Efficacy of Combination Therapies for the Treatment of Multi-Drug Resistant Gram-Negative Bacterial Infections Based on Meta-Analyses
Abstract
:1. Introduction
2. Combinations of Antibiotics plus β-Lactamase Inhibitor
2.1. Carbapenem versus β-Lactam and β-Lactamase Inhibitor Combinations
2.2. Carbapenem versus Ceftazidime-Avibactam
2.3. CZA versus CZA Combination Therapy
2.4. Ceftlozane-Tazobactam (C/T) versus C/T Combination Therapy
3. Antibiotics Combinations
3.1. β-Lactam versus β-Lactam plus Aminoglycoside
3.2. Carbapenem plus Carbapenem (Double Carbapenems) versus Other Antibiotic Regimens
3.3. Polymyxin versus Polymyxin Combination Therapy
3.4. Colistin versus Colistin Combination Therapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. Available online: https://apps.who.int/iris/rest/bitstreams/1350455/retrieve (accessed on 30 November 2021).
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe, 2020 Data. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Surveillance-antimicrobial-resistance-in-Europe-2020.pdf (accessed on 30 November 2021).
- Petty, L.A.; Henig, O.; Patel, T.S.; Pogue, J.M.; Kaye, K.S. Overview of meropenem-vaborbactam and newer antimicrobial agents for the treatment of carbapenem-resistant Enterobacteriaceae. Infect. Drug Resist. 2018, 11, 1461–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centre for Disease Prevention and Control. 2019 AR Threats Report. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 30 November 2021).
- Hagihara, M.; Crandon, J.L.; Nicolau, D.P. The efficacy and safety of antibiotic combination therapy for infections caused by Gram-positive and Gram-negative organisms. Expert Opin. Drug Saf. 2012, 11, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tängdén, T. Combination antibiotic therapy for multidrug-resistant Gram-negative bacteria. Upsala J. Med. Sci. 2014, 119, 149–153. [Google Scholar] [CrossRef]
- Jean, S.S.; Chang, Y.C.; Lin, W.C.; Lee, W.S.; Hsueh, P.R.; Hsu, C.W. Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia. J. Clin. Med. 2020, 9, 275. [Google Scholar] [CrossRef] [Green Version]
- Vardakas, K.Z.; Mavroudis, A.D.; Georgiou, M.; Falagas, M.E. Intravenous colistin combination antimicrobial treatment vs. monotherapy: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 51, 535–547. [Google Scholar] [CrossRef]
- Sfeir, M.M.; Askin, G.; Christos, P. Beta-lactam/beta-lactamase inhibitors versus carbapenem for bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: Systematic review and meta-analysis. Int. J. Antimicrob. Agents 2018, 52, 554–570. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, B.; Wang, J.; Cai, Y. Non-carbapenem β-lactam/β-lactamase inhibitors versus carbapenems for urinary tract infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae: A systematic review. Int. J. Antimicrob. Agents 2021, 58, 106410. [Google Scholar] [CrossRef]
- Sternbach, N.; Leibovici Weissman, Y.; Avni, T.; Yahav, D. Efficacy and safety of ceftazidime/avibactam: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2018, 73, 2021–2029. [Google Scholar] [CrossRef] [Green Version]
- Che, H.; Wang, R.; Wang, J.; Cai, Y. Ceftazidime/avibactam versus carbapenems for the treatment of infections caused by Enterobacteriaceae: A meta-analysis of randomised controlled trials. Int. J. Antimicrob. Agents 2019, 54, 809–813. [Google Scholar] [CrossRef]
- Isler, B.; Ezure, Y.; Romero, J.L.G.; Harris, P.; Stewart, A.G.; Paterson, D.L. Is Ceftazidime/Avibactam an Option for Serious Infections Due to Extended-Spectrum-β-Lactamase- and AmpC-Producing Enterobacterales?: A Systematic Review and Meta-analysis. Antimicrob. Agents Chemother. 2020, 65, e01052-20. [Google Scholar] [CrossRef] [PubMed]
