Antimicrobial Susceptibility Profiles and Molecular Characterisation of Staphylococcus aureus from Pigs and Workers at Farms and Abattoirs in Zambia
Abstract
:1. Introduction
2. Results
2.1. Prevalence of S. aureus in Pigs and Humans in Lusaka Province
2.2. Antimicrobial Susceptibility Profiles and Antimicrobial Resistance Genes Detected in the S. aureus Isolates
2.2.1. Multidrug Resistance Patterns of the S. aureus Isolates
2.2.2. Presence of Antimicrobial Resistance Genes in the S. aureus Isolates
2.3. Virulence Genes Detected in the S. aureus Isolates
2.4. Spa Typing of the S. aureus Isolates
3. Discussion
4. Materials and Methods
4.1. Study Design and Sample Collection
4.2. S. aureus Detection and Identification
4.3. Determination of Antimicrobial Susceptibility Profiles
4.4. Molecular Identification and Genotyping
4.4.1. DNA Extraction
4.4.2. Molecular Identification of S. aureus
4.4.3. Detection of Methicillin Resistance Genes and Other Antimicrobial Resistance Genes
4.4.4. Detection of PVL and SE Genes
4.4.5. Spa Type Determination
4.5. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lozano, C.; Gharsa, H.; Ben Slama, K.; Zarazaga, M.; Torres, C. Staphylococcus aureus in animals and food: Methicillin resistance, prevalence and population structure. A review in the african continent. Microorganisms 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köck, R.; Becker, K.; Cookson, B.; Van Gemert-Pijnen, J.E.; Harbarth, S.; Kluytmans, J.; Mielke, M.; Peters, G.; Skov, R.L.; Struelens, M.J.; et al. Methicillin-resistant Staphylococcus aureus (MRSA): Burden of disease and control challenges in Europe. Euro Surveill. 2010, 15, 19688. [Google Scholar] [CrossRef] [PubMed]
- Tegegne, H.A.; Koláčková, I.; Karpíšková, R. Diversity of livestock associated methicillin-resistant staphylococcus aureus. Asian Pac. J. Trop. Med. 2017, 10, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.C.; Pearson, N. The emergence of staphylococcus aureus ST398. Vector-Borne Zoonotic Dis. 2010, 11, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Fan, Y.; Wang, X.; Liu, W.; Yu, H.; Zhou, J.; Chen, S.; Yao, Z. Livestock-associated methicillin and multidrug resistant S. aureus in humans is associated with occupational pig contact, not pet contact. Sci. Rep. 2016, 6, 19184. [Google Scholar] [CrossRef] [Green Version]
- Graveland, H.; Duim, B.; van Duijkeren, E.; Heederik, D.; Wagenaar, J.A. Livestock-associated methicillin-resistant staphylococcus aureus in animals and humans. Int. J. Med Microbiol. 2011, 301, 630–634. [Google Scholar] [CrossRef]
- Verkade, E.; Kluytmans, J. Livestock-associated staphylococcus aureus CC398: Animal reservoirs and human infections. Infect. Genet. Evol. 2014, 21, 523–530. [Google Scholar] [CrossRef]
- Lekkerkerk, W.S.N.; van Wamel, W.J.B.; Snijders, S.V.; Willems, R.J.; van Duijkeren, E.; Broens, E.M.; Wagenaar, J.A.; Lindsay, J.A.; Vos, M.C. What Is the origin of livestock-associated methicillin-resistant staphylococcus aureus clonal complex 398 isolates from humans without livestock contact? An epidemiological and genetic analysis. J. Clin. Microbiol. 2015, 53, 1836–1841. [Google Scholar] [CrossRef] [Green Version]
