Benefits of Combined Phage–Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review
Abstract
:1. Introduction
2. Historical Development of Combined Phage–Antibiotic Therapy
2.1. Combination of Phages with Sulphonamides
2.2. Combination of Phages with Penicillin
3. Examples of Synergistic Phage–Antibiotic Combinations
3.1. Synergistic Phage–Antibiotic Combinations against Staphylococcus aureus
3.2. Synergistic Phage–Antibiotic Combinations against Pseudomonas aeruginosa
3.3. Other Synergistic Phage–Antibiotic Combinations
4. Examples of Antagonistic Phage–Antibiotic Combinations
5. Examples of Clinical Indications for Combined Phage–Antibiotic Therapy
5.1. Treatment of Infectious Diseases
5.2. Eradication of Bacterial Colonisation
5.3. Eradication of Bacterial Biofilm
5.4. Compassionate Use in the French Context
6. Sequence of Phage and Antibiotic Administration
7. Mechanisms of Phage–Antibiotic Synergy
7.1. Recovery of Antibiotic Activity against Resistant Bacteria
7.2. Action against Different Bacterial Sites
7.3. Changes in Bacterial Cell Morphology
7.4. Antibiotic-Induced Phage Production
7.5. Phage-Induced Penetration of Antibiotics into Biofilm
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. [Google Scholar]
- Safir, M.C.; Bhavnani, S.M.; Slover, C.M.; Ambrose, P.G.; Rubino, C.M. Antibacterial Drug Development: A New Approach Is Needed for the Field to Survive and Thrive. Antibiotics 2020, 9, 412. [Google Scholar] [CrossRef] [PubMed]
- Clokie, M.R.J.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Twort, F. An investigation on the nature of the ultra-microscopic viruses. Lancet 1915, 186, 1241–1243. [Google Scholar] [CrossRef] [Green Version]
- d’Herelle, F. Sur un microbe invisible antagoniste des bacilles dysentériques. C. R. Acad. Sci. Paris 1917, 165, 373–375. [Google Scholar]
- Rohwer, F.; Youle, M.; Maughan, H.; Hisakawa, N. Life in Our Phage World; Wholon: San Diego, CA, USA, 2014. [Google Scholar]
- Veiga-Crespo, P.; Villa, T.G. Advantages and disadvantages in the use of antibiotics or phages as therapeutic agents. In Villa TGV-C, Patricia Editor. En-Zybiotics: Antibiotic Enzymes as Drugs and Therapeutics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 27–48. [Google Scholar]
- Kim, M.; Jo, Y.; Hwang, Y.J.; Hong, H.W.; Hong, S.S.; Park, K.; Myung, H. Phage-Antibiotic Synergy via Delayed Lysis. Appl. Environ. Microbiol. 2018, 84, e02085-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaytzeff-Jern, H.; Meleney, F.L. Studies on phage VI. the effect of sulfapyridine and sulfanilamides on staphylococci and B. coli and their respective phages. J. Lab. Clin. Med. 1941, 26, 1756–1767. [Google Scholar]
- Neter, E. Inhibitory Effect of Sulfamido Compounds upon Development and Growth of Phage-Resistant Bacteria. Proc. Soc. Exp. Biol. Med. 1941, 47, 20–23. [Google Scholar] [CrossRef]
- MacNeal, W.J.; Spence, M.J.; Blevins, A. Cure of experimental staphylococcic meningitis (with phage and sulfathiazol, sulfanilamide derivative). Proc. Soc. Exp. Biol. Med. 1942, 50, 176–179. [Google Scholar] [CrossRef]
- MacNeal, W.J. Therapeutic and prophylactic use of phages. J. Bacteriol. 1943, 45, 76. [Google Scholar]
- MacNeal, W.J.; Frisbee, F.C.; Blevins, A. Recoveries of staphylococcic meningitis following phage therapy. Arch. Otolaryngol. 1943, 37, 507–525. [Google Scholar] [CrossRef]
- Himmelweit, F. Combined action of penicillin and phage on staphylococci. Lancet 1945, 246, 104–105. [Google Scholar] [CrossRef]