- Onorato, L.; Di Caprio, G.; Signoriello, S.; Coppola, N. Efficacy of ceftazidime/avibactam in monotherapy or combination therapy against carbapenem-resistant Gram-negative bacteria: A meta-analysis. Int. J. Antimicrob. Agents 2019, 54, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Alfieri, A.; Di Franco, S.; Pace, M.C.; Simeon, V.; Ingoglia, G.; Cortegiani, A. Ceftazidime-Avibactam Combination Therapy Compared to Ceftazidime-Avibactam Monotherapy for the Treatment of Severe Infections Due to Carbapenem-Resistant Pathogens: A Systematic Review and Network Meta-Analysis. Antibiotics 2020, 9, 388. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fei, F.; Yu, H.; Huang, X.; Long, S.; Zhou, H.; Zhang, J. Ceftazidime-Avibactam Therapy Versus Ceftazidime-Avibactam-Based Combination Therapy in Patients With Carbapenem-Resistant Gram-Negative Pathogens: A Meta-Analysis. Front. Pharmacol. 2021, 12, 707499. [Google Scholar] [CrossRef] [PubMed]
- Van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Soares-Weiser, K.; Leibovici, L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for fever with neutropenia: Systematic review and meta-analysis. BMJ 2003, 326, 1111. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Benuri-Silbiger, I.; Soares-Weiser, K.; Leibovici, L. Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: Systematic review and meta-analysis of randomised trials. BMJ 2004, 328, 668. [Google Scholar] [CrossRef] [Green Version]
- Zusman, O.; Altunin, S.; Koppel, F.; Dishon Benattar, Y.; Gedik, H.; Paul, M. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 29–39. [Google Scholar] [CrossRef]
- Samal, S.; Samir, S.B.; Patra, S.K.; Rath, A.; Dash, A.; Nayak, B.; Mohanty, D. Polymyxin Monotherapy vs. Combination Therapy for the Treatment of Multidrug-resistant Infections: A Systematic Review and Meta-analysis. Indian J. Crit. Care Med. 2021, 25, 199–206. [Google Scholar]
- Cheng, I.L.; Chen, Y.H.; Lai, C.C.; Tang, H.J. Intravenous Colistin Monotherapy versus Combination Therapy against Carbapenem-Resistant Gram-Negative Bacteria Infections: Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2018, 7, 208. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shu, Y.; Zhu, F.; Feng, B.; Zhang, Z.; Liu, L.; Wang, G. Comparative efficacy and safety of combination therapy with high-dose sulbactam or colistin with additional antibacterial agents for multiple drug-resistant and extensively drug-resistant Acinetobacter baumannii infections: A systematic review and network meta-analysis. J. Glob. Antimicrob. Resist. 2021, 24, 136–147. [Google Scholar] [PubMed]
- Henderson, A.; Paterson, D.L.; Chatfield, M.D.; Tambyah, P.A.; Lye, D.C.; De, P.P.; Lin, R.T.P.; Chew, K.L.; Yin, M.; Lee, T.H.; et al. MERINO Trial Investigators and the Australasian Society for Infectious Disease Clinical Research Network (ASID-CRN). Association Between Minimum Inhibitory Concentration, Beta-lactamase Genes and Mortality for Patients Treated with Piperacillin/Tazobactam or Meropenem from the MERINO Study. Clin. Infect. Dis. 2021, 73, e3842–e3850. [Google Scholar] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar] [PubMed]
- Ben-Ami, R.; Rodríguez-Baño, J.; Arslan, H.; Pitout, J.D.; Quentin, C.; Calbo, E.S.; Azap, O.K.; Arpin, C.; Pascual, A.; Livermore, D.M.; et al. A multinational survey of risk factors for infection with extended-spectrum beta-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin. Infect. Dis. 2009, 49, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Prakash, V.; Lewis, J.S., 2nd; Herrera, M.L.; Wickes, B.L.; Jorgensen, J.H. Oral and parenteral therapeutic options for outpatient urinary infections caused by enterobacteriaceae producing CTX-M extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 2009, 53, 1278–1280. [Google Scholar] [CrossRef] [Green Version]
