Characterization of β-Lactamases and Multidrug Resistance Mechanisms in Enterobacterales from Hospital Effluents and Wastewater Treatment Plant
Abstract
:1. Introduction
2. Results
2.1. Determination of Antibiotic Resistant Gram-Negative Bacteria
2.2. Characterization of Antimicrobial Resistant Enterobacterales
2.3. Antimicrobial Susceptibility Profiles and Multiple Antibiotic Resistance Indices
2.4. Multiple Antimicrobial Resistance and Co-Resistance
2.5. Phenotypic Expression of β-Lactamases
2.6. Molecular Characterization of ESBL and Carbapenemase Genes
2.7. Next Generation Sequencing of Plasmids
3. Discussion
4. Materials and Methods
4.1. Study Sites and Sample Collection
4.2. Enumeration of Total and Antibiotic Resistant Gram-Negative Bacteria
4.3. Characterization of the Bacterial Isolates
4.4. Antimicrobial Susceptibility Profiles and Phenotypic Detection of β-Lactamases
4.5. Molecular Typing of ESBL and Carbapenemases
4.6. Plasmid DNA Library Preparation and Sequencing
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iakovlieva, L.; Bahlai, T. Study of awareness of pharmacy employees in Ukraine with the problem of antibiotics resistance. Health Sci. 2020, 6, 108–116. [Google Scholar] [CrossRef]
- Cassini, A.; Hogberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- No Time to Wait—Securing the Future from Drug-Resistant Infections. Report to the Secretary General of the Nations; UN: San Francisco, CA, USA, 2019.
- Islam, Q.T. Antimicrobial resistance: A man made crisis. J. Bangladesh Coll. Physicians Surg. 2011, 29, 120–125. [Google Scholar] [CrossRef] [Green Version]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Burgmann, H.; Sorum, H.; Norstrom, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Pärnänen, K.M.; Narciso-da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. J. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef] [Green Version]
- Galler, H.; Feierl, G.; Petternel, C.; Reinthaler, F.F.; Haas, D.; Grisold, A.J.; Luxner, J.; Zarfel, G. KPC-2 and OXA-48 carbapenemase-harbouring Enterobacteriaceae detected in an Austrian wastewater treatment plant. Clin. Microbiol. Infect. 2014, 20, O132–O134. [Google Scholar] [CrossRef] [Green Version]
- Michael, I.; Rizzo, L.; McArdell, C.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [Green Version]
- Kelly, B.; Vespermann, A.; Bolton, D.J.F. Gene transfer events and their occurrence in selected environments. J. Food Chem. Toxicol. 2009, 47, 978–983. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R. Resistance mechanisms in Enterobacteriaceae. Pathology 2015, 47, 276–284. [Google Scholar] [CrossRef]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum β-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Qin, X.; Zerr, D.M.; Weissman, S.J.; Englund, J.A.; Denno, D.M.; Klein, E.J.; Tarr, P.I.; Kwong, J.; Stapp, J.R.; Tulloch, L.G.; et al. Prevalence and mechanisms of broad-spectrum beta-lactam resistance in Enterobacteriaceae: A children’s hospital experience. Antimicrob. Agents Chemother. 2008, 52, 3909–3914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damoa-Siakwan, S. Extended-spectrum beta lactamases: An overview. Br. J. Infect. Control 2005, 6, 25–28. [Google Scholar] [CrossRef]
- Hocquet, D.; Muller, A.; Bertrand, X. What happens in hospitals does not stay in hospitals: Antibiotic-resistant bacteria in hospital wastewater systems. J. Hosp. Infect. 2016, 93, 395–402. [Google Scholar] [CrossRef]
- Haller, L.; Chen, H.; Ng, C.; Le, T.H.; Koh, T.H.; Barkham, T.; Sobsey, M.; Gin, K.Y.-H. Occurrence and characteristics of extended-spectrum β-lactamase-and carbapenemase-producing bacteria from hospital effluents in Singapore. Sci. Total Environ. 2018, 615, 1119–1125. [Google Scholar] [CrossRef]