- MacNeal, W.J.; Poindexter, C.A.; Marty, F.N. Apparent arrest of staphylococcal endocarditis. Am. Heart J. 1945, 29, 403–408. [Google Scholar] [CrossRef]
- MacNeal, W.J.; Blevins, A. Bacteriological studies in endocarditis. J. Bacteriol. 1945, 49, 603–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNeal, W.J.; Filak, L.; Blevins, A. Conjoined action of penicillin and phages. J. Lab. Clin. Med. 1946, 31, 974–981. [Google Scholar] [PubMed]
- Tagliaferri, T.L.; Jansen, M.; Horz, H.-P. Fighting Pathogenic Bacteria on Two Fronts: Phages and Antibiotics as Combined Strategy. Front. Cell. Infect. Microbiol. 2019, 9, 22. [Google Scholar] [CrossRef]
- Edlinger, E. Antibiotiques et lyse bactériophagique. I—Protection des colonies développées à la périphérie de la zône d’action de la streptomycine contre l’action du bactériophage (Staphylococcus albus Twort et Staphylococcus aureus S3K). Ann. Inst. Pasteur. 1949, 76, 396–405. [Google Scholar]
- Faguet, M.; Edlinger, E. Antibiotiques et lyse bactériophagique. III—Retard de la lyse bactériophagique par la streptomycine, observé au microbiophotomètre. Ann. Inst. Pasteur. 1949, 77, 204–207. [Google Scholar]
- Faguet, M.; Edlinger, E. Antibiotiques et lyse bactériophagique. IV—Etude au microbiophotomètre de l’action conjuguée du bactériophage et de la streptomycine sur la culture d’un staphylocoque blanc. Ann. Inst. Pasteur. 1950, 78, 144–146. [Google Scholar]
- Edlinger, E. Antibiotiques et lyse bactériophagique. V—Sur la fixation et la multiplication du phage staphylocoque en présence de la streptomycine. Ann. Inst. Pasteur. 1950, 79, 282–287. [Google Scholar]
- Edlinger, E. Etude de l’action de la chloromycetine sur la multiplication du bactériophage. Ann. Inst. Pasteur. 1951, 81, 514–522. [Google Scholar]
- Edlinger, E.; Faguet, M. Antibiotiques et lyse bactériophagique. VII—L’action antiphage de la chloromycétine. Ann. Inst. Pasteur. 1950, 79, 436–442. [Google Scholar]
- Edlinger, E.; Faguet, M. Antibiotiques et lyse bactériophagique. IX—L’action de la terramycine sur la lyse bactériophagique étudiée au microbiophotomètre. Ann. Inst. Pasteur. 1951, 81, 221–224. [Google Scholar]
- Hall, E.A.; Kavanagh, F.; Asheshov, I.N. Action of forty-five antibacterial substances on bacterial viruses. Antibiot. Chemother. 1951, 1, 369–378. [Google Scholar]
- Kirby, A.E. Synergistic Action of Gentamicin and Bacteriophage in a Continuous Culture Population of Staphylococcus aureus. PLoS ONE 2012, 7, e51017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilisteanu, C.; Filotti, A.; Mintzer-Morgenstern, L.; Ghyka, G. Association du bactériophage à l’antibiothérapie en vue de la stérilisation des porteurs de bacilles dysentériques. Arch. Roum. Pathol. Exp. Microbiol. 1965, 24, 1021–1027. [Google Scholar] [PubMed]
- Zilisteanu, C.; Ionescu, H.; Ionescu-Dorohoi, T.; Mintzer, L. Considerations sur le traitement des infections urinaires par l’association phage-autovaccin-antibiotiques. Arch. Roum. Pathol. Exp. Microbiol. 1971, 30, 195–207. [Google Scholar]
- Naimski, P.; Chroboczek, J. Effect of Rifampicin on the Infectivity of RNA Bacteriophage f2. JBIC J. Biol. Inorg. Chem. 1977, 76, 419–423. [Google Scholar] [CrossRef]
- Hagens, S.; Habel, A.; Bläsi, U. Augmentation of the Antimicrobial Efficacy of Antibiotics by Filamentous Phage. Microb. Drug Resist. 2006, 12, 164–168. [Google Scholar] [CrossRef]
