A One Health Approach Molecular Analysis of Staphylococcus aureus Reveals Distinct Lineages in Isolates from Miranda Donkeys (Equus asinus) and Their Handlers
Abstract
:1. Introduction
2. Results
2.1. Characterization of S. aureus Isolates
2.2. Characterization of CoNS Isolates
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Bacterial Isolates
4.2. Phenotypic Antimicrobial Resistance and Susceptibility
4.3. Detection of Antimicrobial and Virulence Genes
4.4. Molecular Typing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Igrejas, G.; Correia, S.; Silva, V.; Hébraud, M.; Caniça, M.; Torres, C.; Gomes, C.; Nogueira, F.; Poeta, P. Planning a One Health Case Study to Evaluate Methicillin Resistant Staphylococcus aureus and Its Economic Burden in Portugal. Front. Microbiol. 2018, 9, 2964. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, P.; Papadopoulos, T.; Angelidis, A.S.; Boukouvala, E.; Zdragas, A.; Papa, A.; Hadjichristodoulou, C.; Sergelidis, D. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. 2018, 69, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Coates, R.; Moran, J.; Horsburgh, M.J. Staphylococci: Colonizers and pathogens of human skin. Future Microbiol. 2014, 9, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Capelo, J.L.; Igrejas, G.; Poeta, P. Molecular Epidemiology of Staphylococcus aureus Lineages in Wild Animals in Europe: A Review. Antibiotics 2020, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Ballhausen, B.; Köck, R.; Kriegeskorte, A. Methicillin resistance in Staphylococcus isolates: The “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int. J. Med. Microbiol. 2014, 304, 794–804. [Google Scholar] [CrossRef]
- Hamza, D.A.; Abd-Elsalam, R.M.; Nader, S.M.; Elhariri, M.; Elhelw, R.; El-Mahallawy, H.S. Pathways of methicillin-resistant Staphylococcus aureus in animal model: New insights regarding public health. Infect. Drug Resist. 2020, 13, 1593. [Google Scholar] [CrossRef]
- Hanssen, A.-M.; Ericson Sollid, J.U. SCC mec in staphylococci: Genes on the move. FEMS Immunol. Med. Microbiol. 2006, 46, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Grøntvedt, C.A.; Elstrøm, P.; Stegger, M.; Skov, R.L.; Andersen, P.S.; Larssen, K.W.; Urdahl, A.M.; Angen, Ø.; Larsen, J.; Åmdal, S.; et al. Methicillin-Resistant Staphylococcus aureus CC398 in Humans and Pigs in Norway: A “One Health” Perspective on Introduction and Transmission. Clin. Infect. Dis. 2016, 63, 1431–1438. [Google Scholar] [CrossRef] [Green Version]
- Harrison, E.M.; Weinert, L.A.; Holden, M.T.G.; Welch, J.J.; Wilson, K.; Morgan, F.J.E.; Harris, S.R.; Loeffler, A.; Boag, A.K.; Peacock, S.J. A shared population of epidemic methicillin-resistant Staphylococcus aureus 15 circulates in humans and companion animals. mBio 2014, 5, e00985-e13. [Google Scholar] [CrossRef] [Green Version]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in Animals. In Gram-Positive Pathogens; Wiley: Hoboken, NJ, USA, 2019; pp. 731–746. [Google Scholar]
- Weinert, L.A.; Welch, J.J.; Suchard, M.A.; Lemey, P.; Rambaut, A.; Fitzgerald, J.R. Molecular dating of human-to-bovid host jumps by Staphylococcus aureus reveals an association with the spread of domestication. Biol. Lett. 2012, 8, 829–832. [Google Scholar] [CrossRef] [Green Version]
- Little, S.V.; Hillhouse, A.E.; Lawhon, S.D.; Bryan, L.K. Analysis of Virulence and Antimicrobial Resistance Gene Carriage in Staphylococcus aureus Infections in Equids Using Whole-Genome Sequencing. mSphere 2022, 6, e00196-e20. [Google Scholar] [CrossRef] [PubMed]