- Lamba, M.; Graham, D.W.; Ahammad, S.Z. Hospital Wastewater Releases of Carbapenem-Resistance Pathogens and Genes in Urban India. Environ. Sci. Technol. 2017, 51, 13906–13912. [Google Scholar] [CrossRef] [Green Version]
- Szczepanowski, R.; Linke, B.; Krahn, I.; Gartemann, K.H.; Gutzkow, T.; Eichler, W.; Puhler, A.; Schluter, A. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology 2009, 155, 2306–2319. [Google Scholar] [CrossRef] [Green Version]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum beta-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [Green Version]
- Bush, K.; Jacoby, G.A. Updated functional classification of beta-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slama, T.G. Gram-negative antibiotic resistance: There is a price to pay. Crit. Care 2008, 12, S4. [Google Scholar] [CrossRef] [Green Version]
- Smet, A.; Martel, A.; Persoons, D.; Dewulf, J.; Heyndrickx, M.; Catry, B.; Herman, L.; Haesebrouck, F.; Butaye, P. Diversity of extended-spectrum β-lactamases and class C β-lactamases among cloacal Escherichia coli isolates in Belgian broiler farms. Antimicrob. Agents Chemother. 2008, 52, 1238–1243. [Google Scholar] [CrossRef] [Green Version]
- Coque, T.M.; Baquero, F.; Canton, R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Eurosurveillance 2008, 13, 19044. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem resistance: A review. Med. Sci. 2018, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Woodford, N.; Wareham, D.W.; Guerra, B.; Teale, C. Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: An emerging public health risk of our own making? J. Antimicrob. Chemother. 2014, 69, 287–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Lu, X.; Zong, Z. Enterobacteriaceae producing the KPC-2 carbapenemase from hospital sewage. Diagn. Microbiol. Infect. Dis. 2012, 73, 204–206. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Annual Report of the European Antimicrobial Resistance Surveillance Network Antimicrobial Resistance Surveillance in Europe 2020; ECDC: Stockholm, Sweden, 2020.
- Aali, R.; Nikaeen, M.; Khanahmad, H.; Hassanzadeh, A. Monitoring and comparison of antibiotic resistant bacteria and their resistance genes in municipal and hospital wastewaters. Int. J. Prev. Med. 2014, 5, 887. [Google Scholar]
- Chartier, Y. Safe Management of Wastes from Health-Care Activities; World Health Organization: Geneve, Switzerland, 2014.
- Morris, D.; Harris, S.; Morris, C.; Commins, E.; Cormican, M. Hospital Effluent: Impact on the Microbial Environment and Risk to Human Health; Environment Protection Agency: Wexford, Ireland, 2008.
- Osundiya, O.; Oladele, R.; Oduyebo, O. Multiple antibiotic resistance (MAR) indices of Pseudomonas and Klebsiella species isolates in Lagos University Teaching Hospital. Afr. J. Clin. Exp. Microbiol. 2013, 14, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Gajdács, M. Epidemiology and resistance levels of Enterobacteriaceae isolates from urinary tract infections expressed as Multiple Antibiotic Resistance (MAR) indices. J. Pharm. Res. Int. 2019, 29, 1–7. [Google Scholar] [CrossRef] [Green Version]
- White, L.; Hopkins, K.; Meunier, D.; Perry, C.L.; Pike, R.; Wilkinson, P.; Pickup, R.W.; Cheesbrough, J.; Woodford, N. Carbapenemase-producing Enterobacteriaceae in hospital wastewater: A reservoir that may be unrelated to clinical isolates. J. Hosp. Infect. 2016, 93, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Galvin, S.; Boyle, F.; Hickey, P.; Vellinga, A.; Morris, D.; Cormican, M. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Appl. Environ. Microbiol. 2010, 76, 4772–4779. [Google Scholar] [CrossRef] [Green Version]
