Occurrence of Antibiotic Resistance in the Mediterranean Sea
Abstract
:1. Introduction
2. Results
2.1. Bacterial Isolation
2.2. Antibiotic Resistance Profile
2.3. Antibiotic and Heavy Metal Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Bacterial Isolation
4.3. Antibiotic Susceptibility Test
4.4. Detection of Antibiotic and Heavy Metal Resistance Genes
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Waseem, H.; Williams, M.R.; Jameel, S.; Hashsham, S.A. Antimicrobial Resistance in the Environment. Water Environ. Res. 2018, 90, 865–884. [Google Scholar] [CrossRef] [Green Version]
- Alduina, R. Antibiotics and Environment. Antibiotics 2020, 9, 202. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef]
- Bondarczuk, K.; Piotrowska-Seget, Z. Microbial Diversity and Antibiotic Resistance in a Final Effluent-Receiving Lake. Sci. Total Environ. 2019, 650, 2951–2961. [Google Scholar] [CrossRef]
- Alduina, R.; Gambino, D.; Presentato, A.; Gentile, A.; Sucato, A.; Savoca, D.; Filippello, S.; Visconti, G.; Caracappa, G.; Vicari, D.; et al. Is Caretta Caretta a Carrier of Antibiotic Resistance in the Mediterranean Sea? Antibiotics 2020, 9, 116. [Google Scholar] [CrossRef] [Green Version]
- Di Cesare, A.; Eckert, E.M.; D’Urso, S.; Bertoni, R.; Gillan, D.C.; Wattiez, R.; Corno, G. Co-Occurrence of Integrase 1, Antibiotic and Heavy Metal Resistance Genes in Municipal Wastewater Treatment Plants. Water Res. 2016, 94, 208–214. [Google Scholar] [CrossRef]
- Seiler, C.; Berendonk, T.U. Heavy Metal Driven Co-Selection of Antibiotic Resistance in Soil and Water Bodies Impacted by Agriculture and Aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef] [Green Version]
- Stoll, C.; Sidhu, J.P.S.; Tiehm, A.; Toze, S. Prevalence of Clinically Relevant Antibiotic Resistance Genes in Surface Water Samples Collected from Germany and Australia. Environ. Sci. Technol. 2012, 46, 9716–9726. [Google Scholar] [CrossRef]
- Sucato, A.; Vecchioni, L.; Savoca, D.; Presentato, A.; Arculeo, M.; Alduina, R. A Comparative Analysis of Aquatic and Polyethylene-Associated Antibiotic-Resistant Microbiota in the Mediterranean Sea. Biology 2021, 10, 200. [Google Scholar] [CrossRef]
- Gwenzi, W.; Musiyiwa, K.; Mangori, L. Sources, Behaviour and Health Risks of Antimicrobial Resistance Genes in Wastewaters: A Hotspot Reservoir. J. Environ. Chem. Eng. 2020, 8, 102220. [Google Scholar] [CrossRef]
- Belding, C.; Boopathy, R. Presence of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes in Coastal Recreational Waters of Southeast Louisiana, USA. J. Water Supply Res. Technol. Aqua 2018, 67, 800–809. [Google Scholar] [CrossRef]
- Segawa, T.; Takeuchi, N.; Rivera, A.; Yamada, A.; Yoshimura, Y.; Barcaza, G.; Shinbori, K.; Motoyama, H.; Kohshima, S.; Ushida, K. Distribution of Antibiotic Resistance Genes in Glacier Environments. Environ. Microbiol. Rep. 2013, 5, 127–134. [Google Scholar] [CrossRef]
- Blasi, M.F.; Migliore, L.; Mattei, D.; Rotini, A.; Thaller, M.C.; Alduina, R. Antibiotic Resistance of Gram-Negative Bacteria from Wild Captured Loggerhead Sea Turtles. Antibiotics 2020, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Pace, A.; Dipineto, L.; Fioretti, A.; Hochscheid, S. Loggerhead Sea Turtles as Sentinels in the Western Mediterranean: Antibiotic Resistance and Environment-Related Modifications of Gram-Negative Bacteria. Mar. Pollut. Bull. 2019, 149, 110575. [Google Scholar] [CrossRef]