- Pitout, J.D. Enterobacteriaceae that produce extended-spectrum β-lactamases and AmpC β-lactamases in the community: The tip of the iceberg? Curr. Pharm. Des. 2013, 19, 257–263. [Google Scholar] [CrossRef]
- Karaiskos, I.; Giamarellou, H. Carbapenem-Sparing Strategies for ESBL Producers: When and How. Antibiotics 2020, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M.; Meunier, D.; Hopkins, K.L.; Doumith, M.; Hill, R.; Pike, R.; Staves, P.; Woodford, N. Activity of ceftazidime/avibactam against problem Enterobacteriaceae and Pseudomonas aeruginosa in the UK, 2015–2016. J. Antimicrob. Chemother. 2018, 73, 648–657. [Google Scholar] [CrossRef]
- Tuon, F.F.; Rocha, J.L.; Formigoni-Pinto, M.R. Pharmacological aspects and spectrum of action of ceftazidime-avibactam: A systematic review. Infection 2018, 46, 165–181. [Google Scholar] [CrossRef]
- Wright, H.; Bonomo, R.A.; Paterson, D.L. New agents for the treatment of infections with Gram-negative bacteria: Restoring the miracle or false dawn? Clin. Microbiol. Infect. 2017, 23, 704–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaiskos, I.; Lagou, S.; Pontikis, K.; Rapti, V.; Poulakou, G. The “Old” and the “New” Antibiotics for MDR Gram-Negative Pathogens: For Whom, When, and How. Front. Public Health 2019, 7, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Baño, J.; Gutiérrez-Gutiérrez, B.; Machuca, I.; Pascual, A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin. Microbiol. Rev. 2018, 31, e00079-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, C.M.; Aktaþ, E.; Alfouzan, W.; Bourassa, L.; Brink, A.; Burnham, C.D.; Canton, R.; Carmeli, Y.; Falcone, M.; Kiffer, C.; et al. The ERACE-PA Global Surveillance Program: Ceftolozane/tazobactam and Ceftazidime/avibactam in vitro Activity against a Global Collection of Carbapenem-resistant Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2533–2541. [Google Scholar] [CrossRef]
- Gaibani, P.; Lewis, R.E.; Volpe, S.L.; Giannella, M.; Campoli, C.; Landini, M.P.; Viale, P.; Re, M.C.; Ambretti, S. In vitro interaction of ceftazidime-avibactam in combination with different antimicrobials against KPC-producing Klebsiella pneumoniae clinical isolates. Int. J. Infect. Dis. 2017, 65, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Romanelli, F.; De Robertis, A.; Carone, G.; Dalfino, L.; Stufano, M.; Del Prete, R.; Mosca, A. In Vitro Activity of Ceftazidime/Avibactam Alone and in Combination with Fosfomycin and Carbapenems against KPC-producing Klebsiella Pneumoniae. New Microbiol. 2020, 43, 136–138. [Google Scholar]
- Wagenlehner, F.M.; Umeh, O.; Steenbergen, J.; Yuan, G.; Darouiche, R.O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: A randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 2015, 385, 1949–1956. [Google Scholar] [CrossRef]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef] [Green Version]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Rico Caballero, V.; Almarzoky Abuhussain, S.; Kuti, J.L.; Nicolau, D.P. Efficacy of Human-Simulated Exposures of Ceftolozane-Tazobactam Alone and in Combination with Amikacin or Colistin against Multidrug-Resistant Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model. Antimicrob. Agents Chemother. 2018, 62, e02384-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galani, I.; Papoutsaki, V.; Karantani, I.; Karaiskos, I.; Galani, L.; Adamou, P.; Deliolanis, I.; Kodonaki, A.; Papadogeorgaki, E.; Markopoulou, M.; et al. In vitro activity of ceftolozane/tazobactam alone and in combination with amikacin against MDR/XDR Pseudomonas aeruginosa isolates from Greece. J. Antimicrob. Chemother. 2020, 75, 2164–2172. [Google Scholar] [CrossRef] [PubMed]