- Gharsa, H.; Ben Sallem, R.; Ben Slama, K.; Gómez-Sanz, E.; Lozano, C.; Jouini, A.; Klibi, N.; Zarazaga, M.; Boudabous, A.; Torres, C. High diversity of genetic lineages and virulence genes in nasal Staphylococcus aureusisolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133 lineage. BMC Vet. Res. 2012, 8, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bino, E.; Lauková, A.; Ščerbová, J.; Kubašová, I.; Kandričáková, A.; Strompfová, V.; Miltko, R.; Belzecki, G. Fecal coagulase-negative staphylococci from horses, their species variability, and biofilm formation. Folia Microbiol. 2019, 64, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Tirosh-Levy, S.; Steinman, A.; Carmeli, Y.; Klement, E.; Navon-Venezia, S. Prevalence and risk factors for colonization with methicillin resistant Staphylococcus aureus and other Staphylococci species in hospitalized and farm horses in Israel. Prev. Vet. Med. 2015, 122, 135–144. [Google Scholar] [CrossRef]
- Kaspar, U.; von Lützau, K.; Schlattmann, A.; Rösler, U.; Köck, R.; Becker, K. Zoonotic multidrug-resistant microorganisms among non-hospitalized horses from Germany. One Health 2019, 7, 100091. [Google Scholar] [CrossRef]
- Ramalho Sousa, S.; Anastácio, S.; Nóvoa, M.; Paz-Silva, A.; Madeira de Carvalho, L.M. Gastrointestinal Parasitism in Miranda Donkeys: Epidemiology and Selective Control of Strongyles Infection in the Northeast of Portugal. Animals 2021, 11, 155. [Google Scholar] [CrossRef]
- Couto, M.; Santos, A.S.; Laborda, J.; Nóvoa, M.; Ferreira, L.M.; Madeira de Carvalho, L.M. Grazing behaviour of Miranda donkeys in a natural mountain pasture and parasitic level changes. Livest. Sci. 2016, 186, 16–21. [Google Scholar] [CrossRef]
- Damborg, P.; Broens, E.M.; Chomel, B.B.; Guenther, S.; Pasmans, F.; Wagenaar, J.A.; Weese, J.S.; Wieler, L.H.; Windahl, U.; Vanrompay, D.; et al. Bacterial Zoonoses Transmitted by Household Pets: State-of-the-Art and Future Perspectives for Targeted Research and Policy Actions. J. Comp. Pathol. 2016, 155, S27–S40. [Google Scholar] [CrossRef] [Green Version]
- Foti, M.; Fisichella, V.; Giacopello, C. Detection of methicillin-resistant Staphylococcus aureus (MRSA) in the microbial flora from the conjunctiva of healthy donkeys from Sicily (Italy). Vet. Ophthalmol. 2013, 16, 89–92. [Google Scholar] [CrossRef]
- Gutema, D.F.; Duguma, B.E.; Dinka, A.G. Isolation and identification of aerobic bacterial flora from the upper respiratory tract of donkeys in central Ethiopia. Int. J. Appl. Res. Vet. Med. 2009, 7, 181–189. [Google Scholar]
- Abimana, J.B.; Kato, C.D.; Bazira, J. Methicillin-Resistant Staphylococcus aureus Nasal Colonization among Healthcare Workers at Kampala International University Teaching Hospital, Southwestern Uganda. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, 4157869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, U. Squirrel-killing Staphylococcus aureus. Nat. Rev. Microbiol. 2021, 19, 481. [Google Scholar] [CrossRef] [PubMed]
- Simpson, V.; Davison, N.; Hudson, L.; Enright, M.; Whatmore, A.M. Staphylococcus aureus ST49 infection in red squirrels. Vet. Rec. 2010, 167, 69. [Google Scholar] [CrossRef] [PubMed]