- Comeau, A.M.; Tétart, F.; Trojet, S.N.; Prère, M.-F.; Krisch, H.M. Phage-Antibiotic Synergy (PAS): β-Lactam and Quinolone Antibiotics Stimulate Virulent Phage Growth. PLoS ONE 2007, 2, e799. [Google Scholar] [CrossRef] [Green Version]
- Černohorská, L.; Votava, M. Antibiotic synergy against biofilm-forming Pseudomonas aeruginosa. Folia Microbiol. 2008, 53, 57–60. [Google Scholar] [CrossRef]
- Majtán, J.; Majtánová, Ľ.; Xu, M.; Majtán, V. In vitro effect of subinhibitory concentrations of antibiotics on biofilm formation by clinical strains of Salmonella enterica serovar Typhimurium isolated in Slovakia. J. Appl. Microbiol. 2007, 104, 1294–1301. [Google Scholar] [CrossRef]
- Bedi, M.; Verma, V.; Chhibber, S. Amoxicillin and specific phage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J. Microbiol. Biotechnol. 2009, 25, 1145–1151. [Google Scholar] [CrossRef]
- Rahman, M.; Kim, S.; Kim, S.M.; Seol, S.Y.; Kim, J. Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling 2011, 27, 1087–1093. [Google Scholar] [CrossRef]
- Kirby, W.M.M.; Burnell, J.M. Effect of combinations of antibiotics on lysis of Stapylococcus aureus by penicillin. J. Bacteriol. 1954, 67, 50–52. [Google Scholar] [CrossRef] [Green Version]
- Ryan, E.M.; Alkawareek, M.Y.; Donnelly, R.F.; Gilmore, B.F. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol. Med. Microbiol. 2012, 65, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Chhibber, S.; Kaur, T.; Kaur, S. Co-Therapy Using Lytic Bacteriophage and Linezolid: Effective Treatment in Eliminating Methicillin Resistant Staphylococcus aureus (MRSA) from Diabetic Foot Infections. PLoS ONE 2013, 8, e56022. [Google Scholar] [CrossRef]
- Knezevic, P.; Curcin, S.; Aleksic, V.; Petrusic, M.; Vlaški, L. Phage-antibiotic synergism: A possible approach to combatting Pseudomonas aeruginosa. Res. Microbiol. 2013, 164, 55–60. [Google Scholar] [CrossRef]
- Yilmaz, C.; Colak, M.; Yilmaz, B.C.; Ersoz, G.; Kutateladze, M.; Gozlugol, M. Phage therapy in implant-related infections: An experimental study. J. Bone Jt. Surg. 2013, 95, 117–125. [Google Scholar] [CrossRef]
- Cai, L. The antimicrobial and synergistic efficiency of antibiotic and phage for the treatment of tuberculosis. Eagle Feather 2014, 11, 1–26. [Google Scholar]
- Coulter, L.B.; McLean, R.J.C.; Rohde, R.E.; Aron, G.M. Effect of Bacteriophage Infection in Combination with Tobramycin on the Emergence of Resistance in Escherichia coli and Pseudomonas aeruginosa Biofilms. Viruses 2014, 6, 3778–3786. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Harjai, K.; Chhibber, S. Bacteriophage Mediated Killing of Staphylococcus aureus In Vitro on Orthopaedic K Wires in Presence of Linezolid Prevents Implant Colonization. PLoS ONE 2014, 9, e90411. [Google Scholar] [CrossRef] [Green Version]
- Torres-Barceló, C.; Hochberg, M.E. Evolutionary Rationale for Phages as Complements of Antibiotics. Trends Microbiol. 2016, 24, 249–256. [Google Scholar] [CrossRef]
- Ali, H.M.H.; Abd, A.K.; Abdulameer, A.S.; Taha, R.N. Efficacy of phage-antibiotic combinations against Staphylococcus aureus infections: In vitro study. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 186–189. [Google Scholar] [CrossRef]
- Kamal, F.; Dennis, J.J. Burkholderia cepacia Complex Phage-Antibiotic Synergy (PAS): Antibiotics Stimulate Lytic Phage Activity. Appl. Environ. Microbiol. 2015, 81, 1132–1138. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Harjai, K.; Chhibber, S. In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant, S. aureus (MRSA) Mediated Orthopaedic Device Related Infections. PLoS ONE 2016, 11, e0157626. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, W.N.; Concepción-Acevedo, J.; Park, T.; Andleeb, S.; Bull, J.J.; Levin, B.R. Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms. PLoS ONE 2017, 12, e0168615. [Google Scholar] [CrossRef]