- Grohs, P.; Taieb, G.; Morand, P.; Kaibi, I.; Podglajen, I.; Lavollay, M.; Mainardi, J.L.; Compain, F. In Vitro Activity of Ceftolozane-Tazobactam against Multidrug-Resistant Nonfermenting Gram-Negative Bacilli Isolated from Patients with Cystic Fibrosis. Antimicrob. Agents Chemother. 2017, 61, e02688-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuba, G.T.; Rocha-Santos, G.; Cayô, R.; Streling, A.P.; Nodari, C.S.; Gales, A.C.; Pignatari, A.C.C.; Nicolau, D.P.; Kiffer, C.R.V. In vitro synergy of ceftolozane/tazobactam in combination with fosfomycin or aztreonam against MDR Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2020, 75, 1874–1878. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Corrente, A.; Pace, M.C.; Alfieri, A.; Simeon, V.; Ippolito, M.; Giarratano, A.; Cortegiani, A. Ceftolozane-Tazobactam Combination Therapy Compared to Ceftolozane-Tazobactam Monotherapy for the Treatment of Severe Infections: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 79. [Google Scholar] [CrossRef]
- Paul, M.; Soares-Weiser, K.; Grozinsky, S.; Leibovici, L. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropenia. Cochrane Database Syst. Rev. 2003, 3, CD003038. [Google Scholar]
- Paul, M.; Silbiger, I.; Grozinsky, S.; Soares-Weiser, K.; Leibovici, L. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst. Rev. 2006, 1, CD003344. [Google Scholar]
- Heo, Y.A. Imipenem/Cilastatin/Relebactam: A Review in Gram-Negative Bacterial Infections. Drugs 2021, 81, 377–388. [Google Scholar] [CrossRef]
- Hecker, S.J.; Reddy, K.R.; Totrov, M.; Hirst, G.C.; Lomovskaya, O.; Griffith, D.C.; King, P.; Tsivkovski, R.; Sun, D.; Sabet, M.; et al. Discovery of a Cyclic Boronic Acid β-Lactamase Inhibitor (RPX7009) with Utility vs. Class A Serine Carbapenemases. J. Med. Chem. 2015, 58, 3682–3692. [Google Scholar] [CrossRef]
- Bulik, C.C.; Nicolau, D.P. Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2011, 55, 3002–3004. [Google Scholar] [CrossRef] [Green Version]
- Oliva, A.; Scorzolini, L.; Cipolla, A.; Mascellino, M.T.; Cancelli, F.; Castaldi, D.; D’Abramo, A.; D’Agostino, C.; Russo, G.; Ciardi, M.R.; et al. In vitro evaluation of different antimicrobial combinations against carbapenemase-producing Klebsiella pneumoniae: The activity of the double-carbapenem regimen is related to meropenem MIC value. J. Antimicrob. Chemother. 2017, 72, 1981–1984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giamarellou, H.; Galani, L.; Baziaka, F.; Karaiskos, I. Effectiveness of a double-carbapenem regimen for infections in humans due to carbapenemase-producing pandrug-resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2013, 57, 2388–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashni, O.; Nazer, L.; Le, J. Critical Review of Double-Carbapenem Therapy for the Treatment of Carbapenemase-Producing Klebsiella pneumoniae. Ann. Pharmacother. 2019, 53, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Wang, J.; Wang, R.; Cai, Y. Double-carbapenem therapy in the treatment of multidrug resistant Gram-negative bacterial infections: A systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 408. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Kasiakou, S.K.; Saravolatz, L.D. Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, M.; Bishara, J.; Levcovich, A.; Chowers, M.; Goldberg, E.; Singer, P.; Lev, S.; Leon, P.; Raskin, M.; Yahav, D.; et al. Effectiveness and safety of colistin: Prospective comparative cohort study. J. Antimicrob. Chemother. 2010, 65, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, J.D.; Neff, R.; Ake, J.; Howard, R.; Olson, S.; Paolino, K.; Vishnepolsky, M.; Weintrob, A.; Wortmann, G. Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin. Infect. Dis. 2009, 48, 1724–1728. [Google Scholar] [CrossRef]
