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Abstract: Background: The diffusion of antimicrobial resistance is a significant concern for public
health worldwide. Staphylococcus aureus represents a paradigm microorganism for antibiotic resistance
in that resistant strains appear within a decade after the introduction of new antibiotics. Methods:
Fourteen S. aureus isolates from human specimens and twenty-one from samples of animal origin,
were compared for their antimicrobial resistance and biofilm capability. In addition, they were
characterized at the molecular level to detect the antimicrobial resistance mecA gene and genes related
with enterotoxin, toxin, and biofilm production. Results: Both phenotypic and molecular analysis
showed main differences among human- and animal-derived isolates. Among the human-derived
isolates, more multidrug-resistant isolates were detected and mecA gene, enterotoxin, and toxin genes
were more prevalent. Different genes involved in biofilm production were detected with bap present
only in animal-derived isolates and sasC present in both isolates, however, with a higher prevalence
in the human-derived isolates. Biofilm capability was higher in human-derived isolates mainly
associated to the sasC gene. Conclusions: The overall results indicate that human S. aureus isolates
are more virulent and resistant than the isolates of animal origin randomly selected with no infection
anamnesis. This study confirms that selection for more virulent and resistant S. aureus strains is
related to the clinical practice.

Keywords: Staphylococcus aureus; Staphylococcal toxins; mecA; antibiotic resistance; biofilm
activity; MRSA

1. Introduction

Staphylococcus aureus is often found as a component of the human microbiota associated with skin,
skin glands, and mucous membranes, particularly in the nose of healthy individuals [1,2]. In some cases,
S. aureus causes a wide range of soft human infections [3], such as mild skin and soft tissue infections,
as well as life-threatening pneumonia, bacteremia, osteomyelitis, endocarditis, sepsis, and toxic shock
syndrome [4], and it is implicated in both community-acquired and nosocomial infections [2]. In
addition to the infections listed above, S. aureus is often responsible for scalded skin syndrome and
staphylococcal foodborne diseases [5,6].
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In addition to causing infections in humans, S. aureus can also be the origin of infections in
ruminants such as cattle, goats, and sheep, leading to clinical and subclinical mastitis. The pathogen
spreads from the udder of the infected animal into raw milk, affecting the quality and quantity of milk
and milk-derived products. Therefore, this pathogen represents a major economic problem for farmers
and a serious problem for the dairy industry [7].

S. aureus pathogenicity depends upon its capability to produce and secrete different toxins and
virulence factors that contribute to colonization and invasion of the host and bacterial spread [8].
The family of superantigen exotoxins is comprised of well-known secreted virulence factors, such as
the staphylococcal enterotoxins (se), the toxic shock syndrome toxin 1 (tsst-1), and the exfoliative toxins
(eta and etb). The latter are associated with staphylococcal scalded-skin syndrome [5]. Until now, more
than 20 staphylococcal enterotoxins that can cause food poisoning or enterotoxin-like proteins have
been identified [9].

In addition to the production of virulence factors, S. aureus genome shows enormous plasticity
with the consequent acquisition of transmissible genetic elements, coding for resistance proteins.
One example is the mecA gene that is present within the staphylococcal cassette chromosome mec
(SCCmec) [2]. The mecA gene encodes an alternative penicillin binding protein, PBP2a [1], that
makes the bacterial strain resistant both to methicillin (MRSA) and all other β-lactam antibiotics [2].
The ability to acquire horizontally resistant genes and the antibiotic pressure induces the emergence
of multidrug-resistant (resistant to three or more classes of antibiotics) S. aureus strains, which are
considered a significant concern for public health.

Furthermore, it is well known that S. aureus produces biofilm, a thick extracellular exopolysaccharide
layer which protects bacteria. Biofilm can be easily formed inside biomaterials as indwelling medical
devices, often causing chronic diseases that are difficult to eradicate. Biofilm formation is a multifactorial
event, controlled by quorum sensing and several proteins, such as the accessory gene regulator (Agr),
the biofilm-associated protein (Bap), the intercellular adhesion protein (Ica), and the S. aureus surface
protein (SasC).