- Köck, R.; Harlizius, J.; Bressan, N.; Laerberg, R.; Wieler, L.H.; Witte, W.; Deurenberg, R.H.; Voss, A.; Becker, K.; Friedrich, A.W. Prevalence and molecular characteristics of methicillin-resistant staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals. Eur. J. Clin. Microbiol. 2009, 28, 1375–1382. [Google Scholar] [CrossRef] [Green Version]
- Larsen, J.; Petersen, A.; Larsen, A.R.; Sieber, R.N.; Stegger, M.; Koch, A.; Aarestrup, F.; Price, L.B.; Skov, R.L.; Johansen, H.K.; et al. Emergence of livestock-associated methicillin-resistant staphylococcus aureus bloodstream infections in Denmark. Clin. Infect. Dis. 2017, 65, 1072–1076. [Google Scholar] [CrossRef] [Green Version]
- Price, L.B.; Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J.; et al. Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock. mBio 2012, 3, e00305–e00311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Wamel, W.J.; Rooijakkers, S.H.; Ruyken, M.; van Kessel, K.P.; van Strijp, J.A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, D.; Lozano, C.; Rezusta, A.; Ferrer, I.; Vasquez, M.A.; Ceballos, S.; Zarazaga, M.; Revillo, M.J.; Torres, C. Characterization of tetracycline and methicillin resistant staphylococcus aureus strains in a Spanish hospital: Is livestock-contact a risk factor in infections caused by MRSA CC398? Int. J. Med. Microbiol. 2014, 304, 1226–1232. [Google Scholar] [CrossRef] [PubMed]
- Bouiller, K.; Bertrand, X.; Hocquet, D.; Chirouze, C. Human infection of methicillin-susceptible Staphylococcus aureus CC398: A review. Microorganisms 2020, 8, 1737. [Google Scholar] [CrossRef] [PubMed]
- Mama, O.M.; Aspiroz, C.; Ruiz-Ripa, L.; Ceballos, S.; Iñiguez-Barrio, M.; Cercenado, E.; Azcona, J.M.; López-Cerero, L.; Seral, C.; López-Calleja, A.I.; et al. Prevalence and genetic characteristics of staphylococcus aureus cc398 isolates from invasive infections in Spanish hospitals, focusing on the livestock-independent CC398-MSSA clade. Front. Microbiol. 2021, 12, 623108. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.; Faria, N.A.; De Lencastre, H.; Miragaia, M. Population structure of methicillin-susceptible Staphylococcus aureus (MSSA) in Portugal over a 19-year period (1992–2011). Eur. J. Clin. Microbiol. 2013, 33, 423–432. [Google Scholar] [CrossRef]
- Vandendriessche, S.; Kadlec, K.; Schwarz, S.; Denis, O. Methicillin-susceptible staphylococcus aureus ST398-t571 harbouring the macrolide-lincosamide-streptogramin B resistance gene erm(T) in Belgian hospitals. J. Antimicrob. Chemother. 2011, 66, 2455–2459. [Google Scholar] [CrossRef] [Green Version]
- Samutela, M.T.; Kwenda, G.; Simulundu, E.; Nkhoma, P.; Higashi, H.; Frey, A.; Bates, M.; Hang’Ombe, B.M. Pigs as a potential source of emerging livestock-associated staphylococcus aureus in Africa: A systematic review. Int. J. Infect. Dis. 2021, 109, 38–49. [Google Scholar] [CrossRef]
- Samutela, M.T.; Mwansa, J.C.; Kalonda, A.; Mumbula, E.M.; Kaile, T.; Marimo, C.; Korolyova, L.; Hang'ombe, B.M.; Simulundu, E.; Musyani, C.; et al. Antimicrobial susceptibility profiles of methicillin resistant staphylococcus aureus isolates from the university teaching hospital, Lusaka, Zambia. J. Med. Sci. Technol. 2015, 4, 19–25. [Google Scholar]