- Fountain, K.; Blackett, T.; Butler, H.; Carchedi, C.; Schilling, A.-K.; Meredith, A.; Gibbon, M.J.; Lloyd, D.H.; Loeffler, A.; Feil, E.J. Fatal exudative dermatitis in island populations of red squirrels (Sciurus vulgaris): Spillover of a virulent Staphylococcus aureus clone (ST49) from reservoir hosts. Microb. Genom. 2021, 7, 565. [Google Scholar] [CrossRef]
- Mrochen, D.M.; Schulz, D.; Fischer, S.; Jeske, K.; El Gohary, H.; Reil, D.; Imholt, C.; Trübe, P.; Suchomel, J.; Tricaud, E.; et al. Wild rodents and shrews are natural hosts of Staphylococcus aureus. Int. J. Med. Microbiol. 2018, 308, 590–597. [Google Scholar] [CrossRef]
- Overesch, G.; Büttner, S.; Rossano, A.; Perreten, V. The increase of methicillin-resistant Staphylococcus aureus(MRSA) and the presence of an unusual sequence type ST49 in slaughter pigs in Switzerland. BMC Vet. Res. 2011, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Silva, V.; Ferreira, E.; Manageiro, V.; Reis, L.; Tejedor-Junco, M.T.; Sampaio, A.; Capelo, J.L.; Caniça, M.; Igrejas, G.; Poeta, P. Distribution and Clonal Diversity of Staphylococcus aureus and Other Staphylococci in Surface Waters: Detection of ST425-t742 and ST130-t843 mecC-Positive MRSA Strains. Antibiotics 2021, 10, 1416. [Google Scholar] [CrossRef]
- Silva, V.; Lopes, A.F.; Soeiro, V.; Caniça, M.; Manageiro, V.; Pereira, J.E.; Maltez, L.; Capelo, J.L.; Igrejas, G.; Poeta, P. Nocturnal Birds of Prey as Carriers of Staphylococcus aureus and Other Staphylococci: Diversity, Antimicrobial Resistance and Clonal Lineages. Antibiotics 2022, 11, 240. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M. Methicillin-resistant Staphylococcus aureus among animals: Current overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Cuny, C.; Abdelbary, M.; Layer, F.; Werner, G.; Witte, W. Prevalence of the immune evasion gene cluster in Staphylococcus aureus CC398. Vet. Microbiol. 2015, 177, 219–223. [Google Scholar] [CrossRef]
- Rasigade, J.-P.; Laurent, F.; Lina, G.; Meugnier, H.; Bes, M.; Vandenesch, F.; Etienne, J.; Tristan, A. Global Distribution and Evolution of Panton- Valentine Leukocidin-Positive Methicillin-Susceptible Staphylococcus aureus, 1981–2007. J. Infect. Dis. 2010, 201, 1589–1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, V.; Gabriel, S.I.; Borrego, S.B.; Tejedor-Junco, M.T.; Manageiro, V.; Ferreira, E.; Reis, L.; Caniça, M.; Capelo, J.L.; Igrejas, G.; et al. Antimicrobial Resistance and Genetic Lineages of Staphylococcus aureus from Wild Rodents: First Report of mecC-Positive Methicillin-Resistant S. aureus (MRSA) in Portugal. Animals 2021, 11, 1537. [Google Scholar] [CrossRef] [PubMed]
- Bakthavatchalam, Y.D.; Veeraraghavan, B.; Peter, J.V.; Rajinikanth, J.; Inbanathan, F.Y.; Devanga Ragupathi, N.K.; Rajamani Sekar, S.K. Novel observations in 11 heteroresistant vancomycin-intermediate methicillin-resistant Staphylococcus aureus strains from South India. Genome Announc. 2016, 4, e01425-e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seinige, D.; von Altrock, A.; Kehrenberg, C. Genetic diversity and antibiotic susceptibility of Staphylococcus aureus isolates from wild boars. Comp. Immunol. Microbiol. Infect. Dis. 2017, 54, 7–12. [Google Scholar] [CrossRef]
