Increased Association of Pulmonary Thromboembolism and Tuberculosis during COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2019. Available online: https://apps.who.int/iris/handle/10665/329368 (accessed on 30 January 2022).
- European Centre for Disease Prevention and Control. Annual Epidemiological Report for 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER-TB-2019.pdf (accessed on 28 January 2022).
- Kim, H.Y.; Song, K.S.; Goo, J.M.; Lee, J.S.; Lee, K.S.; Lim, T.H. Thoracic sequelae and complications of tuberculosis. Radiographics 2001, 21, 839–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essien, E.O.; Rali, P.; Mathai, S.C. Pulmonary Embolism. Med. Clin. N. Am. 2019, 103, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Heit, J.A. Epidemiology of venous thromboembolism. Nat. Rev. Cardiol. 2015, 12, 464–474. [Google Scholar] [CrossRef]
- Grimnes, G.; Isaksen, T.; Tichelaar, Y.V.; Brækkan, S.K.; Hansen, J.B. Acute infection as a trigger for incident venous thromboembolism: Results from a population-based case-crossover study. Res. Pract. Thromb. Haemost. 2017, 2, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceccarelli, M.; Venanzi Rullo, E.; Nunnari, G. Risk factors of venous thrombo-embolism during cytomegalovirus infection in immunocompetent individuals. A systematic review. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 381–390. [Google Scholar] [CrossRef]
- Ribeiro, D.D.; Lijfering, W.M.; Van Hylckama Vlieg, A.; Rosendaal, F.R.; Cannegieter, S.C. Pneumonia and risk of venous thrombosis: Results from the MEGA study. J. Thromb. Haemost. 2012, 10, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Cohoon, K.P.; Ashrani, A.A.; Crusan, D.J.; Petterson, T.M.; Bailey, K.R.; Heit, J.A. Is Infection an Independent Risk Factor for Venous Thromboembolism? A Population-Based, Case-Control Study. Am. J. Med. 2018, 131, 307–316. [Google Scholar] [CrossRef]
- Epaulard, O.; Foote, A.; Bosson, J.L. Chronic Infection and Venous Thromboembolic Disease. Semin. Thromb. Hemost. 2015, 41, 644–649. [Google Scholar] [CrossRef] [Green Version]
- Dentan, C.; Epaulard, O.; Seynaeve, D.; Genty, C.; Bosson, J.L. Active tuberculosis and venous thromboembolism: Association according to international classification of diseases, ninth revision hospital discharge diagnosis codes. Clin. Infect. Dis. 2014, 58, 495–501. [Google Scholar] [CrossRef]
- Borjas-Howard, J.F.; Bierman, W.F.W.; Meijer, K.; Van der Werf, T.S.; Tichelaar, Y.I.G.V. Venous thrombotic events in patients admitted to a tuberculosis centre. QJM 2017, 110, 215–218. [Google Scholar] [CrossRef]
- Kager, L.M.; Blok, D.C.; Lede, I.O.; Rahman, W.; Afroz, R.; Bresser, P.; van der Zee, J.S.; Ghose, A.; Visser, C.E.; de Jong, M.D.; et al. Pulmonary tuberculosis induces a systemic hypercoagulable state. J. Infect. 2015, 70, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.; Kim, K.H.; Park, J.H.; Lee, J.K.; Heo, E.Y.; Kim, J.S.; Kim, D.K.; Choi, I.S.; Chung, H.S.; Lim, H.J. Thromboembolism in Mycobacterium tuberculosis Infection: Analysis and Literature Review. Infect. Chemother. 2019, 51, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Danwang, C.; Bigna, J.J.; Awana, A.P.; Nzalie, R.N.T.; Robert, A. Global epidemiology of venous thromboembolism in people with active tuberculosis: A systematic review and meta-analysis. J. Thromb. Thrombolysis 2021, 51, 502–512. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef]