- Lin, Y.; Chang, R.Y.K.; Britton, W.J.; Morales, S.; Kutter, E.; Chan, H.-K. Synergy of nebulized phage PEV20 and ciprofloxacin combination against Pseudomonas aeruginosa. Int. J. Pharm. 2018, 551, 158–165. [Google Scholar] [CrossRef]
- Uchiyama, J.; Shigehisa, R.; Nasukawa, T.; Mizukami, K.; Takemura-Uchiyama, I.; Ujihara, T.; Murakami, H.; Imanishi, I.; Nishifuji, K.; Sakaguchi, M.; et al. Piperacillin and ceftazidime produce the strongest synergistic phage–antibiotic effect in Pseudomonas aeruginosa. Arch. Virol. 2018, 163, 1941–1948. [Google Scholar] [CrossRef]
- Akturk, E.; Oliveira, H.; Santos, S.B.; Costa, S.; Kuyumcu, S.; Melo, L.D.R.; Azeredo, J. Synergistic Action of Phage and Antibiotics: Parameters to Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. Antibiotics 2019, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Shlezinger, M.; Coppenhagen-Glazer, S.; Gelman, D.; Beyth, N.; Hazan, R. Eradication of Vancomycin-Resistant Enterococci by Combining Phage and Vancomycin. Viruses 2019, 11, 954. [Google Scholar] [CrossRef] [Green Version]
- Bleibtreu, A.; Fevre, C.; Robert, J.; Haddad, E.; Caumes, E.; Lantieri, L.; Peyre, M. Combining bacteriophages and dalbavancin for salvage therapy of complex Staphylococcus aureus extradural empyema. Med. Mal. Infect. 2020, 50, 458–459. [Google Scholar] [CrossRef]
- Ferry, T.; Batailler, C.; Petitjean, C.; Chateau, J.; Fevre, C.; Forestier, E.; Brosset, S.; Leboucher, G.; Kolenda, C.; Laurent, F.; et al. The Potential Innovative Use of Bacteriophages within the DAC® Hydrogel to Treat Patients with Knee Megaprosthesis Infection Requiring “Debridement Antibiotics and Implant Retention” and Soft Tissue Coverage as Salvage Therapy. Front. Med. 2020, 7, 342. [Google Scholar] [CrossRef]
- Gainey, A.B.; Burch, A.; Brownstein, M.J.; Brown, D.E.; Ms, J.F.; Bs, B.H.; Biswas, B.; Bivens, B.N.; Malagon, F.; Daniels, R. Combining bacteriophages with cefiderocol and meropenem/vaborbactam to treat a pan-drug resistant Achromobacter species infection in a pediatric cystic fibrosis patient. Pediatr. Pulmonol. 2020, 55, 2990–2994. [Google Scholar] [CrossRef]
- Grygorcewicz, B.; Roszak, M.; Golec, P.; Śleboda-Taront, D.; Łubowska, N.; Górska, M.; Jursa-Kulesza, J.; Rakoczy, R.; Wojciuk, B.; Dołęgowska, B. Antibiotics Act with vB_AbaP_AGC01 Phage against Acinetobacter baumannii in Human Heat-Inactivated Plasma Blood and Galleria mellonella Models. Int. J. Mol. Sci. 2020, 21, 4390. [Google Scholar] [CrossRef]
- Morrisette, T.; Lev, K.L.; Kebriaei, R.; Abdul-Mutakabbir, J.C.; Stamper, K.C.; Morales, S.; Lehman, S.M.; Canfield, G.S.; Duerkop, B.A.; Arias, C.A.; et al. Bacteriophage-Antibiotic Combinations for Enterococcus faecium with Varying Bacteriophage and Daptomycin Susceptibilities. Antimicrob. Agents Chemother. 2020, 64, e00993-20. [Google Scholar] [CrossRef]
- Weber, L.; Jansen, M.; Krüttgen, A.; Buhl, E.M.; Horz, H.-P. Tackling Intrinsic Antibiotic Resistance in Serratia marcescens with A Combination of Ampicillin/Sulbactam and Phage SALSA. Antibiotics 2020, 9, 371. [Google Scholar] [CrossRef]