- Youn, J.-H.; Park, Y.H.; Hang’Ombe, B.; Sugimoto, C. Prevalence and characterization of staphylococcus aureus and staphylococcus pseudintermedius isolated from companion animals and environment in the veterinary teaching hospital in Zambia, Africa. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 123–130. [Google Scholar] [CrossRef]
- Pandey, G.S.; Nomura, Y.; Kobayashi, K.; Fujise, H.; Yamada, T. Cutaneous staphylococcal granuloma in a free living zebra (Equus burchelli) in Zambia. J. Veter-Med Sci. 1998, 60, 137–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaddafi, M.S.; Yakubu, Y.; Junaidu, A.U.; Bello, M.B.; Garba, B.; Bitrus, A.A.; Lawal, H. Nasal colonization of pigs and farm attendants by staphylococcus aureus and methicillin-resistant staphylococcus aureus (MRSA) in Kebbi, Northwestern Nigeria. Thai J. Vet. Med. 2021, 51, 119–124. [Google Scholar]
- Sineke, N.; Asante, J.; Amoako, D.G.; Abia, A.L.K.; Perrett, K.; Bester, L.A.; Essack, S.Y. Staphylococcus aureus in intensive pig production in South Africa: Antibiotic resistance, virulence determinants and clonality. Pathogens 2021, 10, 317. [Google Scholar] [CrossRef] [PubMed]
- Holmer, I.; Salomonsen, C.M.; Jorsal, S.E.; Astrup, L.B.; Jensen, V.F.; Høg, B.B.; Pedersen, K. Antibiotic resistance in porcine pathogenic bacteria and relation to antibiotic usage. BMC Veter-Res. 2019, 15, 449. [Google Scholar] [CrossRef] [Green Version]
- Lekagul, A.; Tangcharoensathien, V.; Mills, A.; Rushton, J.; Yeung, S. How antibiotics are used in pig farming: A mixed-methods study of pig farmers, feed mills and veterinarians in Thailand. BMJ Glob. Health 2020, 5, e001918. [Google Scholar] [CrossRef] [Green Version]
- Lozano, C.; Rezusta, A.; Gómez, P.; Gómez-Sanz, E.; Báez, N.; Martin-Saco, G.; Zarazaga, M.; Torres, C. High prevalence of spa types associated with the clonal lineage CC398 among tetracycline-resistant methicillin-resistant Staphylococcus aureus strains in a Spanish hospital. J. Antimicrob. Chemother. 2012, 67, 330–334. [Google Scholar] [CrossRef] [Green Version]
- Pahadi, P.C.; Shrestha, U.T.; Adhikari, N.; Shah, P.K.; Amatya, R. Growing Resistance to Vancomycin among Methicillin Resistant Staphylococcus Aureus Isolates from Different Clinical Samples. JNMA J. Nepal Med. Assoc. 2014, 52, 977–981. [Google Scholar] [CrossRef]
- Mutalange, M.; The University of Zambia; Yamba, K.; Kapesa, C.; Mtonga, F.; Banda, M.; Muma, J.B.; Hangombe, B.M.; Hachaambwa, L.; Bumbangi, F.N.; et al. Vancomycin resistance in staphylococcus aureus and enterococcus species isolated at the university teaching hospitals, Lusaka, Zambia: Should we be worried? Univ. Zamb. J. Agric. Biomed. Sci. 2021, 5, 18–28. [Google Scholar] [CrossRef]
- Prabhu, K.; Rao, S.; Rao, V. Inducible clindamycin resistance in staphylococcus aureus isolated from clinical samples. J. Lab. Physicians 2011, 3, 25–27. [Google Scholar] [CrossRef]
- Montanari, M.P.; Tonin, E.; Biavasco, F.; Varaldo, P.E. Further characterization of borderline methicillin-resistant staphylococcus aureus and analysis of penicillin-binding proteins. Antimicrob. Agents Chemother. 1990, 34, 911–913. [Google Scholar] [CrossRef] [Green Version]