- Penalva, G.; Hogberg, L.D.; Weist, K.; Vlahovic-Palcevski, V.; Heuer, O.; Monnet, D.L.; Vandael, E.; Ivanov, I.N.; Payerl-Pal, M.; Skjold Selle Pedersen, K.; et al. Decreasing and stabilising trends of antimicrobial consumption and resistance in Escherichia coli and Klebsiella pneumoniae in segmented regression analysis, European Union/European Economic Area, 2001 to 2018. Eurosurveillance 2019, 24, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Connor, R.; Renata, A.; Ortigara, C.; Koncagül, E.; Uhlenbrook, S.; Lamizana-Diallo, B.M.; Zadeh, S.M.; Qadir, M.; Kjellén, M.; Sjödin, J. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource; UN: San Francisco, CA, USA, 2017. [Google Scholar]
- Ojer-Usoz, E.; Gonzalez, D.; Garcia-Jalon, I.; Vitas, A.I. High dissemination of extended-spectrum beta-lactamase-producing Enterobacteriaceae in effluents from wastewater treatment plants. Water. Res. 2014, 56, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.J.; Balazs, B.; Benmazouz, I.; Gyure, P.; Kover, L.; Kaszab, E.; Bali, K.; Lovas-Kiss, A.; Damjanova, I.; Majoros, L.; et al. Comparison of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolates from Rooks (Corvus frugilegus) and Contemporary Human-Derived Strains: A One Health Perspective. Front. Microbiol. 2021, 12, 785411. [Google Scholar] [CrossRef]
- Tóth, K.; Tóth, Á.; Kamotsay, K.; Németh, V.; Szabó, D. Population snapshot of the extended-spectrum β-lactamase-producing Escherichia coli invasive strains isolated from a Hungarian hospital. Ann. Clin. Microbiol. 2022, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- King, T.L.B.; Schmidt, S.; Essack, S.Y. Antibiotic resistant Klebsiella spp. from a hospital, hospital effluents and wastewater treatment plants in the uMgungundlovu District, KwaZulu-Natal, South Africa. Sci. Total Environ. 2020, 712, 135550. [Google Scholar] [CrossRef] [PubMed]
- Sghaier, S.; Abbassi, M.S.; Pascual, A.; Serrano, L.; Diaz-De-Alba, P.; Said, M.B.; Hassen, B.; Ibrahim, C.; Hassen, A.; Lopez-Cerero, L. Extended-spectrum beta-lactamase-producing Enterobacteriaceae from animal origin and wastewater in Tunisia: First detection of O25b-B23-CTX-M-27-ST131 Escherichia coli and CTX-M-15/OXA-204-producing Citrobacter freundii from wastewater. J. Glob. Antimicrob. Resist. 2019, 17, 189–194. [Google Scholar] [CrossRef]
- Hsu, L.; Tan, T.; Tam, V.; Kwa, A.; Fisher, D.; Koh, T. Network for Antimicrobial Resistance Surveillance (Singapore) Surveillance and correlation of antibiotic prescription and resistance of Gram-negative bacteria in Singaporean hospitals. Antimicrob. Agents Chemother. 2010, 54, 1173–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isozumi, R.; Yoshimatsu, K.; Yamashiro, T.; Hasebe, F.; Nguyen, B.M.; Ngo, T.C.; Yasuda, S.P.; Koma, T.; Shimizu, K.; Arikawa, J. blaNDM-1–positive Klebsiella pneumoniae from Environment, Vietnam. Emerg. Infect. Dis. 2012, 18, 1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, T.H.; Cao, D.Y.; Chan, K.S.; Wijaya, L.; Low, S.B.; Lam, M.S.; Ooi, E.E.; Hsu, L.-Y. blaOXA-181–positive Klebsiella pneumoniae, Singapore. Emerg. Infect. Dis. 2012, 18, 1524. [Google Scholar] [CrossRef]
- Thomas, C.P.; Moore, L.S.; Elamin, N.; Doumith, M.; Zhang, J.; Maharjan, S.; Warner, M.; Perry, C.; Turton, J.F.; Johnstone, C. Early (2008–2010) hospital outbreak of Klebsiella pneumoniae producing OXA-48 carbapenemase in the UK. Int. J. Antimicrob. Agents 2013, 42, 531–536. [Google Scholar] [CrossRef]