- WHO. WHO Consolidated Guidelines on Tuberculosis: Module 4: Treatment-Drug-Resistant Tuberculosis Treatment [Internet]; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Moretti, A.M.; Tafuri, S.; Parisi, D.; Germinario, C. Epidemiology of pulmonary embolism in Apulia from analysis of current data. Monaldi Arch. Chest Dis. 2010, 73, 18–24. [Google Scholar] [CrossRef]
- Pomero, F.; Fenoglio, L.; Melchio, R.; Serraino, C.; Ageno, W.; Dentali, F. Incidence and diagnosis of pulmonary embolism in Northern Italy: A population-based study. Eur. J. Intern. Med. 2013, 24, e77–e78. [Google Scholar] [CrossRef]
- Folsom, A.R.; Basu, S.; Hong, C.P.; Heckbert, S.R.; Lutsey, P.L.; Rosamond, W.D.; Cushman, M. Reasons for Differences in the Incidence of Venous Thromboembolism in Black Versus White Americans. Am. J. Med. 2019, 132, 970–976. [Google Scholar] [CrossRef]
- Andersson, T.; Söderberg, S. Incidence of acute pulmonary embolism, related comorbidities and survival; analysis of a Swedish national cohort. BMC Cardiovasc. Disord. 2017, 17, 155. [Google Scholar] [CrossRef]
- Uflacker, R. Atlas of Vascular Anatomy: An Angiographic Approach, 1st ed.; Lippencott Williams & Wilkins: Baltimore, MD, USA, 1997. [Google Scholar]
- Newnham, M.; Turner, A.M. Diagnosis and treatment of subsegmental pulmonary embolism. World J. Respirol. 2019, 9, 30–34. [Google Scholar] [CrossRef]
- Bajc, M.; Schümichen, C.; Grüning, T.; Lindqvist, A.; Le Roux, P.Y.; Alatri, A.; Bauer, R.W.; Dilic, M.; Neilly, B.; Verberne, H.J.; et al. EANM guideline for ventilation/perfusion single-photon emission computed tomography (SPECT) for diagnosis of pulmonary embolism and beyond. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2429–2451. [Google Scholar] [CrossRef] [Green Version]
- Kirwan, D.E.; Chong, D.L.W.; Friedland, J.S. Platelet Activation and the Immune Response to Tuberculosis. Front. Immunol. 2021, 12, 631696. [Google Scholar] [CrossRef] [PubMed]
- Turken, O.; Kunter, E.; Sezer, M.; Solmazgul, E.; Cerrahoglu, K.; Bozkanat, E.; Ozturk, A.; Ilvan, A. Hemostatic changes in active pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 2002, 6, 927–932. [Google Scholar] [PubMed]
- Gauldie, J.; Northemann, W.; Fey, G.H. IL-6 functions as an exocrine hormone in inflammation. Hepatocytes undergoing acute phase responses require exogenous IL-6. J. Immunol. 1990, 144, 3804–3808. [Google Scholar] [PubMed]
- Van Gent, J.M.; Zander, A.L.; Olson, E.J.; Shackford, S.R.; Dunne, C.E.; Sise, C.B.; Badiee, J.; Schechter, M.S.; Sise, M.J. Pulmonary embolism without deep venous thrombosis: De novo or missed deep venous thrombosis? J. Trauma Acute Care Surg. 2014, 76, 1270–1274. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, D.; Aujesky, D.; Dıaz, G.; Monreal, M.; Otero, R.; Marti, D.; Marin, E.; Aracil, E.; Sueiro, A.; Yusen, R.D. Prognostic significance of deep vein thrombosis in patients presenting with acute symptomatic pulmonary embolism. Am. J. Respir. Crit. Care Med. 2010, 181, 983991. [Google Scholar] [CrossRef]
- Huang, L.; Yin, C.; Gu, X.; Tang, X.; Zhang, X.; Hu, C.; Chen, W. Severe pulmonary tuberculosis complicated with insidious pulmonary thromboembolism: A case report and literature review. J. Thromb. Thrombolysis 2020, 49, 644–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robson, S.C.; White, N.W.; Aronson, I.; Woollgar, R.; Goodman, H.; Jacobs, P. Acute-phase response and the hypercoagulable state in pulmonary tuberculosis. Br. J. Haematol. 1996, 93, 943–949. [Google Scholar] [CrossRef]