- Su, S.; Li, C.; Yang, J.; Xu, Q.; Qiu, Z.; Xue, B.; Wang, S.; Zhao, C.; Xiao, Z.; Wang, J.; et al. Distribution of Antibiotic Resistance Genes in Three Different Natural Water Bodies-A Lake, River and Sea. Int. J. Environ. Res. Public Health 2020, 17, 552. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.; Lu, J.; Wu, J. Antibiotic Resistance Genes Might Serve as New Indicators for Wastewater Contamination of Coastal Waters: Spatial Distribution and Source Apportionment of Antibiotic Resistance Genes in a Coastal Bay. Ecol. Indic. 2020, 114, 106299. [Google Scholar] [CrossRef]
- Smaldone, G.; Marrone, R.; Cappiello, S.; Martin, G.A.; Oliva, G.; Cortesi, M.L.; Anastasio, A. Occurrence of Antibiotic Resistance in Bacteria Isolated from Seawater Organisms Caught in Campania Region: Preliminary Study. BMC Vet. Res. 2014, 10, 161. [Google Scholar] [CrossRef] [Green Version]
- Foti, M.; Giacopello, C.; Bottari, T.; Fisichella, V.; Rinaldo, D.; Mammina, C. Antibiotic Resistance of Gram Negatives Isolates from Loggerhead Sea Turtles (Caretta Caretta) in the Central Mediterranean Sea. Mar. Pollut. Bull. 2009, 58, 1363–1366. [Google Scholar] [CrossRef]
- Di Cesare, A.; Vignaroli, C.; Luna, G.M.; Pasquaroli, S.; Biavasco, F. Antibiotic-Resistant Enterococci in Seawater and Sediments from a Coastal Fish Farm. Microb. Drug Resist. 2012, 18, 502–509. [Google Scholar] [CrossRef]
- Dumontet, S.; Krovacek, K.; Svenson, S.B.; Pasquale, V.; Baloda, S.B.; Figliuolo, G. Prevalence and Diversity of Aeromonas and Vibrio Spp. in Coastal Waters of Southern Italy. Comp. Immunol. Microbiol. Infect. Dis. 2000, 23, 53–72. [Google Scholar] [CrossRef]
- Blasi, M.F.; Rotini, A.; Bacci, T.; Targusi, M.; Ferraro, G.B.; Vecchioni, L.; Alduina, R.; Migliore, L. On Caretta Caretta’s Shell: First Spatial Analysis of Micro- and Macro-Epibionts on the Mediterranean Loggerhead Sea Turtle Carapace. Mar. Biol. Res. 2022, 17, 762–774. [Google Scholar] [CrossRef]
- Maugeri, T.L.; Carbone, M.; Fera, M.T.; Irrera, G.P.; Gugliandolo, C. Distribution of Potentially Pathogenic Bacteria as Free Living and Plankton Associated in a Marine Coastal Zone. J. Appl. Microbiol. 2004, 97, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Gambino, D.; Persichetti, M.F.; Gentile, A.; Arculeo, M.; Visconti, G.; Currò, V.; Caracappa, G.; Crucitti, D.; Piazza, A.; Mancianti, F.; et al. First Data on Microflora of Loggerhead Sea Turtle (Caretta Caretta) Nests from the Coastlines of Sicily. Biol. Open 2020, 9, bio045252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangelista-Barreto, N.S.; Carvalho, F.C.T.D.; Vieira, R.H.S.; Dos Reis, C.M.F.; Macrae, A.; Rodrigues, D.D.P. Characterization of Aeromonas Species Isolated from an Estuarine Environment. Braz. J. Microbiol. 