- Zuo, P.; Yu, P.; Alvarez, P.J.J. Aminoglycosides Antagonize Bacteriophage Proliferation, Attenuating Phage Suppression of Bacterial Growth, Biofilm Formation, and Antibiotic Resistance. Appl. Environ. Microbiol. 2021, 87, e00468-21. [Google Scholar] [CrossRef]
- Stachurska, X.; Roszak, M.; Jabłońska, J.; Mizielińska, M.; Nawrotek, P. Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification. Antibiotics 2021, 10, 1306. [Google Scholar] [CrossRef]
- Necel, A.; Bloch, S.; Topka-Bielecka, G.; Janiszewska, A.; Łukasiak, A.; Nejman-Faleńczyk, B.; Węgrzyn, G. Synergistic Effects of Bacteriophage vB_Eco4-M7 and Selected Antibiotics on the Biofilm Formed by Shiga Toxin-Producing Escherichia coli. Antibiotics 2022, 11, 712. [Google Scholar] [CrossRef]
- Huff, W.E.; Huff, G.R.; Rath, N.C.; Balog, J.M.; Donoghue, A.M. Therapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers. Poult. Sci. 2004, 83, 1944–1947. [Google Scholar] [CrossRef]
- Jones, D. The Effect of Antibiotic Substances upon Phage; The Theobald Smith Society: Elizabeth, NJ, USA, 1945; p. 122. [Google Scholar]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 2019, 25, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Faguet, M.; Nicolle, P. Inhibition de la lyse bactériophagique par la pénicilline. Levée de cette inhibition par la pénicillinase. Ann. Inst. Pasteur. 1947, 73, 1150–1154. [Google Scholar]
- Krueger, A.P.; Cohn, T.; Smith, P.N.; McGuire, C.D. Observations on the effect of penicillin on the reaction between phage and staphylococci. J. Gen. Physiol. 1948, 31, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Torres-Barceló, C.; Arias-Sánchez, F.I.; Vasse, M.; Ramsayer, J.; Kaltz, O.; Hochberg, M.E. A Window of Opportunity to Control the Bacterial Pathogen Pseudomonas aeruginosa Combining Antibiotics and Phages. PLoS ONE 2014, 9, e106628. [Google Scholar] [CrossRef] [Green Version]
- Kumaran, D.; Taha, M.; Yi, Q.; Ramirez-Arcos, S.; Diallo, J.-S.; Carli, A.V.; Abdelbary, H. Does Treatment Order Matter? Investigating the Ability of Bacteriophage to Augment Antibiotic Activity against Staphylococcus aureus Biofilms. Front. Microbiol. 2018, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Zilisteanu, C.; Olinici, N.; Mintzer, L. Influence des bactériophages sur la sensibilité aux antibiotiques de certaines souches d’Escherichia coli et de Klebsiella. Etude “in vitro”. Arch. Roum. Pathol. Exp. Microbiol. 1962, 21, 301–307. [Google Scholar]
- Zilisteanu, C.; Mintzer-Morgenstern, L.; Ionesco-Dorohoi, T. Modification de la sensibilité aux phages de quelques souches d’Enterobacteriaceae sous l’action du chloramphenicol. Arch. Roum. Pathol. Exp. Microbiol. 1969, 28, 615–627. [Google Scholar]
- Zilisteanu, C.; Mintzer-Morgenstern, L.; Ghyka, G. Influence des bactériophages homologues sur la résistances aux antibiotiques de certaines souches d’Enterobacteriaceae et de Staphylococcus aureus. Etude “in vitro”. Arch. Roum. Pathol. Exp. Microbiol. 1965, 24, 1029–1040. [Google Scholar]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibian, H.R.; Elefteriades, J.A.; Narayan, D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evolut. Med. Public Health 2018, 2018, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.; Huo, W.; Pas, S.; Dao, R.; Palmer, K.L. Loss-of-Function Mutations in epaR Confer Resistance to ϕNPV1 Infection in Enterococcus faecalis OG1RF. Antimicrob. Agents Chemother. 2018, 62, e00758-18. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Lewis, C.; Zheng, W.; Fu, Z.Q. Phage Cocktail Therapy: Multiple Ways to Suppress Pathogenicity. Trends Plant Sci. 2020, 25, 315–317. [Google Scholar] [CrossRef]