- White, N.W. Venous thrombosis and rifampicin. Lancet 1989, 2, 434–435. [Google Scholar] [CrossRef]
- Saluja, M.; Swami, Y.K.; Chittora, S.; Vimlani, H. Rifampicin containg ATT regimens as emerging cause of thromboembolic complications. J. Evid. Based Med. Healthc. 2018, 5, 3164–3167. [Google Scholar] [CrossRef]
- Di Gennaro, F.; Gualano, G.; Timelli, L.; Vittozzi, P.; Di Bari, V.; Libertone, R.; Cerva, C.; Pinnarelli, L.; Nisii, C.; Ianniello, S.; et al. Increase in Tuberculosis Diagnostic Delay during First Wave of the COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics 2021, 10, 272. [Google Scholar] [CrossRef]
- West, J.; Goodacre, S.; Sampson, F. The value of clinical features in the diagnosis of acute pulmonary embolism: Systematic review and meta-analysis. QJM 2007, 100, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cart, L.; Serzian, G.; Humbert, S.; Falvo, N.; Morel-Aleton, M.; Bonnet, B.; Napporn, G.; Kalbacher, E.; Obert, L.; Cappelier, G.; et al. Clinical patterns and significance of non-compliance with guideline-recommended treatment of acute pulmonary embolism. Arch. Cardiovasc. Dis. 2020, 113, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lax, S.F.; Skok, K.; Zechner, P.; Kessler, H.H.; Kaufmann, N.; Koelblinger, C.; Vander, K.; Bargfrieder, U.; Trauner, M. Pulmonary arterial thrombosis in COVID-19 with fatal outcome: Results from a prospective, singlecenter, clinicopathologic case series. Ann. Intern. Med. 2020, 173, 350–361. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Cushman, M.; Burnett, A.E.; Kahn, S.R.; Beyer-Westendorf, J.; Spencer, F.A.; Rezende, S.M.; Zakai, N.A.; Bauer, K.A.; Dentali, F.; et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018, 2, 3198–3225. [Google Scholar] [CrossRef]
- Decousus, H.; Tapson, V.F.; Bergmann, J.F.; Chong, B.H.; Froehlich, J.B.; Kakkar, A.K.; Merli, G.J.; Monreal, M.; Nakamura, M.; Pavanello, R.; et al. Factors at admission associated with bleeding risk in medical patients: Findings from the IMPROVE investigators. Chest 2011, 139, 69–79. [Google Scholar] [CrossRef]
- Maunank, S.; Reed, C. Complications of tuberculosis. Curr. Opin. Infect. Dis. 2014, 27, 403–410. [Google Scholar]
- Sood, P.; Paul, G.; Puri, S. Interpretation of arterial blood gas. Indian J. Crit. Care Med. 2010, 14, 57–64. [Google Scholar]
- World Health Organitation (WHO). Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care; WHO: Geneva, Switzerland, 2017; Available online: https://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf (accessed on 1 February 2021).
2016–2019 (tot 8) | 2020–2021 (tot 21) | p-Value | ||
---|---|---|---|---|
N (%) | N (%) | |||
Gender | Male | 6 (75) | 13 (61.9) | 0.507 |
Female | 2 (25) | 8 (38.1) | ||
Nationality | Italian | 4 (50) | 7 (33.3) | 0.811 |
African | 2 (25) | 7 (33.3) | ||
East European | 2 (25) | 6 (28.6) | ||
Asian | 0 (0) | 1 (4.8) | ||
BMI (kg/m2) | Low (16–18.49) | 3 (37.5) | 11 (52.4) | 0.574 |
Normal (18.5–24.99) | 5 (62.5) | 9 (42.8) | ||
High (25–29.99) | 0 (0) | 1 (4.8) | ||
Smoking | Yes | 2 (25) | 7 (33.3) | 0.665 |
Comorbidities | Cardio- and cerebrovascular diseases | 3 (37.5) | 4 (19.0) | 0.299 |
Chronic alcoholism | 1 (12.5) | 4 (19.0) | 0.677 | |
Metabolic disorders | 2 (25) | 5 (23.8) | 0.947 | |
Malignancy | 1 (12.5) | 3 (14.3) | 0.901 | |