- Tan, C.H.; Li, J.; Nation, R.L. Activity of colistinagainst heteroresistant Acinetobacter baumannii and emergence of resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob. Agents Chemother. 2007, 51, 3413–3415. [Google Scholar]
- Nation, R.L.; Velkov, T.; Li, J. Colistin and polymyxin B: Peas in a pod, or chalk and cheese? Clin. Infect. Dis. 2014, 59, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Brink, A.J.; Richards, G.A.; Colombo, G.; Bortolotti, F.; Colombo, P.; Jehl, F. Multicomponent antibiotic substances produced by fermentation: Implications for regulatory authorities, critically ill patients and generics. Int. J. Antimicrob. Agents 2014, 43, 1–6. [Google Scholar] [CrossRef]
- Nation, R.L.; Li, J.; Cars, O.; Couet, W.; Dudley, M.N.; Kaye, K.S.; Mouton, J.W.; Paterson, D.L.; Tam, V.H.; Theuretzbacher, U.; et al. Framework for optimisation of the clinical use of colistin and polymyxin B: The Prato polymyxin consensus. Lancet Infect. Dis. 2015, 15, 225–234. [Google Scholar] [CrossRef]
- Li, J.; Milne, R.W.; Nation, R.L.; Turnidge, J.D.; Smeaton, T.C.; Coulthard, K. Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob. Agents Chemother. 2003, 47, 1766–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.F.; Karaiskos, I.; Plachouras, D.; Karvanen, M.; Pontikis, K.; Jansson, B.; Papadomichelakis, E.; Antoniadou, A.; Giamarellou, H.; Armaganidis, A.; et al. Application of a loading dose of colistin methanesulfonate in critically ill patients: Population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob. Agents Chemother. 2012, 56, 4241–4249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumbarello, M.; Trecarichi, E.M.; De Rosa, F.G.; Giannella, M.; Giacobbe, D.R.; Bassetti, M.; Losito, A.R.; Bartoletti, M.; Del Bono, V.; Corcione, S.; et al. Infections caused by KPC-producing Klebsiella pneumoniae: Differences in therapy and mortality in a multicentre study. J. Antimicrob. Chemother. 2015, 70, 2133–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ku, Y.H.; Chen, C.C.; Lee, M.F.; Chuang, Y.C.; Tang, H.J.; Yu, W.L. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. J. Microbiol. Immunol. Infect. 2017, 50, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Leelasupasri, S.; Santimaleeworagun, W.; Jitwasinkul, T. Antimicrobial Susceptibility among Colistin, Sulbactam, and Fosfomycin and a Synergism Study of Colistin in Combination with Sulbactam or Fosfomycin against Clinical Isolates of Carbapenem-Resistant Acinetobacter baumannii. J. Pathog. 2018, 2018, 3893492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, P.J.; Labthavikul, P.; Jones, C.H.; Bradford, P.A. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. J. Antimicrob. Chemother. 2006, 57, 573–576. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Mateos, I.; González, V.; Aznar, J. In vitro activities of tigecycline, minocycline, and colistin-tigecycline combination against multi- and pandrug-resistant clinical isolates of Acinetobacter baumannii group. Antimicrob. Agents Chemother. 2009, 53, 1295–1296. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Ubagai, T.; Tansho-Nagakawa, S.; Yoshino, Y.; Ono, Y. Effects of colistin and tigecycline on multidrug-resistant Acinetobacter baumannii biofilms: Advantages and disadvantages of their combination. Sci. Rep. 2021, 11, 11700. [Google Scholar] [CrossRef]
Study | Year Published (Research Duration from Databases) | Database | Study Design Included in Meta-Analysis | Antibiotic Regimens (Monotherapy vs. Combination Therapy) | Type of Infection | Pathogens | Main Outcomes (Monotherapy vs. Combination Therapy) |
---|---|---|---|---|---|---|---|