- Paterson, G.K.; Larsen, A.R.; Robb, A.; Edwards, G.E.; Pennycott, T.W.; Foster, G.; Mot, D.; Hermans, K.; Baert, K.; Peacock, S.J.; et al. The newly described mecA homologue, mecALGA251, is present in methicillin-resistant staphylococcus aureus isolates from a diverse range of host species. J. Antimicrob. Chemother. 2012, 67, 2809–2813. [Google Scholar] [CrossRef] [PubMed]
- Dweba, C.C.; Zishiri, O.T.; El Zowalaty, M.E. Isolation and molecular identification of virulence, antimicrobial and heavy metal resistance genes in livestock-associated methicillin-resistant staphylococcus aureus. Pathogens 2019, 8, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.-W.; Chiang, P.-H.; Huang, Y.-C. Livestock-associated methicillin-resistant staphylococcus aureus ST9 in pigs and related personnel in Taiwan. PLoS ONE 2014, 9, e88826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Duijkeren, E.; Ikawaty, R.; Broekhuizen-Stins, M.J.; Jansen, M.D.; Spalburg, E.C.; De Neeling, A.J.; Allaart, J.G.; Van Nes, A.; Wagenaar, J.A.; Fluit, A.C. Transmission of methicillin-resistant staphylococcus aureus strains between different kinds of pig farms. Vet. Microbiol. 2008, 126, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Laumay, F.; Benchetrit, H.; Corvaglia, A.-R.; van der Mee-Marquet, N.; François, P. The Staphylococcus aureus CC398 lineage: An evolution driven by the acquisition of prophages and other mobile genetic elements. Genes 2021, 12, 1752. [Google Scholar] [CrossRef] [PubMed]
- Emaneini, M.; Bigverdi, R.; Kalantar, D.; Soroush, S.; Jabalameli, F.; Khoshgnab, B.N.; Asadollahi, P.; Taherikalani, M. Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in staphylococcus aureus strains isolated from a burn center. Ann. Burn. Fire Disasters 2013, 26, 76–80. [Google Scholar]
- Samutela, M.T.; Kalonda, A.; Mwansa, J.; Lukwesa-Musyani, C.; Mwaba, J.; Mumbula, E.M.; Mwenya, D.; Simulundu, E.; Kwenda, G. Molecular characterisation of methicillin-resistant staphylococcus aureus (MRSA) isolated at a large referral hospital in Zambia. Pan Afr. Med, J. 2017, 26, 108. [Google Scholar]
- Fall, C.; Seck, A.; Richard, V.; Ndour, M.; Sembène, M.; Laurent, F.; Breurec, S. Epidemiology of staphylococcus aureus in pigs and farmers in the largest farm in dakar, senegal. Foodborne Pathog. Dis. 2012, 9, 962–965. [Google Scholar] [CrossRef] [Green Version]
- Bennett, R.W.; Monday, S.R. Staphylococcus aureus. In International Handbook of Foodborne Pathogens; Marcel Dekker: New York, NY, USA, 2003; pp. 41–60. [Google Scholar]
- Gallina, S.; Bianchi, D.M.; Bellio, A.; Nogarol, C.; Macori, G.; Zaccaria, T.; Biorci, F.; Carraro, E.; Decastelli, L. Staphylococcal poisoning foodborne outbreak: Epidemiological investigation and strain genotyping. J. Food Prot. 2013, 76, 2093–2098. [Google Scholar] [CrossRef]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. BioMed. Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, A.J.; Witney, A.A.; Gould, K.A.; Moodley, A.; Guardabassi, L.; Voss, A.; Denis, O.; Broens, E.M.; Hinds, J.; Lindsay, J.A. The distribution of mobile genetic elements (MGEs) in MRSA CC398 is associated with both host and country. Genome Biol. Evol. 2011, 3, 1164–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winn, W.C. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Supplement M1002020; CLSI: Tehran, Iran, 2011. [Google Scholar]