- Melegh, S.; Kovács, K.; Gám, T.; Nyul, A.; Patkó, B.; Tóth, A.; Damjanova, I.; Mestyán, G. Emergence of VIM-4 metallo-β-lactamase-producing Klebsiella pneumoniae ST15 clone in the Clinical Centre University of Pécs, Hungary. Clin. Microbiol. Infect. Control 2014, 20, O27–O29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magyar, A.; Köves, B.; Nagy, K.; Dobák, A.; Arthanareeswaran, V.K.A.; Bálint, P.; Wagenlehner, F.; Tenke, P. Spectrum and antibiotic resistance of uropathogens between 2004 and 2015 in a tertiary care hospital in Hungary. J. Med. Microbiol. 2017, 66, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, P.M.; Vaz-Pires, P.; Bernardo, F. Antimicrobial resistance in Enterococcus spp. isolated in inflow, effluent and sludge from municipal sewage water treatment plants. Water Res. 2006, 40, 1735–1740. [Google Scholar]
- Moore, D.F.; Guzman, J.A.; McGee, C. Species distribution and antimicrobial resistance of enterococci isolated from surface and ocean water. J. Appl. Microbiol. 2008, 105, 1017–1025. [Google Scholar] [CrossRef]
- Conte, D.; Palmeiro, J.K.; da Silva Nogueira, K.; de Lima, T.M.; Cardoso, M.A.; Pontarolo, R.; Degaut Pontes, F.L.; Dalla-Costa, L.M. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol. Environ. Saf. 2017, 136, 62–69. [Google Scholar] [CrossRef]
- Fuzi, M.; Szabo, D.; Csercsik, R. Double-serine fluoroquinolone resistance mutations advance major international clones and lineages of various multi-drug resistant bacteria. Front. Microbiol. 2017, 8, 2261. [Google Scholar] [CrossRef]
- Pai, H.; Kim, M.R.; Seo, M.R.; Choi, T.Y.; Oh, S.H. A nosocomial outbreak of Escherichia coli producing CTX-M-15 and OXA-30 beta-lactamase. Infect. Control Hosp. Epidemiol. 2006, 27, 312–314. [Google Scholar] [CrossRef]
- Moran, R.A.; Anantham, S.; Pinyon, J.L.; Hall, R.M. Plasmids in antibiotic susceptible and antibiotic resistant commensal Escherichia coli from healthy Australian adults. Plasmid 2015, 80, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Stephens, C.; Arismendi, T.; Wright, M.; Hartman, A.; Gonzalez, A.; Gill, M.; Pandori, M.; Hess, D. F Plasmids Are the Major Carriers of Antibiotic Resistance Genes in Human-Associated Commensal Escherichia coli. mSphere 2020, 5, e00709-20. [Google Scholar] [CrossRef]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, M.A.G.; Howlader, M.Z.H.; Kabir, Y. Detection of multidrug resistant (MDR) bacteria in untreated waste water disposals of hospitals in Dhaka City, Bangladesh. J. Glob. Antimicrob. Resist. 2017, 10, 120–125. [Google Scholar] [CrossRef]
- Estrada-García, T.; Cerna, J.F.; Paheco-Gil, L.; Velázquez, R.F.; Ochoa, T.J.; Torres, J.; DuPont, H.L. Drug-resistant diarrheogenic Escherichia coli, Mexico. Emerg. Infect. Dis. 2005, 11, 1306. [Google Scholar] [CrossRef]
- Islam, M.; Uddin, M.; Hakim, M.; Das, K.; Hasan, M. Role of untreated liquid hospital waste to the development of antibiotic resistant bacteria. J. Innov. Dev. Strategy 2008, 2, 17–21. [Google Scholar]
- Oberlé, K.; Capdeville, M.-J.; Berthe, T.; Budzinski, H.l.; Petit, F. Evidence for a complex relationship between antibiotics and antibiotic-resistant Escherichia coli: From medical center patients to a receiving environment. J. Environ. Sci. 2012, 46, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Tenaillon, O.; Skurnik, D.; Picard, B.; Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 2010, 8, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.; Harris, S.; Morris, C.; Commins, E.; Cormican, M. Hospital Effluent: Impact on the Microbial Environment and Risk to Human Health; Report no. 162; Environmental Protection Agency: Wexford, Ireland, 2016.