Sfeir et al. [10] | 2018 (up to 15 June 2017) | MEDLINE EMBASE Cochrane Library | pro or retrospective observational, cohort, and active surveillance | BL-BLI including piperacillin-tazobactam vs. carbapenem | BSI | ESBL-producing Enterobacterales | Mortality BL-BLI vs. carbapenem as definitive, OR 0.96, 95% CI 0.59–1.86, as empirical, OR 1.13, 95% CI 0.87–1.48 TAZ/PIPC vs. carbapenem as definitive, OR 0.97, 95% CI 0.59–1.6, as empirical, OR 1.27, 95% CI 0.96–1.66 |
Zhang et al. [11] | 2021 (up to December 2020) | Cochrane Library PubMed EMBASE | RCT cohort | BL-BLI vs. carbapenem | cUTI APN | ESBL-producing Enterobacterales | mortality, RR = 0.63, 95% CI 0.30–1.32 clinical success, RR = 0.99, 95% CI 0.96–1.03 microbiological success, RR = 1.06, 95% CI 1.01–1.11 |
Sternbach et al. [12] | 2018 (up to December 2017) | PubMed CENTRAL LILACS | RCT | CZA vs. comparator (mainly carbapenem) | cUTI cIAI NP | mostly Enterobacterales (~25% ESBL- carrying) | 30-day mortality, RR 1.10, 95% CI 0.70–1.72 serious adverse events, RR 1.24, 95% CI 1.00–1.54 |
Che et al. [13] | 2019 (up to December 2018) | Medline Embase Cochrane Library | RCT | CZA vs. carbapenem | cUTI APN | mostly Enterobacterales | clinical success, RD 0.00, 95% CI 0.06–0.06 microbiological success, RD 0.07, 95% CI 0.04–0.18 serious adverse events, RD 0.02, 95% CI 0.00–0.04 |
Isler et al. [25] | 2020 (The dates of coverage were 27 January 2020 to 10 February 2020) | PubMed, CENTRAL, CINAHL, Scopus OvidMedline OvidEmbase Web of Science | RCT | CZA vs. carbapenem | cUTI cIAI HAP/VAP | ESBL and AmpC-producing Enterobacterales | clinical response for ESBL producers, RR 1.02, 95% CI, 0.97–1.08 for AmpC producers, RR, 0.91, 95% CI 0.76–1.10 |
Onorato et al. [15] | 2019 (up to February 2019) | Medline Google Scholar Cochrane Library | cohort case-control case series | CZA vs. CZA plus other antibiotics | any | Carbapenem resistant Enterobacterales P. aeruginosa | mortality rate, RR 1.18, 95% CI 0.88–1.58 rate of microbiological cure, RR 1.04, 95% CI 0.85–1.28 |
Fiore et al. [16] | 2020 (up to 2 February 2020) | Medline EMBASE CENTRAL | RCT cohort | CZA vs. CZA plus other antibiotics | any (mostly BSI) | Carbapenem resistant (mainly KPC producing) Enterobacterales | mortality rate, OR 0.96, 95% CI 0.65–1.41 |
Li et al. [17] | 2021 (up to 31 March 2021) | PubMed EMBASE Web of Science CNKI Wanfang Data databases | cohort case series cross sectional | CZA vs. CZA plus other antibiotics | any | Any (carbapenem resistant) | overall mortality rates, OR 1.03, 95% CI 0.79–1.34 clinical success, OR 0.95, 95% CI 0.64–1.39 microbiologically negative, OR 0.99, 95% CI 0.54–1.81 posttreatment resistance of CZA, OR 0.65, 95% CI 0.34–1.26 |
Fiore et al. [18] | 2021 (up to November 2020) | Medline EMBASE CENTRAL | retrospective cohort case-control | C/T vs. C/T plus other antibiotics | any | P. aeruginosa ESBL producing Enterobacterales | all-cause mortality, RR 0.31, 95% CI 0.10–0.97 clinical improvement, RR 0.97, 95%CI 0.54–1.74 microbiological cure, RR 0.83, 95%CI 0.12–5.70 |
Paul et al. [19] | 2003 (up to March 2002) | Medline Embase Lilacs Cochrane Library | RCT | B-lactam vs. β-lactam-aminoglycoside combination | fever and neu-tropenia | any | all cause fatality, RR 0.85, 95% CI 0.72–1.02 treatment failure, RR 0.92, 95%CI 0.85–0.89 any adverse event, RR 0.85, 95%CI 0.73–1.00 |
Paul et al. [20] | 2004 (up to March 2003) | Medline Embase Lilacs Cochrane Library | RCT | B-lactam vs. β-lactam-aminoglycoside combination | severe infections | any | all cause fatality, RR 0.90, 95% CI 0.77–1.06 clinical failure, RR 0.87, 95%CI 0.78–0.97 nephrotoxicity, RR 0.36, 95%CI 0.28–0.47 |
Zusman et al. [21] | 2017 (up to 10 April 2016) | PubMed Cochrane Library | RCT retrospective observational | polymyxin monotherapy vs. polymyxin-based combination therapy | any | carbapenem-resistant or carbapenemase-producing Gram-negative bacteria | mortality, uOR 1.58, 95% CI 1.03–2.42 mortality compared with combination with TGC, AG and FOM, uOR 1.57, 95% CI 1.06–2.32 mortality for K. pneumoniae bacteremia, uOR 2.09, 95% CI 1.21–3.6 |