- Zhang, K.; Sparling, J.; Chow, B.L.; Elsayed, S.; Hussain, Z.; Church, D.L.; Gregson, D.B.; Louie, T.; Conly, J.M. New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. J. Clin. Microbiol. 2004, 42, 4947–4955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milheiriço, C.; Oliveira, D.C.; de Lencastre, H. Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 3374–3377. [Google Scholar]
- Stegger, Á.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA (LGA251). Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Sutcliffe, J.; Grebe, T.; Tait-Kamradt, A.; Wondrack, L. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 1996, 40, 2562–2566. [Google Scholar] [CrossRef] [Green Version]
- Aarestrup, F.M.; Agerso, Y.; Gerner–Smidt, P.; Madsen, M.; Jensen, L.B. Comparison of antimicrobial resistance phenotypes and resistance genes in enterococcus faecalis and enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 2000, 37, 127–137. [Google Scholar] [CrossRef]
- Becker, K.; Haverkämper, G.; Von Eiff, C.; Roth, R.; Peters, G. Survey of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene in non-staphylococcus aureus species. Eur. J. Clin. Microbiol. Infect. Dis. 2001, 20, 407–409. [Google Scholar]
- Shopsin, B.; Gomez, M.; Montgomery, S.O.; Smith, D.H.; Waddington, M.; Dodge, D.E.; Bost, D.A.; Riehman, M.; Naidich, S.; Kreiswirth, B.N. Evaluation of protein A gene polymorphic region DNA sequencing for typing of staphylococcus aureus strains. J. Clin. Microbiol. 1999, 37, 3556–3563. [Google Scholar] [CrossRef] [Green Version]
- Omoe, K.; Ishikawa, M.; Shimoda, Y.; Hu, D.L.; Ueda, S.; Shinagawa, K. Detection of seg, seh, and sei genes in staphylococcus aureus isolates and determination of the enterotoxin productivities of s. aureus isolates harboring seg, seh, or sei genes. J. Clin. Microbiol. 2002, 40, 857–862. [Google Scholar] [CrossRef] [Green Version]
- Bartels, M.D.; Petersen, A.; Worning, P.; Nielsen, J.B.; Larner-Svensson, H.; Johansen, H.K.; Andersen, L.P.; Jarløv, J.O.; Boye, K.; Larsen, A.R.; et al. Comparing whole-genome sequencing with sanger sequencing for spa typing of methicillin-resistant staphylococcus aureus. J. Clin. Microbiol. 2014, 52, 4305–4308. [Google Scholar] [CrossRef] [Green Version]
Factor | Category | n Tested | n Positives | Prevalence (%) | 95% CI |
---|---|---|---|---|---|
Overall Positivity | Positive | 598 | 198 | 33.1 | 29.4–37.1 |
Humans | Overall | 106 | 12 | 11.3 | 6.2–19.3 |
Hand Swabs | 53 | 6 | 11.3 | 4.7–23.7 | |
Nasal Swabs | 53 | 6 | 11.3 | 4.7–23.7 | |
Pigs | Nasal swabs | 492 | 186 | 37.8 | 33.5–42.3 |
Districts | Chongwe | 250 | 60 | 24.0 | 18.9–29.9 |
Lusaka | 235 | 63 | 26.8 | 21.4–33.0 | |
Chilanga | 113 | 75 | 66.4 | 56.6–74.8 |
Study Site | Species | Type of Facility * | n Tested | n Positives | Prevalence (%) | 95% CI |
---|---|---|---|---|---|---|
Farms | Combined pigs and humans | Small | 53 | 13 | 24.5 | 14.2–38.6 |
Medium | 252 | 61 | 24.2 | 19.1–30.1 | ||
Large | 202 | 64 | 31.7 | 25.4–38.7 | ||