More recently, antimicrobial resistance has been found even in previously unexplored
environments, where antibiotic pressure is missing, and it has been demonstrated that food can
serve as a vehicle for transmission of S. aureus to the human population [10,11]. Indeed, the comparison
between human isolates and animal-derived isolates was performed also in other studies [12] suggesting
that food, after handling and processing, could represent a source of human infection, and for food
operators a source of food contamination.

The aim of this work was to compare the antibiotic resistance profile and biofilm production of
S. aureus isolates derived from fourteen medical specimens and twenty-one animal-derived samples
collected in Sicily. In addition to the phenotypic characterization, the isolates were compared for the
presence of toxin genes and biofilm-related genes.

2. Results

2.1. Antimicrobial Susceptibility of S. aureus Human Isolates

Among the human isolates, twelve (85.7%) were resistant to benzylpenicillin, seven (50%)
were resistant to erythromycin; six (42.8%) were resistant to clindamycin; five (36%) were resistant
to oxacillin, cefaclor, ceftriaxone, ciprofloxacin and moxifloxacin; four (30.8%) were resistant to
amoxicillin-clavulanic acid; three (21.4%) were resistant to gentamicin and tetracycline; and only one
(7.1%) was resistant to sulfamethoxazole/trimethoprim (Table 1). Five human isolates (38.5%) resulted
positive for cefoxitin screening, thus representing MRSA strains, and resistance to a larger number of
antibiotics. There was no evidence of isolates that were resistant to linezolid, teicoplanin, vancomycin,
tigecycline, and fusidic acid (Table 1).
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Table 1. Antimicrobial resistance profile of human isolates. The following antibiotics were tested
by automatic VITEK® 2 system: benzylpenicillin (PEN), erythromycin (E), clindamycin (CLIN),
oxacillin (OXA), cefaclor (FAC), ceftriaxone (CTX), ciprofloxacin (CIP), moxifloxacin (MFA), amoxicillin-
clavulanic acid (AMC), gentamicin (GEN), tetracycline (TE), sulfamethoxazole-trimethoprim (SXT),
linezolid (LZD), vancomycin (VAN), tigecycline (TIG), and fusidic acid (AF). The susceptible (S),
intermediate (I), and resistant (R) phenotypes are reported. P and N indicate the positivity or negativity
to the cefoxitin screening. ND = not detected.
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1 Nail injury R S S S S S S S S S S S S S S S N
2 Generic swab R R R S S S R R S R S S S S S S N

3 Endoarticular
liquid R R R R R R R R R S S S S S S S P

4 Urine culture R S S S S S R R S S S S S S S S N
5 Sore R R R R R R R R R R S R S S S S P
6 Sputum S R R S S S S S S R S S S S S S N
7 Sputum R S S S S S R R S S S S S S S S N
8 Pharyngeal swab R R S S S S S S S S R S S S S S N
9 Pharyngeal swab R S S R R R S S R S S I S S S S P
10 Pharyngeal swab R ND S S S S S S S S S S S S S S N
11 Pharyngeal swab R R R R R R S S R S R S S S S S P
12 Pharyngeal swab R R R R R R S S R S R S S S S S P
13 Pharyngeal swab R S S S S S S S S S S S S S S S N
14 Pharyngeal swab S ND ND ND ND ND ND ND S ND S ND ND S ND ND ND

2.2. Antimicrobial Susceptibility of Animal-Derived S. aureus Isolates

Among the animal-derived isolates, eleven (52.4%) were resistant to benzylpenicillin, seven
(33.3%) were resistant to tetracycline, three (14.3%) were resistant to ceftriaxone and gentamicin, and
only one (4.7%) was resistant to lincomycin (Table 2). There was no evidence of isolates that were
resistant to erythromycin, oxacillin, and vancomycin (Table 2).