- Papadimitriou-Olivgeris, M.; Drougka, E.; Fligou, F.; Dodou, V.; Kolonitsiou, F.; Filos, K.S.; Anastassiou, E.D.; Petinaki, E.; Marangos, M.; Spiliopoulou, I. Spread of Tst–Positive Staphylococcus aureus Strains Belonging to ST30 Clone among Patients and Healthcare Workers in Two Intensive Care Units. Toxins 2017, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Achermann, Y.; Seidl, K.; Kuster, S.P.; Leimer, N.; Durisch, N.; Ajdler-Schäffler, E.; Karrer, S.; Senn, G.; Holzmann-Bürgel, A.; Wolfensberger, A. Epidemiology of methicillin-susceptible Staphylococcus aureus in a neonatology ward. Infect. Control Hosp. Epidemiol. 2015, 36, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Diene, S.M.; Corvaglia, A.R.; François, P.; van der Mee-Marquet, N. Prophages and adaptation of Staphylococcus aureus ST398 to the human clinic. BMC Genom. 2017, 18, 133. [Google Scholar] [CrossRef] [Green Version]
- Dweba, C.C.; Zishiri, O.T.; El Zowalaty, M.E. Isolation and Molecular Identification of Virulence, Antimicrobial and Heavy Metal Resistance Genes in Livestock-Associated Methicillin-Resistant Staphylococcus aureus. Pathogens 2019, 8, 79. [Google Scholar] [CrossRef] [Green Version]
- Geenen, P.L.; Graat, E.A.M.; Haenen, A.; Hengeveld, P.D.; van Hoek, A.H.A.M.; Huijsdens, X.W.; Kappert, C.C.; Lammers, G.A.C.; van Duijkeren, E.; van de Giessen, A.W. Prevalence of livestock-associated MRSA on Dutch broiler farms and in people living and/or working on these farms. Epidemiol. Infect. 2013, 141, 1099–1108. [Google Scholar] [CrossRef]
- Anker, J.C.H.; Koch, A.; Ethelberg, S.; Mølbak, K.; Larsen, J.; Jepsen, M.R. Distance to pig farms as risk factor for community-onset livestock-associated MRSA CC398 infection in persons without known contact to pig farms—A nationwide study. Zoonoses Public Health 2018, 65, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Price, L.B.; Stegger, M.; Hasman, H.; Aziz, M.; Larsen, J.; Andersen, P.S.; Pearson, T.; Waters, A.E.; Foster, J.T.; Schupp, J.; et al. Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock. mBio 2012, 3, e00305-e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlemann, A.-C.; Porcella, S.F.; Trivedi, S.; Sullivan, S.B.; Hafer, C.; Kennedy, A.D.; Barbian, K.D.; McCarthy, A.J.; Street, C.; Hirschberg, D.L. Identification of a highly transmissible animal-independent Staphylococcus aureus ST398 clone with distinct genomic and cell adhesion properties. mBio 2012, 3, e00027-e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhani, D.; Gharsa, H.; Kalai, D.; Lozano, C.; Gómez, P.; Boutheina, J.; Aouni, M.; Barguellil, F.; Torres, C.; Slama, K. Ben Clonal lineages detected amongst tetracycline-resistant meticillin-resistant Staphylococcus aureus isolates of a Tunisian hospital, with detection of lineage ST398. J. Med. Microbiol. 2015, 64, 623–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruscher, C.; Lübke-Becker, A.; Wleklinski, C.-G.; Şoba, A.; Wieler, L.H.; Walther, B. Prevalence of Methicillin-resistant Staphylococcus pseudintermedius isolated from clinical samples of companion animals and equidaes. Vet. Microbiol. 2009, 136, 197–201. [Google Scholar] [CrossRef]
- Ruscher, C.; Lübke-Becker, A.; Semmler, T.; Wleklinski, C.-G.; Paasch, A.; Šoba, A.; Stamm, I.; Kopp, P.; Wieler, L.H.; Walther, B. Widespread rapid emergence of a distinct methicillin- and multidrug-resistant Staphylococcus pseudintermedius (MRSP) genetic lineage in Europe. Vet. Microbiol. 2010, 144, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Bonvegna, M.; Grego, E.; Sona, B.; Stella, M.C.; Nebbia, P.; Mannelli, A.; Tomassone, L. Occurrence of Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS) and Methicillin-Resistant Staphylococcus aureus (MRSA) from Pigs and Farm Environment in Northwestern Italy. Antibiotics 2021, 10, 676. [Google Scholar] [CrossRef]