Liver disease | 1 (12.5) | 2 (9.5) | 0.814 | |
Mental disorders | 1 (12.5) | 1 (4.8) | 0.462 | |
Other respiratory diseases | 1 (12.5) | 3 (14.3) | 0.901 | |
HIV infection | 1 (12.5) | 0 (0) | 0.099 | |
Anemia | 0 (0) | 5 (23.8) | 0.129 | |
Kidney failure | 0 (0) | 1 (4.8) | 0.53 | |
Concurrent extrapulmonary TB | Yes | 3 (37.5) | 8 (38.1) | 0.976 |
Symptoms | Fever | 1 (12.5) | 7 (33.3) | 0.262 |
Cough | 2 (25) | 9 (42.8) | 0.376 | |
Dyspnea | 2 (25) | 7 (33.3) | 0.665 | |
Weight loss | 0 (0) | 8 (38.1) | <0.05 | |
Hemoptysis | 1 (12.5) | 1 (4.8) | 0.462 | |
Lipothymia | 0 (0) | 2 (9.5) | 0.366 | |
Asthenia | 0 (0) | 6 (28.6) | 0.09 | |
Vomiting | 0 (0) | 2 (9.5) | 0.366 | |
Night sweats | 0 (0) | 2 (9.5) | 0.366 | |
Chest pain | 1 (12.5) | 2 (9.5) | 0.814 | |
Microbiological findings | Sputum smear positive | 5 (62.5) | 16 (76.2) | 0.516 |
Sputum smear negative/molecular positive test | 1 (12.5) | 2 (9.5) | ||
BAL smear positive | 1 (12.5) | 0 (0) | ||
BAL smear negative/molecular positive test | 1 (12.5) | 2 (9.5) | ||
Sputum smear-BAL molecular negative/culture positive | 0 (0) | 1 (4.8) | ||
Acute respiratory failure | Yes | 1 (12.5) | 12 (57.1) | <0.05 |
Extensive TB disease | Yes | 2 (25) | 17 (80.9) | <0.05 |
PTE predisposing factors | Previous VTE/PTE | 2 (25) | 1 (4.8) | 0.11 |
Autoimmune diseases | 1 (12.5) | 2 (9.5) | 0.901 | |
Chemotherapy | 0 (0) | 2 (9.5) | 0.366 | |
Congestive heart failure | 2 (25) | 2 (9.5) | 0.28 | |
Other infections | 2 (25) | 5 (14.3) | 0.947 | |
Malignancy | 1 (12.5) | 3(14.3) | 0.901 | |
Paralytic stroke | 1 (12.5) | 1 (4.8) | 0.462 | |
Bed rest > 3 days | 1 (12.5) | 0 (0) | 0.099 | |
Diabetes mellitus | 1 (12.5) | 1 (4.8) | 0.462 | |
Arterial hypertension | 2 (25) | 2 (9.5) | 0.28 | |
D-dimer values | Elevated | 6 (75) | 20 (95.2) | 0.11 |
Normal | 2 (25) | 1 (4.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bari, V.; Gualano, G.; Musso, M.; Libertone, R.; Nisii, C.; Ianniello, S.; Mosti, S.; Mastrobattista, A.; Cerva, C.; Bevilacqua, N.; et al. Increased Association of Pulmonary Thromboembolism and Tuberculosis during COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics 2022, 11, 398. https://doi.org/10.3390/antibiotics11030398
Di Bari V, Gualano G, Musso M, Libertone R, Nisii C, Ianniello S, Mosti S, Mastrobattista A, Cerva C, Bevilacqua N, et al. Increased Association of Pulmonary Thromboembolism and Tuberculosis during COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics. 2022; 11(3):398. https://doi.org/10.3390/antibiotics11030398
Chicago/Turabian StyleDi Bari, Virginia, Gina Gualano, Maria Musso, Raffaella Libertone, Carla Nisii, Stefania Ianniello, Silvia Mosti, Annelisa Mastrobattista, Carlotta Cerva, Nazario Bevilacqua, and et al. 2022. "Increased Association of Pulmonary Thromboembolism and Tuberculosis during COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital" Antibiotics 11, no. 3: 398. https://doi.org/10.3390/antibiotics11030398
APA StyleDi Bari, V., Gualano, G., Musso, M., Libertone, R., Nisii, C., Ianniello, S., Mosti, S., Mastrobattista, A., Cerva, C., Bevilacqua, N., Iacomi, F., Mondi, A., Topino, S., Goletti, D., Girardi, E., Palmieri, F., & on behalf of the TB-INMI Working Group. (2022). Increased Association of Pulmonary Thromboembolism and Tuberculosis during COVID-19 Pandemic: Data from an Italian Infectious Disease Referral Hospital. Antibiotics, 11(3), 398. https://doi.org/10.3390/antibiotics11030398