- Novo, A.; Manaia, C.M. Factors influencing antibiotic resistance burden in municipal wastewater treatment plants. Appl. Microbiol. Biotechnol. 2010, 87, 1157–1166. [Google Scholar] [CrossRef]
- Cheesbrough, M. Medical Laboratory Manual for Tropical Countries; Tropical Health Technology: Fakenham, UK, 1990; Volume 1. [Google Scholar]
- Blondiaux, N.; Gaillot, O.; Courcol, R.J. MALDI-TOF mass spectrometry to identify clinical bacterial isolates: Evaluation in a teaching hospital in Lille. Pathol. Biol. 2010, 58, 55–57. [Google Scholar] [CrossRef]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 8.1; European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2018. [Google Scholar]
- Oduro-Mensah, D.; Obeng-Nkrumah, N.; Bonney, E.Y.; Oduro-Mensah, E.; Twum-Danso, K.; Osei, Y.D.; Sackey, S.T. Genetic characterization of TEM-type ESBL-associated antibacterial resistance in Enterobacteriaceae in a tertiary hospital in Ghana. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelstein, M.; Pimkin, M.; Palagin, I.; Edelstein, I.; Stratchounski, L. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother. 2003, 47, 3724–3732. [Google Scholar] [CrossRef] [Green Version]
- Wiegand, I.; Geiss, H.K.; Mack, D.; Stürenburg, E.; Seifert, H. Detection of extended-spectrum beta-lactamases among Enterobacteriaceae by use of semiautomated microbiology systems and manual detection procedures. Clin. Microbiol. 2007, 45, 1167–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, I.; Hasman, H.; Møller Aarestrup, F. Prevalence of β-lactamases among ampicillin-resistant Escherichia coli and Salmonella isolated from food animals in Denmark. Microb. Drug Resist. 2004, 10, 334–340. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Andrews, S.; Krueger, F.; Segonds-Pichon, A.; Biggins, L.; Krueger, C.; Wingett, S.; FastQC. A Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 4 May 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef] [Green Version]
- Deloger, M.; El Karoui, M.; Petit, M.-A. A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J. Bacteriol. 2009, 191, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
Mean Colony Counts (CFU mL−1) n = 3 | |||||
---|---|---|---|---|---|
Source | Total CFU Count EMB | EMB-CRO | CRO % Resistance | EMB-IMP | IMP % Resistance |
H1 | 2.1 × 105 | 9.95 × 104 | 47.4 | 4.2 × 104 | 20 |
H2 | 6.65 × 105 | 3.8 × 105 | 57 | 6.2 × 104 | 9.3 |
H3 | 2.6 × 105 | 1.42 × 105 | 54.6 | 7.9 × 104 | 30.4 |
H4 | 2.7 × 105 | 9.8 × 104 | 36 | 2.1 × 104 | 7 |
NH | 2.9 × 105 | 1.17 × 105 | 40.3 | 1.23 × 104 | 4.2 |
INFL | 1.01 × 105 | 4.97 × 104 | 49 | 3.6 × 103 | 3.5 |
ACSL | 7.1 × 105 | 9.8 × 104 | 13.8 | 4.6 × 103 | 0.6 |
DGSL | 2.3 × 105 | 8.5 × 104 | 36.9 | 8.6 × 103 | 3.7 |
MWW | 3.9 × 105 | 4.1 × 104 | 10.5 | 4.6 × 103 | 0.1 |
Antimicrobial Susceptibility % | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | n = 126 | CRO | CAZ | CTX | CPD | FOX | IMP | MEM | SXT | GEN | CIP | MAR Index |