- Othman, A.A.; Hiblu, M.A.; Abbassi, M.S.; Abouzeed, Y.M.; Ahmed, M.O. Nasal colonization and antibiotic resistance patterns of Staphylococcus species isolated from healthy horses in Tripoli, Libya. J. Equine Sci. 2021, 32, 61–65. [Google Scholar] [CrossRef]
- Couto, N.; Belas, A.; Tilley, P.; Couto, I.; Gama, L.T.; Kadlec, K.; Schwarz, S.; Pomba, C. Biocide and antimicrobial susceptibility of methicillin-resistant staphylococcal isolates from horses. Vet. Microbiol. 2013, 166, 299–303. [Google Scholar] [CrossRef]
- Mallardo, K.; Nizza, S.; Fiorito, F.; Pagnini, U.; de Martino, L. A comparative evaluation of methicillin-resistant staphylococci isolated from harness racing-horses, breeding mares and riding-horses in Italy. Asian Pac. J. Trop. Biomed. 2013, 3, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Mehmet, D.; Bülent, B.A.Ş.; Yarsan, E. Antimicrobial Resistance of Streptococcus spp. and Staphylococcus spp. Isolated from Respiratory Tract of Race Horses in Turkey; Ankara Üniversitesi Veteriner Fakültesi Dergisi: Ankara, Turkey, 2022. [Google Scholar]
- Karakulska, J.; Fijałkowski, K.; Nawrotek, P.; Pobucewicz, A.; Poszumski, F.; Czernomysy-Furowicz, D. Identification and methicillin resistance of coagulase-negative staphylococci isolated from nasal cavity of healthy horses. J. Microbiol. 2012, 50, 444–451. [Google Scholar] [CrossRef]
- Zhang, Y.; Agidi, S.; LeJeune, J.T. Diversity of staphylococcal cassette chromosome in coagulase-negative staphylococci from animal sources. J. Appl. Microbiol. 2009, 107, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Meservey, A.; Sullivan, A.; Wu, C.; Lantos, P.M. Staphylococcus sciuri peritonitis in a patient on peritoneal dialysis. Zoonoses Public Health 2020, 67, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Beims, H.; Overmann, A.; Fulde, M.; Steinert, M.; Bergmann, S. Isolation of Staphylococcus sciuri from horse skin infection. Open Vet. J. 2016, 6, 242–246. [Google Scholar] [CrossRef] [Green Version]
- Al-Azawi, I.H.; Al-Hamadani, A.H.; Hasson, S.O. Association between biofilm formation and susceptibility to antibiotics in staphylococcus lentus isolated from urinary catheterized patients. Nano Biomed. Eng. 2018, 10, 97–103. [Google Scholar] [CrossRef]
- Mama, O.M.; Gómez, P.; Ruiz-Ripa, L.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Antimicrobial Resistance, Virulence, and Genetic Lineages of Staphylococci from Horses Destined for Human Consumption: High Detection of S. aureus Isolates of Lineage ST1640 and Those Carrying the lukPQ Gene. Animals 2019, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- De Martino, L.; Lucido, M.; Mallardo, K.; Facello, B.; Mallardo, M.; Iovane, G.; Pagnini, U.; Tufano, M.A.; Catalanotti, P. Methicillin-Resistant Staphylococci Isolated from Healthy Horses and Horse Personnel in Italy. J. Vet. Diagn. Investig. 2010, 22, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Pastar, I.; O’Neill, K.; Padula, L.; Head, C.R.; Burgess, J.L.; Chen, V.; Garcia, D.; Stojadinovic, O.; Hower, S.; Plano, G.V.; et al. Staphylococcus epidermidis Boosts Innate Immune Response by Activation of Gamma Delta T Cells and Induction of Perforin-2 in Human Skin. Front. Immunol. 2020, 11, 2253. [Google Scholar] [CrossRef]