Overall | 507 | 138 | 27.2 | 23.4–31.3 | ||
Pigs only | Small | 45 | 13 | 28.9 | 16.8–44.5 | |
Medium | 216 | 57 | 26.4 | 20.8–32.9 | ||
Large | 157 | 61 | 38.9 | 31.8–47.0 | ||
Overall | 418 | 131 | 31.3 | 27.0–36.1 | ||
Humans only | Nasal | 38 | 3 | 7.9 | 2.1–22.5 | |
Hand | 38 | 4 | 10.5 | 3.4–25.7 | ||
Overall | 76 | 7 | 9.2 | 4.1–18.6 | ||
Human Nasal | Small | 4 | 0 | 0 | 0 | |
Medium | 18 | 2 | 11.1 | 2.0–36.1 | ||
Large | 16 | 1 | 6.3 | 0.3–32.3 | ||
Human Hand | Small | 4 | 0 | 0 | 0 | |
Medium | 18 | 2 | 11.1 | 2.0–36.1 | ||
Large | 16 | 2 | 12.5 | 2.2–39.6 | ||
Abattoirs | Combined pigs and humans | Medium | 20 | 4 | 20 | 6.6–44.3 |
Large | 71 | 56 | 78.9 | 67.3–87.3 | ||
Overall | 91 | 60 | 65.9 | 55.2–75.3 | ||
Pigs only | Medium | 20 | 4 | 20 | 6.6–44.3 | |
Large | 54 | 51 | 94.4 | 83.7–98.6 | ||
Overall | 71 | 55 | 77.5 | 65.7–86.2 | ||
Humans ** | Hand | 8 | 2 | 25 | 4. 5–64.4 | |
Nasal | 9 | 3 | 33.3 | 9.0–69.1 | ||
Overall | 17 | 5 | 29.4 | 11.4–56.0 |
Resistance Pattern | Proportion of Isolates % (n) | |
---|---|---|
Farm Isolates (n = 141) | Abattoir Isolates (n = 63) | |
P | 34.8 (49) | 42.9 (27) |
Te | 1.4 (2) | 1.6 (1) |
P + Te | 20.6 (29) | 7.9 (5) |
P + Cip | 7.1 (10) | 34.9 (22) |
P + CD | 0.7 (1) | 3.3 (2) |
P + CN + Te | 2.1 | 1.6 (1) |
P + E + TE | 1.4 (2) | - |
P + Te + Cip | 0.7 (1) | 3.2 (2) |
P + E + CD + Cip | 14.2 (20) | - |
P + E + CD + TE | 1.4 (2) | - |
P + E + C + CIP | 1.4 (2) | - |
P + CN + TE + SXT | 5.0 (7) | - |
P + E + CD + TE + SXT | 0.7 (1) | - |
P + E + CD + CN + Cip | 1.4 (2) | - |
P + E + CN + Te + CIP | 0.7 (1) | - |
P + E + CD + CN + Te + SXT | 0.7 (1) | - |
1 Other | 4.3 (6) | 4.7 (3) |
IEC Gene | ||||
---|---|---|---|---|
Source (Farm or Abattoir) | Sample Type | scn % (n) | sak% (n) | chp % (n) |
Farm 1 | Pig nasal Swab | - | 0.4 (1) | - |
Farm 2 | Pig nasal Swab | - | 0.4 (1) | - |
Farm 4 | Pig nasal Swab | - | 1.3 (3) | - |
Farm 5 | Pig nasal Swab | - | 0.4 (1) | - |
Farm 6 | Pig nasal Swab | - | 0.4 (1) | - |
Farm 7 | Pig nasal Swab | 0.9 (2) | 2.7 (6) | - |
Farm 9 | Pig nasal Swab | - | 0.4 (1) | - |
Farm 10 | Pig nasal Swab | - | 1.3 (3) | - |
Abattoir 1 | Pig nasal Swab | 0.4 (1) | - | 0.4 (1) |
Total | 1.3 (3) | 7.6 (17) | 0.4 (1) |
Spa Type % (n) | ||||||||
---|---|---|---|---|---|---|---|---|
Species | Study Site | t1430 | t034 | t318 | t571 | t084 | t899 | Unknown |
Humans | Farms | 0 | 0 | 0 | 0 | 0 | 2.3 (1) | 4.7 (2) |
Abattoirs | 4.7 (2) | 0 | 0 | 0 | 2.3 (1) | 0 | 0 | |
Pigs | Farms | 14.0 (6) | 9.3 (4) | 9.3 (4) | 2.3 (1) | 0 | 0 | 25.6 (11) |
Abattoirs | 9.3 (4) | 9.3 (4) | 0 | 0 | 0 | 0 | 7.0 (3) | |
Total | 28.0 (12) | 18.6 (8) | 9.3 (4) | 2.3 (1) | 2.3 (1) | 2.3 (1) | 37.3 (16) |
Primer Name | Target Gene | Primer Sequence (5′-3′) | Amplicon Size | Reference |
---|---|---|---|---|
Nuc1 | nuc | GCG ATT GAT GGT GAT ACG GTT | 279 bp | [45] |
Nuc2 | AGC CAA GCC TTG ACG AAC TAA AGC | |||
mecA P4 | mecA | TCCAGATTACAACTTCACCAGG | 162 bp | [46] |
mecA P7 | CCACTTCATATCTTGTAACG | |||
mecALGA251 | mecC | GAAAAAAAGGCTTAGAACGCCTC | 138 bp | [47] |
mecALGA251 | GAAGATCTTTTCCGTTTTCAGC | |||
ermA-1 | erm[A] | TCTAAAAAGCATGTAAAAGAA | 645 bp | [48] |