- Manohar, P.; Loh, B.; Athira, S.; Nachimuthu, R.; Hua, X.; Welburn, S.C.; Leptihn, S. Secondary Bacterial Infections During Pulmonary Viral Disease: Phage Therapeutics as Alternatives to Antibiotics? Front. Microbiol. 2020, 11, 1434. [Google Scholar] [CrossRef]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162–173. [Google Scholar] [CrossRef]
- Summers, W.C. Phage therapy. Annu. Rev. Microbiol. 2001, 55, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Fothergill, J.L.; Mowat, E.; Walshaw, M.J.; Ledson, M.J.; James, C.E.; Winstanley, C. Effect of Antibiotic Treatment on Bacteriophage Production by a Cystic Fibrosis Epidemic Strain of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2011, 55, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Goerke, C.; Köller, J.; Wolz, C. Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Górski, A. Bacteriophages and Lysins in Biofilm Control. Virol. Sin. 2020, 35, 125–133. [Google Scholar] [CrossRef]
- Lu, T.K.; Collins, J.J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA 2009, 106, 4629–4634. [Google Scholar] [CrossRef] [Green Version]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef] [Green Version]
- Stone, E.; Campbell, K.; Grant, I.; McAuliffe, O. Understanding and Exploiting Phage–Host Interactions. Viruses 2019, 11, 567. [Google Scholar] [CrossRef] [Green Version]
- Segall, A.M.; Roach, D.R.; Strathdee, S.A. Stronger together? Perspectives on phage-antibiotic synergy in clinical applications of phage therapy. Curr. Opin. Microbiol. 2019, 51, 46–50. [Google Scholar] [CrossRef]
Year | Microorganism | Antibiotic | In Vivo | Human Infection | Observation | Reference |
---|---|---|---|---|---|---|
1941 | Staphyloccoci | Sulphanilamide Sulphapyridine Sulphathiazole | No | No | Synergistic | [10] |
1941 | S. aureus E. coli | Sulphanilamide Sulphapyridine | No | No | Synergistic | [9] |
1942 | Staphylococci | Sulphathiazole | Rabbit | No | Synergistic | [11] |
1943 | Staphylococci | Neo-arsphenamine Sulphanilamide | / | Various types of infection | Synergistic | [12] |
1943 | Staphylococci | Neo-arsphenamine Sulphanilamide | / | Neurological infections | Synergistic | [13] |
1945 | Staphylococci | Penicillin | No | No | Synergistic | [14] |
1945 | E. coli | Streptothricin Streptomycin Clavacin | No | No | Antagonistic | [18] |
1945 | Staphyloccoci | Penicillin | / | Cardiac infections | Synergistic | [15] |
1945 | Staphyloccoci Streptococci | Penicillin | / | Cardiac infections | Synergistic | [16] |
1946 | Staphyloccoci Streptococci E. coli | Penicillin | / | Various types of infection | Synergistic | [17] |
1949 1950 | S. aureus E. coli | Streptomycin Chloromycetin Aureomycitin Terramycin | No | No | Antagonistic | [19,20,21,22,23,24,25] |
1951 | Several bacteria | Quinones Clavacin Subtilin Penicillic acid Ploymixin B Streptomycin | No | No | Antagonistic | [26] |
1954 | S. aureus | Aureomycin Oxytetracyclin Chloramphenicol | No | No | Antagonistic | [27] |
1965 | Dysenteric bacilli | Chloramphenicol Tetracycline | / | Digestive colonisation | Synergistic | [28] |
1971 | Enterobacteriae Staphylococci | Not specified | No | No | Synergistic | [29] |
1977 | E. coli | Rifampicin | No | No | Antagonistic | [30] |
2006 | P. aeruginosa | β-Lactam Chloramphenicol Gentamycin | Mice | No | Synergistic | [31] |
2007 | E. coli | Β-Lactam Quinolone | No | No | Synergistic | [32] |