- Méric, G.; Mageiros, L.; Pensar, J.; Laabei, M.; Yahara, K.; Pascoe, B.; Kittiwan, N.; Tadee, P.; Post, V.; Lamble, S.; et al. Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nat. Commun. 2018, 9, 5034. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Virulence factors of the coagulase-negative staphylococci. Front. Biosci. 2004, 9, 841–863. [Google Scholar] [CrossRef]
- Chajęcka-Wierzchowska, W.; Gajewska, J.; Wiśniewski, P.; Zadernowska, A. Enterotoxigenic Potential of Coagulase-Negative Staphylococci from Ready-to-Eat Food. Pathogens 2020, 9, 734. [Google Scholar] [CrossRef]
- Zell, C.; Resch, M.; Rosenstein, R.; Albrecht, T.; Hertel, C.; Götz, F. Characterization of toxin production of coagulase-negative staphylococci isolated from food and starter cultures. Int. J. Food Microbiol. 2008, 127, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Wang, Y.; Schwarz, S.; Cai, J.; Fan, R.; Li, J.; Feßler, A.T.; Zhang, R.; Wu, C.; Shen, J. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. J. Antimicrob. Chemother. 2016, 71, 1474–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, R.; Li, D.; Wang, Y.; He, T.; Feßler, A.T.; Schwarz, S.; Wu, C. Presence of the optrA gene in methicillin-resistant Staphylococcus sciuri of porcine origin. Antimicrob. Agents Chemother. 2016, 60, 7200–7205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 8.0; EUCAST: Växjö, Sweden, 2018. [Google Scholar]
- CLSI Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Silva, V.; Vieira-Pinto, M.; Saraiva, C.; Manageiro, V.; Reis, L.; Ferreira, E.; Caniça, M.; Capelo, J.L.; Igrejas, G.; Poeta, P. Prevalence and Characteristics of Multidrug-Resistant Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) CC398 Isolated from Quails (Coturnix Coturnix Japonica) Slaughtered for Human Consumption. Animals 2021, 11, 2038. [Google Scholar] [CrossRef]
- Van Wamel, W.J.B.; Rooijakkers, S.H.M.; Ruyken, M.; van Kessel, K.P.M.; van Strijp, J.A.G. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 2006, 188, 1310–1315. [Google Scholar] [CrossRef] [Green Version]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, D.; Claus, H.; Witte, W.; Rothgänger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of Methicillin-Resistant Staphylococcus aureus in a University Hospital Setting by Using Novel Software for spa Repeat Determination and Database Management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef] [Green Version]
- Shopsin, B.; Gomez, M.; Montgomery, S.O.; Smith, D.H.; Waddington, M.; Dodge, D.E.; Bost, D.A.; Riehman, M.; Naidich, S.; Kreiswirth, B.N. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 1999, 37, 3556–3563. [Google Scholar] [CrossRef] [Green Version]
Isolate | Source | Antimicrobial Resistance | Virulence Factors | Molecular Typing | ||||
---|---|---|---|---|---|---|---|---|
Phenotype | Genotype | IEC Type | Other Genes | ST (CC) | spa | agr | ||
VS3101 | Human | PEN, CN, TOB, KAN | blaZ, aph (3′)-IIIa | E | hla, hld, eta | 1290 (1) | t131 | I |
VS3102 | Human | PEN, CN, TOB, KAN | blaZ, aph (3′)-IIIa | E | hla, hld, eta | 1290 (1) | t131 | I |
VS3103 | Human | PEN, CN, TOB, KAN | blaZ, aph (3′)-IIIa | hla, hlb, hld, tst | 30 (30) | t021 | III | |
VS3104 | Human | PEN, FD | blaZ | hla, hlb, hld, tst | 30 (30) | t338 | III | |
VS3105 | Human | PEN, CN, KAN | blaZ, aph (3′)-IIIa | hla, hlb, hld, tst | 30 (30) | t012 | III | |
VS3106 | Human | PEN, CN, KAN | blaZ, aph (3′)-IIIa | hla, hlb, hld, tst | 30 (30) | t012 | III | |
VS3107 | Human | PEN, FD | blaZ | hla, hld | 30 (30) | t1642 | III | |