Samal et al. [22] | 2021 (up to 31 December 2018) | PubMed Cochrane Library | RCT pro or retrospective observational | polymyxin monotherapy vs. polymyxin-based combination therapy | any | polymyxin-susceptible, carbapenem-resistant or carbapenemase-producing Gram-negative bacteria | mortality, RR 0.81, 95% CI 0.65–1.01 polymyxin-carbapenem combination in mortality, RR 0.64, 95% CI 0.40–1.03 |
Cheng IL et al. [23] | 2018 (up to July 2018) | PubMed Embase Cochrane databases | RCT | colistin monotherapy vs. colistin-based combination therapy | any (mostly VAP) | carbapenem- resistant Gram- negative bacteria (mostly A. baumanii) | all-cause mortality, RR 1.03, 95% CI 0.89–1.20 infection-related mortality, RR 1.23, 95% CI 0.91–1.67 microbiologic response, RR 0.86, 95% CI 0.72–1.04 |
Vardakas KZ et al. [9] | 2018 (up to November 2016) | PubMed Scopus | RCT | colistin monotherapy vs. colistin-based combination therapy | any (mostly VAP or BSI) | MDR or XDR Gram-negative bacteria (mainly K. pneumoniae or A. baumanii) | mortality, RR 0.91, 95% CI 0.81–1.02 mortality (in favor of combination with high-dose colistin), RR 0.80, 95% CI 0.69–0.93 |
Liu J. et al. [24] | 2021 (up to March 2020) | PubMed Embase Cochrane Web of Science | RCT pro or retrospective observational | colistin monotherapy vs. colistin-based combination therapy | any (mostly VAP or BSI) | MDR or XDR A. baumanii | clinical improvement: RFP, RR 1.28, 95% CI 0.67–2.45; FOM, RR 1.08, 95% CI 0.76–1.53; sulbactam, RR 1.02, 95% CI 0.86–1.22 clinical cure: carbapenem, RR 1.34, 95% CI 0.92–1.95; sulbactam, RR 1.28, 95% CI 0.90–1.83 rate of microbiological eradication (in favor of combination with RFP or FOM), RFP, RR 1.31, 95% CI 1.01–1.69; FOM, RR 1.23, 95% CI 1.01–1.53 |
Study | No. of Studies Analyzed | Patients | Results with Significance | ||
---|---|---|---|---|---|
Infections | Pathogens | Antibiotics | |||
Sfeir et al. [10] | 25 (cohort or case-control) | BSI | ESBL-producing Enterobacterales | BL-BLI including PIPC/TAZ vs. carbapenem | None |
Zhang et al. [11] | 10 (3 RCTs and 7 cohort) | cUTI APN | ESBL-producing Enterobacterales | BL-BLI vs. carbapenem | None |
Study | No. of Studies Analyzed | Patients | Results with Significance | ||
---|---|---|---|---|---|
Infections | Pathogens | Antibiotics | |||
Sternbach et al. [12] | 7 RCTs | cUTI cIAI NP | mostly Enterobacterales (~25% ESBL-carrying) | CZA vs. comparator (mainly carbapenem) | Significantly higher rate treated with CZA (RR 1.24, 95% CI 1.00–1.54) |
Che et al. [13] | 3 RCTs | cUTI APN | mostly Enterobacterales | CZA vs. carbapenem | SAEs with CZA were numerically higher (RD = 0.02, 95% CI 0.00 to 0.04; p = 0.06). |
Isler et al. [14] | 5 RCTs | cUTI cIAI HAP/VAP | ESBL and AmpC- producing Enterobacterales | CZA vs. carbapenem | CZA showed a better microbiologic response for ceftazidime non-susceptible Enterobacterales (RR 1.21, 95% CI 1.07–1.37) |
Study | No. of Studies Analyzed | Patients | Results with Significance | ||
---|---|---|---|---|---|
Infections | Pathogens | Antibiotics | |||
Onorato et al. [15] | 11 (cohort, case-control, case series) | any | CRE P. aeruginosa | CZA vs. CZA plus other antibiotics | None |
Fiore et al. [16] | 13 (7 RCTs, 6 cohorts) | any (mostly BSI) | CRE (mainly KPC producing) | CZA vs. CZA plus other antibiotics | None |
Li et al. [17] | 17 (11 cohort, 1 case series, 2 case-control, 3 cross sectional) | any | any (carbapenem resistant) | CZA vs. CZA plus other antibiotics | A trend of post-treatment resistance occurred more likely in CZA monotherapy (according to the pooled three studies, OR 0.18, 95% CI 0.04–0.78). |