2010, 41, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Serratore, P.; Ostanello, F.; Passalacqua, P.L.; Zavatta, E.; Bignami, G.; Serraino, A.; Giacometti, F. First Multi-Year Retrospective Study on Vibrio Parahaemolyticus and Vibrio Vulnificus Prevalence in Ruditapes Philippinarum in Sacca Di Goro, Italy. Ital. J. Food Saf. 2016, 5, 6161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.M.; Evangelista-Barreto, N.S.; dos Fernandes Vieira, R.H.S.; Mendonça, K.V.; de Sousa, O.V. Population Dynamics and Antimicrobial Susceptibility of Aeromonas Spp. along a Salinity Gradient in an Urban Estuary in Northeastern Brazil. Mar. Pollut. Bull. 2014, 89, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.S.; Pereira, A.; Araújo, S.M.; Castro, B.B.; Correia, A.C.M.; Henriques, I. Seawater Is a Reservoir of Multi-Resistant Escherichia Coli, Including Strains Hosting Plasmid-Mediated Quinolones Resistance and Extended-Spectrum Beta-Lactamases Genes. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef]
- Pereira, A.; Santos, A.; Tacão, M.; Alves, A.; Henriques, I.; Correia, A. Genetic Diversity and Antimicrobial Resistance of Escherichia Coli from Tagus Estuary (Portugal). Sci. Total Environ. 2013, 461–462, 65–71. [Google Scholar] [CrossRef]
- Matyar, F. Antibiotic and Heavy Metal Resistance in Bacteria Isolated from the Eastern Mediterranean Sea Coast. Bull. Environ. Contam. Toxicol. 2012, 89, 551–556. [Google Scholar] [CrossRef]
- Graham, D.W.; Olivares-Rieumont, S.; Knapp, C.W.; Lima, L.; Werner, D.; Bowen, E. Antibiotic Resistance Gene Abundances Associated with Waste Discharges to the Almendares River near Havana, Cuba. Environ. Sci. Technol. 2011, 45, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-X.; Zhang, T.; Fang, H.H.P. Antibiotic Resistance Genes in Water Environment. Appl. Microbiol. Biotechnol. 2009, 82, 397–414. [Google Scholar] [CrossRef] [PubMed]
- Leonard, A.F.C.; Zhang, L.; Balfour, A.J.; Garside, R.; Hawkey, P.M.; Murray, A.K.; Ukoumunne, O.C.; Gaze, W.H. Exposure to and Colonisation by Antibiotic-Resistant E. coli in UK Coastal Water Users: Environmental Surveillance, Exposure Assessment, and Epidemiological Study (Beach Bum Survey). Environ. Int. 2018, 114, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Baothman, O.A.; Alshamrani, Y.A.; Al-Talhi, H.A. Prevalence of Extended-Spectrum β-Lactamases in Enterobacteriaceae Isolated from Polluted Wild Fish. Open Biochem. J. 2020, 14, 19–24. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, C.; Cao, X.; Lin, H.; Wang, J. Antibiotic Resistance Genes in Surface Water of Eutrophic Urban Lakes Are Related to Heavy Metals, Antibiotics, Lake Morphology and Anthropic Impact. Ecotoxicology 2017, 26, 831–840. [Google Scholar] [CrossRef]
- Pepi, M.; Focardi, S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. Int. J. Environ. Res. Public Health 2021, 18, 5723. [Google Scholar] [CrossRef] [PubMed]
- Rosewarne, C.P.; Pettigrove, V.; Stokes, H.W.; Parsons, Y.M. Class 1 Integrons in Benthic Bacterial Communities: Abundance, Association with Tn 402-like Transposition Modules and Evidence for Coselection with Heavy-Metal Resistance. FEMS Microbiol. Ecol. 2010, 72, 35–46. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Jin, L.; Sun, F.; Hu, Q.; Chen, L. Antibiotic and Heavy-Metal Resistance of Vibrio Parahaemolyticus Isolated from Fresh Shrimps in Shanghai Fish Markets, China. Environ. Sci. Pollut. Res. 2016, 23, 15033–15040. [Google Scholar] [CrossRef] [Green Version]
- Gillings, M.R.; Gaze, W.H.; Pruden, A.; Smalla, K.; Tiedje, J.M.; Zhu, Y.-G. Using the Class 1 Integron-Integrase Gene as a Proxy for Anthropogenic Pollution. ISME J. 2015, 9, 1269–1279. [Google Scholar] [CrossRef]
