacter spp. | 71, (34.3) | 34, (34.3) | ns | 54, (34.2) | 28, (36.8) | ns |
Pseudomonas spp. | 23, (11.1) | 16, (16.2) | ns | 17, (10.8) | 9, (11.8) | ns |
Klebsiella spp. | 45, (21.7) | 25, (25.3) | ns | 31, (19.6) | 21, (27.6) | ns |
No pathogen isolated | 60, (29.0) | 21, (21.2) | ns | 49, (31.0) | 16, (21.1) | ns |
Septic shock | 40, (19.3) | 24, (24.2) | 0.32 | 27, (17.1) | 13, (17.1) | 1.00 |
Hemodynamic instability | 55, (26.6) | 30, (30.3) | 0.49 | 41, (25.9) | 19, (25.0) | 0.88 |
Mechanical Ventilation | 80, (38.6) | 27, (27.3) | 0.051 | 51, (32.3) | 15, (19.7) | 0.05 |
Treatment Variables | ||||||
Empirical Treatment | 65, (31.4) | 26, (26.3) | 0.35 | 51, (32.3) | 18, (23.7) | 0.18 |
Once daily dosing | 87, (42) | 45, (45.5) | 0.57 | 80, (50.6) | 37, (48.7) | 0.78 |
Loading dose | 170, (82.1) | 80, (80.8) | 0.78 | 130, (82.3) | 62, (81.6) | 0.89 |
Duration of treatment, days (median, IQR) | 15, (10–22) | 14, (9–21) | 0.49 | 15, (9–21) | 14, (8–20) | 0.46 |
Colistin total dose, MU (median, IQR) | 135, (90–198) | 126, (81–180) | 0.12 | 135, (90–189) | 117, (80–177) | 0.07 |
Concomitant nephrotoxic agents | ||||||
Diuretics | 75, (36.2) | 46, (46.5) | 0.09 | 54, (34.2) | 34, (44.7) | 0.07 |
Aminoglycosides | 32, (15.5) | 18, (18.2) | 0.54 | 27, (17.1) | 14, (18.4) | 0.80 |
Amphotericin | 9, (4.3) | 8, (8.1) | 0.18 | 8, (5.1) | 8, (10.5) | 0.07 |
Glycopeptides | 70, (33.8) | 34, (34.3) | 0.93 | 59, (37.3) | 26, (34.2) | 0.64 |
Nephrotoxic Chemotherapy | 38, (18.4) | 20, (20.2) | 0.70 | 29, (18.4) | 15, (19.7) | 0.80 |
Radiocontrast_Agents | 57, (27.5) | 31, (31.3) | 0.49 | 41, (25.9) | 23, (30.3) | 0.49 |
NSAIDS | 25, (12.1) | 11, (11.1) | 0.81 | 16, (10.1) | 9, (11.8) | 0.69 |
Other nephrotoxic drugs | 25, (12.1) | 20, (20.2) | 0.06 | 21, (13.3) | 16, (21.1) | 0.13 |
At least 1 concomitant nephrotoxic drug | 154, (74.4) | 84, (84.8) | 0.04 | 120, (75.9) | 64, (84.2) | 0.15 |
Variable | p | Odds Ratio | 95% C.I. |
---|---|---|---|
Once daily dosing | 0.58 | 1.18 | 0.65–2.13 |
Presence of severe sepsis OR septic shock | 0.28 | 1.46 | 0.73–2.95 |
Mechanical ventilation | 0.1 | 0.53 | 0.24–1.14 |
Diabetes | <0.001 | 4.56 | 2.01–10.34 |
At least 1 concomitant nephrotoxic drug | 0.16 | 1.74 | 0.80–3.78 |
eGFR > 80 mL/min | 0.047 | 0.50 | 0.25–0.99 |
Charlson Comorbidity Index > 3 | 0.969 | 0.99 | 0.53–1.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samarkos, M.; Papanikolaou, K.; Sourdi, A.; Paisios, N.; Mainas, E.; Paramythiotou, E.; Antoniadou, A.; Sambatakou, H.; Gargalianos-Kakolyris, P.; Skoutelis, A.; et al. The Effect of Different Colistin Dosing Regimens on Nephrotoxicity: A Cohort Study. Antibiotics 2022, 11, 1066. https://doi.org/10.3390/antibiotics11081066
Samarkos M, Papanikolaou K, Sourdi A, Paisios N, Mainas E, Paramythiotou E, Antoniadou A, Sambatakou H, Gargalianos-Kakolyris P, Skoutelis A, et al. The Effect of Different Colistin Dosing Regimens on Nephrotoxicity: A Cohort Study. Antibiotics. 2022; 11(8):1066. https://doi.org/10.3390/antibiotics11081066
Chicago/Turabian StyleSamarkos, Michael, Konstantinos Papanikolaou, Athena Sourdi, Nikolaos Paisios, Efstratios Mainas, Elisabeth Paramythiotou, Anastasia Antoniadou, Helen Sambatakou, Panayiotis Gargalianos-Kakolyris, Athanasios Skoutelis, and et al. 2022. "The Effect of Different Colistin Dosing Regimens on Nephrotoxicity: A Cohort Study" Antibiotics 11, no. 8: 1066. https://doi.org/10.3390/antibiotics11081066
APA StyleSamarkos, M., Papanikolaou, K., Sourdi, A., Paisios, N., Mainas, E., Paramythiotou, E., Antoniadou, A., Sambatakou, H., Gargalianos-Kakolyris, P., Skoutelis, A., & Daikos, G. L. (2022). The Effect of Different Colistin Dosing Regimens on Nephrotoxicity: A Cohort Study. Antibiotics, 11(8), 1066. https://doi.org/10.3390/antibiotics11081066