2008 | P. aeruginosa | Β-Lactam Quinolone Aminoglycosids | No | No | Synergistic | [33] |
2008 | Salmonella enterica | Gentamicin Ciprofloxacin | No | No | Synergistic | [34] |
2009 | K.pneumoniae | Amoxicillin | No | No | Synergistic | [35] |
2011 | S. aureus | Rifampicin | No | No | Synergistic | [36] |
2012 | S. aureus | Gentamycin | No | No | Synergistic | [37] |
2012 | E. coli | Cefotaxime | No | No | Synergistic | [38] |
2013 | S. aureus | Linezolid | No | No | Synergistic | [39] |
2013 | P. aeruginosa | Ceftriaxone | No | No | Synergistic | [40] |
2013 | S. aureus P. aeruginosa | Teicoplanin Imipenem Amikacin | Rat | No | Synergistic | [41] |
2014 | Mycobacterium smegmatis | Ethambutol | No | No | Synergistic | [42] |
2014 | E. coli P. aeruginosa | Tobramycin | No | No | Synergistic | [43] |
2014 | S. aureus | Linezolid | No | No | Synergistic | [44] |
2014 | P. aeruginosa | Streptomycin | No | No | Synergistic | [45] |
2015 | S. aureus | Gentamycin Vancomycin Tetracyclin | No | No | Synergistic | [46] |
2015 | Burkholderia cepacia | Ciprofloxacin Meropenem Tetracycline Minocycline Levofloxacin Ceftazidime | No | No | Synergistic | [47] |
2016 | S. aureus | Linezolid | Mice | No | Synergistic | [48] |
2017 | P. aeruginosa | Ceftazidime Ciprofloxacin Tobramycin | No | No | Synergistic | [49] |
2018 | P. aeruginosa | Ciprofloxacin Tobramycin Colistin Aztreonam Amikacin | No | No | Synergistic | [50] |
2018 | P. aeruginosa | Piperacillin Ceftazidime | No | No | Synergistic | [51] |
2019 | P. aeruginosa S. aureus | Aminoglycosid Tetracycline Chloramphenicol Meropenem Erythromycin Ciprofloxacin | No | No | Synergistic | [52] |
2019 | Enterococci | Vancomycin | No | No | Synergistic | [53] |
2020 | S. aureus | Dalbavancin | / | Neurological infection | Synergistic | [54] |
2020 | S. aureus | Daptomycin | / | Osteoarticular infection | Clinical failure | [55] |
2020 | Achromobacter spp. | Cefiderocol Meropenem-varobactam | / | Pulmonary infection | Synergistic | [56] |
2020 | Acinetobacter baumanii | Ciprofloxacin Meropenem | No | No | Synergistic | [57] |
2020 | Enterococcus faecium | Daptomycin | No | No | Synergistic | [58] |
2020 | Serratia marcescens | Ampicillin- Sulbactam | No | No | Synergistic | [59] |
2021 | E. coli Bacillus cereus | Aminoglycosids | No | No | Antagonistic | [60] |
2021 | E. coli | β-lactams Fluoroquinolones Colistin sulphate Trimethoprim-sulphamethoxazole Tetracyclines Amino-glycosides | No | No | Synergistic Possibly antagonistic | [61] |
2022 | E. coli | Ciprofloxacin Rifampicin | No | No | Synergistic | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diallo, K.; Dublanchet, A. Benefits of Combined Phage–Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review. Antibiotics 2022, 11, 839. https://doi.org/10.3390/antibiotics11070839
Diallo K, Dublanchet A. Benefits of Combined Phage–Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review. Antibiotics. 2022; 11(7):839. https://doi.org/10.3390/antibiotics11070839
Chicago/Turabian StyleDiallo, Kevin, and Alain Dublanchet. 2022. "Benefits of Combined Phage–Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review" Antibiotics 11, no. 7: 839. https://doi.org/10.3390/antibiotics11070839
APA StyleDiallo, K., & Dublanchet, A. (2022). Benefits of Combined Phage–Antibiotic Therapy for the Control of Antibiotic-Resistant Bacteria: A Literature Review. Antibiotics, 11(7), 839. https://doi.org/10.3390/antibiotics11070839