H1 | 27 | 100 | 81 | 100 | 100 | 19 | 20 | 4 | 57 | 44 | 78 | 0.596 |
H2 | 25 | 96 | 80 | 96 | 92 | 24 | 8 | 0 | 48 | 60 | 88 | 0.592 |
H3 | 6 | 100 | 100 | 100 | 100 | 50 | 0 | 0 | 100 | 33 | 100 | 0.683 |
H4 | 22 | 96 | 82 | 91 | 91 | 33 | 0 | 0 | 41 | 27 | 68 | 0.532 |
NH | 11 | 100 | 100 | 92 | 82 | 18 | 0 | 0 | 91 | 27 | 82 | 0.591 |
INFL | 9 | 100 | 100 | 78 | 67 | 22 | 0 | 0 | 56 | 22 | 56 | 0.500 |
ACSL | 12 | 92 | 75 | 83 | 92 | 8 | 0 | 0 | 75 | 18 | 67 | 0.508 |
DGSL | 5 | 100 | 100 | 100 | 100 | 40 | 0 | 0 | 40 | 40 | 40 | 0.560 |
MWW | 9 | 100 | 78 | 100 | 100 | 33 | 0 | 0 | 11 | 11 | 22 | 0.444 |
Isolates | E. coli (n = 58) | Klebsiella spp. (n = 43) | E. cloacae (n = 9) | Citrobacter spp. (n = 16) | ||||
---|---|---|---|---|---|---|---|---|
Antimicrobial Agent | R | S | R | S | R | S | R | S |
CRO | 58 (100) | 0 (0) | 42 (98) | 1 (2) | 9 (100) | 0 (0) | 14 (86) | 2 (13) |
CAZ | 51 (88) | 7 (13) | 31 (72) | 12 (28) | 9 (100) | 0 (0) | 16 (100) | 0 (0) |
CTX | 58 (100) | 0 (0) | 40 (93) | 3 (7) | 7 (78) | 2 (22) | 11 (69.) | 5 (31) |
CPD | 58 (100) | 0 (0) | 38 (88) | 5 (12) | 8 (89) | 1 (11) | 14 (88) | 2 (13) |
FOX | 2 (3) | 56 (97) | 5 (12) | 38 (88) | 9 (100) | 0 (0) | 15 (94) | 1 (6) |
IMP | 2 (3) | 56 (97) | 6 (14) | 37 (86) | 0 (0) | 9 (100) | 0 (0) | 16 (100) |
MEM | 0 (0) | 58 (100) | 1 (2) | 42 (98) | 0 (0) | 9 (100) | 0 (0) | 16 (100) |
SXT | 43 (74) | 15 (26) | 16 (37) | 27 (63) | 5 (56) | 4 (44) | 2 (13) | 14 (86) |
GEN | 15 (26) | 43 (74) | 24 (56) | 19 (44) | 0 (0) | 9 (100) | 5 (31) | 11 (69) |
CIP | 46 79) | 12 (21) | 29 (67) | 14 (33) | 5 (56) | 4 (44) | 7 (44) | 9 (56) |
MAR index | 0.646 | 0.551 | 0.555 | 0.394 |
Source | 2 Classes | MDR (3 Classes) | 4 Classes | 7 + Antibiotics | 10 Antibiotics |
---|---|---|---|---|---|
H1 | 93% (25/27) | 78% (21/27) | 0% (0/27) | 15% (4/27) | 0% (0/27) |
H2 | 84% (21/25) | 84% (21/25) | 20% (5/25) | 24% (6/25) | 0% (0/25) |
H3 | 100% (6/6) | 83% (5/6) | 33% (2/6) | 50% (3/6) | 0% (0/6) |
H4 | 77% (17/22) | 46% (10/22) | 0% (0/22) | 5% (1/22) | 0% (0/22) |
NH | 92% (10/11) | 73% (8/11) | 27% (3/11) | 27% (3/11) | 0% (0/11) |
INF | 56% (5/9) | 44% (4/9) | 22% (2/9) | 11% (1/9) | 0% (0/9) |
ACSL | 75% (9/12) | 67% (8/12) | 17% (2/12) | 17% (2/12) | 0% (0/12) |
DGSL | 40% (2/5) | 40% (2/5) | 40% (2/5) | 40% (2/5) | 0% (0/5) |
MWW | 33% (3/9) | 33% (3/9) | 0% (0/9) | 0% (0/9) | 0% (0/9) |
3 Chemical Classes | No. | % | 4 Chemical Classes | No. | % |
---|---|---|---|---|---|
[β-lactam][CIP][SXT] | 58 | 46 | [β-lactam][CIP][GEN][SXT] | 16 | 12.69 |
[β-lactam][CIP][GEN] | 38 | 30.2 | |||
[β-lactam][GEN][SXT] | 19 | 15.1 | |||
[CIP][GEN][SXT] | 13 | 10.3 |
Isolates | ESBL Negative (%) (n = 39) | ESBL Positive (%) (n = 87) | % ESBL Positive/Total Isolates (n = 126) |
---|---|---|---|
E. coli (n = 58) | 8 (14) | 50 (86) | 40 |
K. pneumoniae (n = 26) | 4 (15) | 22 (85) | 17 |