Study | No. of Studies Analyzed | Patients | Results with Significance | ||
---|---|---|---|---|---|
Infections | Pathogens | Antibiotics | |||
Paul et al. [19] | 47 RCTs | fever and neutropenia | any | β-lactam vs. β-lactam-AG combination | Higher treatment success rate using combination therapy for the treatment of severe neutropenia (<100/mm3; RR 1.49, 95% CI 1.13–1.97) in both adults > 16 years old (RR 1.21, 95% CI 1.07–1.37) and children (RR 2.74, 95% CI 1.08–6.98). |
Paul et al. [20] | 64 RCTs | severe infections | any | β-lactam vs. β-lactam-AG combination | Clinical failure was more common with combination treatment overall (RR 0.87, 95% CI 0.78–0.97) Nephrotoxicity was significantly more common with combination therapy (RR 0.36, 95% CI 0.28–0.47). |
Study | No. of Studies Analyzed | Patients | Results with Significance | ||
---|---|---|---|---|---|
Infections | Pathogens | Antibiotics | |||
Zusman et al. [21] | 22 (RCT, retrospective observational) | any | CR or CP- GNB | polymyxin monotherapy vs. polymyxin-based combination therapy | Mortality rates were significantly higher with polymyxin monotherapy (OR 1.58, 95% CI 1.03–2.42) |
Samal et al. [22] | 39 (6 RCTs, 11 prospective and 22 retrospective observational) | any | polymyxin-susceptible, CR or CP GNB | polymyxin monotherapy vs. polymyxin-based combination therapy | Mortality rates were significantly lower with combination (OR 0.81, 95% CI 0.65–1.01) |
Study | No. of Studies Analyzed | Patients | Results with Significance | ||
---|---|---|---|---|---|
Infections | Pathogens | Antibiotics | |||
Cheng IL et al. [23] | 5 RCTs | any (mostly VAP) | CR-GNB (mostly A. baumanii) | colistin vs. colistin-based combination | None |
Vardakas KZ et al. [9] | 32 (3 RCTs, 6 prospective, 22 retrospective and one in both observational) | any (mostly VAP or BSI) | MDR or XDR-GNB (mainly K. pneumoniae or A. baumanii) | colistin vs. colistin-based combination | High-dose treatments (>6 million international units; RR 0.80, 95% CI 0.69–0.93), com-bination therapy was found to be significantly more effective in patients with bacteremia (RR 0.75, 95% CI 0.57–0.98) |
Liu J et al. [24] | 18 (7 RCTs, 11 retrospective) | any (mostly VAP or BSI) | MDR or XDR A. baumanii | colistin vs. colistin-based combination | Combination of RFP and FOM was associated with a significantly higher rate of microbiological eradication (RFP, RR 1.31, 95% CI 1.01–1.69; FOM, RR 1.23, 95% CI 1.01–1.53) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umemura, T.; Kato, H.; Hagihara, M.; Hirai, J.; Yamagishi, Y.; Mikamo, H. Efficacy of Combination Therapies for the Treatment of Multi-Drug Resistant Gram-Negative Bacterial Infections Based on Meta-Analyses. Antibiotics 2022, 11, 524. https://doi.org/10.3390/antibiotics11040524
Umemura T, Kato H, Hagihara M, Hirai J, Yamagishi Y, Mikamo H. Efficacy of Combination Therapies for the Treatment of Multi-Drug Resistant Gram-Negative Bacterial Infections Based on Meta-Analyses. Antibiotics. 2022; 11(4):524. https://doi.org/10.3390/antibiotics11040524
Chicago/Turabian StyleUmemura, Takumi, Hideo Kato, Mao Hagihara, Jun Hirai, Yuka Yamagishi, and Hiroshige Mikamo. 2022. "Efficacy of Combination Therapies for the Treatment of Multi-Drug Resistant Gram-Negative Bacterial Infections Based on Meta-Analyses" Antibiotics 11, no. 4: 524. https://doi.org/10.3390/antibiotics11040524
APA StyleUmemura, T., Kato, H., Hagihara, M., Hirai, J., Yamagishi, Y., & Mikamo, H. (2022). Efficacy of Combination Therapies for the Treatment of Multi-Drug Resistant Gram-Negative Bacterial Infections Based on Meta-Analyses. Antibiotics, 11(4), 524. https://doi.org/10.3390/antibiotics11040524