- Amarasiri, M.; Sano, D.; Suzuki, S. Understanding Human Health Risks Caused by Antibiotic Resistant Bacteria (ARB) and Antibiotic Resistance Genes (ARG) in Water Environments: Current Knowledge and Questions to Be Answered. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2016–2059. [Google Scholar] [CrossRef]
- Vitale, M.; Galluzzo, P.; Buffa, P.G.; Carlino, E.; Spezia, O.; Alduina, R. Comparison of Antibiotic Resistance Profile and Biofilm Production of Staphylococcus Aureus Isolates Derived from Human Specimens and Animal-Derived Samples. Antibiotics 2019, 8, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, M.; Gaglio, S.; Galluzzo, P.; Cascone, G.; Piraino, C.; Di Marco Lo Presti, V.; Alduina, R. Antibiotic Resistance Profiling, Analysis of Virulence Aspects and Molecular Genotyping of Staphylococcus Aureus Isolated in Sicily, Italy. Foodborne Pathog. Dis. 2018, 15, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals CLSI Supplement VET08, 4th ed.; Committee for Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-68440-010-2. [Google Scholar]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th Revision; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Arizza, V.; Vecchioni, L.; Caracappa, S.; Sciurba, G.; Berlinghieri, F.; Gentile, A.; Persichetti, M.F.; Arculeo, M.; Alduina, R. New Insights into the Gut Microbiome in Loggerhead Sea Turtles Caretta Caretta Stranded on the Mediterranean Coast. PLoS ONE 2019, 14, e0220329. [Google Scholar] [CrossRef] [Green Version]
Location | Coordinate | Isolated Bacterial Genera | Number of Isolates |
---|---|---|---|
Lipari W3 | 38°29′13.3″ N 14°57′59.2″ E | Vibrio Bacillus | 3 |
2 | |||
Casteldaccia W5 | 38°03′21.3″ N 13°32′38.9″ E | Vibrio | 1 |
Escherichia coli | 2 | ||
S. Flavia W6 + W1 | 38°03′53.3″ N 13°32′17.2″ E + 38°03′52.7″ N 13°32′16.5″ E | Vibrio | 2 |
Aeromonas | 7 | ||
Escherichia coli | 1 | ||
Acqua dei Corsari W7 | 38°05′54.8″ N 13°24′49.6″ E | Vibrio | 3 |
Klebsiella | 1 | ||
Levanzo W8 | 37°59′33.1″ N 12°21′01.6″ E | Vibrio | 1 |
Aeromonas | 2 | ||
Enterobacter | 1 | ||
Rometta W4 | 38°14′16.5″ N 15°24′50.0″ E | Vibrio | 3 |
Location | blaTEM | qnrS | sulII | tet(A) | blaCTXM | czcA | arsB | int1 |
---|---|---|---|---|---|---|---|---|
Lipari W3 | + | ND 1 | + | ND | ND | + | ND | + |
Casteldaccia W5 | + | ND | + | ND | ND | ND | ND | + |
S. Flavia W6 | + | ND | ND | ND | ND | + | ND | + |
Acqua dei corsari W7 | + | ND | ND | ND | ND | ND | ND | + |
Levanzo W8 | + | ND | ND | ND | ND | + | ND | + |
Rometta W4 | + | ND | + | ND | ND | + | ND | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gambino, D.; Savoca, D.; Sucato, A.; Gargano, V.; Gentile, A.; Pantano, L.; Vicari, D.; Alduina, R. Occurrence of Antibiotic Resistance in the Mediterranean Sea. Antibiotics 2022, 11, 332. https://doi.org/10.3390/antibiotics11030332
Gambino D, Savoca D, Sucato A, Gargano V, Gentile A, Pantano L, Vicari D, Alduina R. Occurrence of Antibiotic Resistance in the Mediterranean Sea. Antibiotics. 2022; 11(3):332. https://doi.org/10.3390/antibiotics11030332
Chicago/Turabian StyleGambino, Delia, Dario Savoca, Arianna Sucato, Valeria Gargano, Antonino Gentile, Licia Pantano, Domenico Vicari, and Rosa Alduina. 2022. "Occurrence of Antibiotic Resistance in the Mediterranean Sea" Antibiotics 11, no. 3: 332. https://doi.org/10.3390/antibiotics11030332