K. oxytoca (n = 17) | 6 (35) | 11 (65) | 9 |
E. cloacae (n = 9) | 9 (100) | 0 (0) | 0 |
Citrobacter spp. (n = 16) | 12 (75) | 4 (25) | 3 |
ESBL Gene Family | E. coli | K. pneumoniae | K. oxytoca | Citrobacter | Total (% of ESBL Positive, n = 87) |
---|---|---|---|---|---|
blaCTX-M | 50 (86) | 22 (85) | 11 (65) | 4 (25) | 87 (100) |
blaTEM | 39 (67) | 16 (62) | 5 (29) | 3 (19) | 63 (72) |
blaSHV | 0 (0) | 14 (54) | 1 (6) | 0 (0) | 15 (17) |
blaCTX-M + blaTEM | 36 (62) | 16 (62) | 5 (29) | 3 (19) | 60 (69) |
blaCTX-M + blaSHV | 0 (0) | 14 (54) | 1 (6) | 0 (0) | 15 (17) |
blaCTX-M + blaTEM + blaSHV | 0 (0) | 10 (38) | 0 (0) | 0 (0) | 10 (11) |
Total number (ESBL positive and ESBL negative) | 58 | 26 | 17 | 16 | 126 |
Gene | Sequence (5′-3′) | Product Size (bp) | Annealing Temp (°C) | References |
---|---|---|---|---|
CTX-M-F CTX-M-R | TTTGCGATGTGCAGTACCAGTAA CGATATCGTTGGTGGTGCCATA | 544 | 51 | [66] |
SHV-F SHV-R | ATGCGTTATATTCGCCTGTG GTTAGCGTTGCCAGTGCTCG | 865 | 49 | [67] |
TEM-F TEM-R | GCGGAACCCCTATTTG ACCATTGCTTAATCAGTGAG | 963 | 56 | [68] |
IMP-F IMP-R | GGAATAGAGTGGCTTAAYT TCGGTTTAAYAAAACAACCACC | 232 | 52 | [69] |
KPC-F KPC-R | CGTCTAGTTCTGCTGTCTTG CTTGTCATCCTTGTTAGGCG | 798 | 52 | [69] |
NDM-F NDM-R | GGTTTGGCGATCTGGTTTTC CGGAATGGCTCATCACGATC | 621 | 52 | [69] |
OXA-48-F OXA-48-R | GCGTGGTTAAGGATGAACAC CATCAAGTTCAACCCAACCG | 438 | 60 | [69] |
VIM-F VIM-R | GATGGTGTTTGGTCGCATA CGAATGCGCAGCACCAG | 390 | 52 | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutuku, C.; Melegh, S.; Kovacs, K.; Urban, P.; Virág, E.; Heninger, R.; Herczeg, R.; Sonnevend, Á.; Gyenesei, A.; Fekete, C.; et al. Characterization of β-Lactamases and Multidrug Resistance Mechanisms in Enterobacterales from Hospital Effluents and Wastewater Treatment Plant. Antibiotics 2022, 11, 776. https://doi.org/10.3390/antibiotics11060776
Mutuku C, Melegh S, Kovacs K, Urban P, Virág E, Heninger R, Herczeg R, Sonnevend Á, Gyenesei A, Fekete C, et al. Characterization of β-Lactamases and Multidrug Resistance Mechanisms in Enterobacterales from Hospital Effluents and Wastewater Treatment Plant. Antibiotics. 2022; 11(6):776. https://doi.org/10.3390/antibiotics11060776
Chicago/Turabian StyleMutuku, Christopher, Szilvia Melegh, Krisztina Kovacs, Peter Urban, Eszter Virág, Reka Heninger, Robert Herczeg, Ágnes Sonnevend, Attila Gyenesei, Csaba Fekete, and et al. 2022. "Characterization of β-Lactamases and Multidrug Resistance Mechanisms in Enterobacterales from Hospital Effluents and Wastewater Treatment Plant" Antibiotics 11, no. 6: 776. https://doi.org/10.3390/antibiotics11060776
APA StyleMutuku, C., Melegh, S., Kovacs, K., Urban, P., Virág, E., Heninger, R., Herczeg, R., Sonnevend, Á., Gyenesei, A., Fekete, C., & Gazdag, Z. (2022). Characterization of β-Lactamases and Multidrug Resistance Mechanisms in Enterobacterales from Hospital Effluents and Wastewater Treatment Plant. Antibiotics, 11(6), 776. https://doi.org/10.3390/antibiotics11060776