ermA-2 | CTTCGATAGTTTATTAATATTAG | |||
ermB-1 | erm[B] | GAAAAGTACTCAACCAAATA | 639 bp | [48] |
ermB-2 | AGTAACGGTACTTAAATTGTTTA | |||
ermC-1 | erm[C] | TCAAAACATAATATAGATAAA | 642 bp | [48] |
ermC-2 | GCTAATATTGTTTAAATCGTCAAT | |||
tetK-1 | tet[K] | TTAGGTGAAGGGTTAGGTCC | 697 bp | [49] |
tetK-2 | GCAAACTCATTCCAGAAGCA | |||
tetM-1 | tet[M] | GTTAAATAGTGTTCTTGGAG | 576 bp | [49] |
tetM-2 | CTAAGATATGGCTCTAACAA | |||
tetL-1 | tet[L] | CATTTGGTCTTATTGGATCG | 456 bp | [49] |
tetL-2 | ATTACACTTCCGATTTCGG | |||
tetO-1 | tet[O] | GATGGCATACAGGCACAGAC | 615 bp | [49] |
tetO-2 | CAATATCACCAGAGCAGGCT | |||
pvl-FP | lukF-PV | GCTGGACAAAACTTCTTGGAATAT | 83 | [47] |
pvl-RP | GATAGGACACCAATAAATTCTGGATTG | |||
SEA-3 | sea | CCTTTGGAAACGGTTAAAACG | 127 bp | [50] |
SEA-4 | TCTGAACCTTCCCATCAAAAAC | |||
SEB-1 | seb | TCGCATCAAACTGACAAACG | 477 bp | [50] |
SEB-4 | GCAGGTACTCTATAAGTGCCTGC | |||
SEC-3 | sec | CTCAAGAACTAGACATAAAAGCTAGG | 271 bp | [50] |
SEC-4 | TCAAAATCGGATTAACATTATCC | |||
SED-3 | sed | CTAGTTTGGTAATATCTCCTTTAAACG | 319 bp | [50] |
SED-4 | TTAATGCTATATCTTATAGGGTAAACATC | |||
SEE-3 | see | CAGTACCTATAGATAAAGTTAAAACAAGC | 178 bp | [50] |
SEE-2 | TAACTTACCGTGGACCCTTC | |||
Sak-1 | sak | AAGGCGATGACGCGAGTTAT | 223 bp | [12] |
Sak-2 | GCGCTTGGATCTAATTCAAC | |||
Chp-1 | chp | GAAAAAGAAATTAGCAACAACAG | 410 bp | [12] |
Chp-2 | CATAAGATGATTTAGACTCTCC | |||
Scn-1 | scn | AGCACAAGCTTGCCAACATCG | 258 bp | [12] |
Scn-2 | TTAATATTTACTTTTTAGTGC | |||
1095F | spa | AGACGATCCTTCGGTGAGC | variable | [51] |
1517R | GCTTTTGCAATGTCATTTACTG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samutela, M.T.; Phiri, B.S.J.; Simulundu, E.; Kwenda, G.; Moonga, L.; Bwalya, E.C.; Muleya, W.; Nyirahabimana, T.; Yamba, K.; Kainga, H.; et al. Antimicrobial Susceptibility Profiles and Molecular Characterisation of Staphylococcus aureus from Pigs and Workers at Farms and Abattoirs in Zambia. Antibiotics 2022, 11, 844. https://doi.org/10.3390/antibiotics11070844
Samutela MT, Phiri BSJ, Simulundu E, Kwenda G, Moonga L, Bwalya EC, Muleya W, Nyirahabimana T, Yamba K, Kainga H, et al. Antimicrobial Susceptibility Profiles and Molecular Characterisation of Staphylococcus aureus from Pigs and Workers at Farms and Abattoirs in Zambia. Antibiotics. 2022; 11(7):844. https://doi.org/10.3390/antibiotics11070844
Chicago/Turabian StyleSamutela, Mulemba Tillika, Bruno Stephen July Phiri, Edgar Simulundu, Geoffrey Kwenda, Ladslav Moonga, Eugene C. Bwalya, Walter Muleya, Therese Nyirahabimana, Kaunda Yamba, Henson Kainga, and et al. 2022. "Antimicrobial Susceptibility Profiles and Molecular Characterisation of Staphylococcus aureus from Pigs and Workers at Farms and Abattoirs in Zambia" Antibiotics 11, no. 7: 844. https://doi.org/10.3390/antibiotics11070844
APA StyleSamutela, M. T., Phiri, B. S. J., Simulundu, E., Kwenda, G., Moonga, L., Bwalya, E. C., Muleya, W., Nyirahabimana, T., Yamba, K., Kainga, H., Kallu, S. A., Mwape, I., Frey, A., Bates, M., Higashi, H., & Hang'ombe, B. M. (2022). Antimicrobial Susceptibility Profiles and Molecular Characterisation of Staphylococcus aureus from Pigs and Workers at Farms and Abattoirs in Zambia. Antibiotics, 11(7), 844. https://doi.org/10.3390/antibiotics11070844