VS3108 | Human | PEN, CN, KAN | blaZ, aph (3′)-IIIa | hla, hlb, hld | 30 (30) | t1642 | III | |
VS3109 | Human | Susceptible | hla, hlb, hld, eta | 398 (398) | t571 | I | ||
VS3110 | Human | PEN, CN, TOB, KAN, TET | blaZ, aph (3′)-IIIa, tetL, tetM | hla, hlb, hld | 398 (398) | t011 | I | |
VS3111 | Donkey | PEN, KAN | blaZ, aph (3′)-IIIa | hla, hlb, hld, tst | 49 | t208 | II | |
VS3112 | Donkey | CN, KAN, TET | aph (3′)-IIIa, tetK | hla, hlb, hld | 49 | t208 | II | |
VS3113 | Donkey | PEN, KAN | blaZ, aph (3′)-IIIa | hla, hlb, hld | 49 | t208 | II | |
VS3114 | Donkey | PEN, KAN | blaZ, aph (3′)-IIIa | hla, hlb, hld | 49 | t208 | II |
Isolate | Source/Species | Antimicrobial Resistance | Virulence Factors | |
---|---|---|---|---|
Phenotype | Genotype | |||
VS3115 | Human/S. epidermidis | PEN, CN, TOB, KAN, TET, SXT | blaZ, aac (6′)-Ie-aph(2″)-Ia, aph (3′)-IIIa, dfrA | |
VS3116 | Human/S. epidermidis | PEN, CN, KAN, ERY, SXT | mecA, ermC, aac (6′)-Ie-aph (2″)-Ia, aph (3′)-IIIa, dfrA, dfrG | tst |
VS3117 | Human/S. epidermidis | PEN, FD | - | eta |
VS3118 | Human/S. sciuri | PEN, FOX, CD, FD | mecA, lnuA | |
VS3119 | Donkey/S. lentus | FD | - | |
VS3120 | Donkey/S. lentus | PEN, CIP, ERY, CD, TET, FD | mecA, blaZ, lnuA | |
VS3121 | Donkey/S. xylosus | TET | - | |
VS3122 | Donkey/S. vitulinus | PEN, TET | mecA | |
VS3123 | Donkey/S. sciuri | PEN, CD, FD | mecA | |
VS3124 | Donkey/S. sciuri | PEN, FD | mecA | |
VS3125 | Donkey/S. sciuri | PEN, FOX, TOB, KAN | mecA, aph (3′)-IIIa | |
VS3126 | Donkey/S. sciuri | PEN, FOX, LNZ, ERY, CN, TOB, KAN | mecA, optrA, ermB, aph (3′)-IIIa | eta |
VS3127 | Donkey/S. sciuri | PEN, FOX, CD, FD | mecA | |
VS3128 | Donkey/S. sciuri | PEN, CN, FD | mecA, aph (3′)-IIIa | |
VS3129 | Donkey/S. sciuri | PEN, CN, TOB, KAN, FD | mecA, aph (3′)-IIIa, ant (4′)-Ia, str | |
VS3130 | Donkey/S. sciuri | PEN | mecA | |
VS3131 | Donkey/S. sciuri | PEN | mecA | |
VS3132 | Donkey/S. sciuri | PEN | mecA | |
VS3133 | Donkey/S. sciuri | PEN | mecA | |
VS3134 | Donkey/S. sciuri | PEN | mecA | |
VS3135 | Donkey/S. sciuri | PEN | mecA | hla |
VS3136 | Donkey/S. sciuri | PEN, TET | mecA, tetK | |
VS3137 | Donkey/S. sciuri | PEN | mecA | |
VS3138 | Donkey/S. sciuri | PEN, KAN, TOB, TET | mecA, aph (3′)-IIIa, ant (4′)-Ia, str, tetM | |
VS3139 | Donkey/S. sciuri | PEN, CD, FD | mecA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, V.; Alfarela, C.; Caniça, M.; Manageiro, V.; Nóvoa, M.; Leiva, B.; Kress, M.; Capelo, J.L.; Poeta, P.; Igrejas, G. A One Health Approach Molecular Analysis of Staphylococcus aureus Reveals Distinct Lineages in Isolates from Miranda Donkeys (Equus asinus) and Their Handlers. Antibiotics 2022, 11, 374. https://doi.org/10.3390/antibiotics11030374
Silva V, Alfarela C, Caniça M, Manageiro V, Nóvoa M, Leiva B, Kress M, Capelo JL, Poeta P, Igrejas G. A One Health Approach Molecular Analysis of Staphylococcus aureus Reveals Distinct Lineages in Isolates from Miranda Donkeys (Equus asinus) and Their Handlers. Antibiotics. 2022; 11(3):374. https://doi.org/10.3390/antibiotics11030374
Chicago/Turabian StyleSilva, Vanessa, Cláudia Alfarela, Manuela Caniça, Vera Manageiro, Miguel Nóvoa, Belen Leiva, Maria Kress, José Luís Capelo, Patrícia Poeta, and Gilberto Igrejas. 2022. "A One Health Approach Molecular Analysis of Staphylococcus aureus Reveals Distinct Lineages in Isolates from Miranda Donkeys (Equus asinus) and Their Handlers" Antibiotics 11, no. 3: 374. https://doi.org/10.3390/antibiotics11030374