Table 2. Antimicrobial resistance profile of animal-derived isolates. The following antibiotics were
tested using the Kirby–Bauer method: penicillin (PEN), erythromycin (E), oxacillin (OXA), ceftriaxone
(CTX), gentamicin (GEN), tetracycline (TE), lincomycin (L), and vancomycin (VAN). The susceptible
(S), intermediate (I), and resistant (R) phenotypes are reported.

Isolate Sample PEN E OXA CTX GEN TE LIN VAN

15 Cow milk S S S S S S I S
16 Cow milk S I S S S I I S
17 Cow milk R S S I S R S S
18 Goat milk R S S S S S S S
19 Goat milk R I S S R S S S
20 Sheep milk S I S S S S S S
21 Sheep milk S S S R S R S S
22 Sheep milk R I S I S R S S
23 Sheep milk S I S S S S S S
24 Sheep milk R I S R I I I S
25 Sheep milk R S S S R S S S
26 Sheep milk R S S I S R S S
27 Cheese R I S I R S R S
28 Cheese R S S S S R S S
29 Cheese S S S S S S S S
30 Cheese R I S I I R I S
31 Cheese S S S S S S S S
32 Cheese S S S S S S S S
33 Tuma (cheese) R I S S S R S S
34 Pecorino (cheese) S S S S S S S S
35 Food preparation S S S S S S S S
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Among the isolates, 7.1% of human- and 28.5% of animal-derived isolates were sensitive to all
antibiotics used in this study. Regarding the human-derived isolates, 14.3% presented monoresistance,
while 78.6% of the isolates showed a multi-antibiotic resistance. Among the animal-derived isolates,
4.8% showed a single resistance, 47.6% a double resistance, and 4.8% a multiple resistance. Three of
the animal-derived isolates (14.3%) showed intermediate susceptibility to one or more molecules and
were not resistant to any antibiotics (Table 3).

Table 3. Comparison of antibiotic resistance profiles of human and animal isolates.

Number
of Strains

Sensitive to All
Antibiotics (%)

Single
Resistance (%)

Double
Resistance (%)

Multiple (≥3)
Resistance (%)

Intermediate
Sensitivity (%)

Humans 14 1 (7.1) 2 (14.3) 0 (0) 11 (78.6) 0 (0)
Animals 21 6 (28.5) 1 (4.8) 10 (47.6) 1 (4.8) 3 (14.3)

The comparison of the percentages of the antibiotic-resistant isolates showed that the prevalence
of penicillin, erythromycin, oxacillin, and ceftriaxone is much higher in human isolates than in animal
isolates. The opposite trend was registered for tetracycline resistance. No resistance to erythromycin,
oxacillin, and vancomycin was found in animal-derived isolates, and no resistance to lincomycin and
vancomycin was found in the human-derived isolates (Figure 1).
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Figure 1. Percentage of human- and animal-derived isolates resistant to the antibiotics used in this study.

2.3. Biofilm Production

All human-derived isolates (1–14) produced biofilm, as much or more than the positive control,
represented by the S. aureus strain ATCC 25923, a strong biofilm producer (Figure 2A). In particular,
isolates 3, 5, 12, and 13 produced the most biofilm. On the other hand, all the isolates derived from
animal samples (15–35) were weak or moderate biofilm formers (Figure 2B). Isolate 28 produced as
much biofilm as the positive control. The S. aureus human-derived isolates produced more biofilm than
the animal-derived isolates, and there is a significant difference between the two groups (p < 0.0001).
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production was measured as the absorbance at 600 nm wavelength after crystal violet staining of the
tubes containing the cultures.

2.4. Detection of Virulence and Biofilm Related Genes of S. aureus

The presence of mecA, toxin (sea-sej, tsst-1, eta and etb), and four biofilm-related (agr, bap, ica, sasC)
genes was investigated in all isolates by using PCRs. Five human-derived isolates (35.7%) positive to
mecA gene PCR amplification were found. One human-derived isolate (7.1%) resulted positive for
tsst-1 gene and nine isolates (64.2%) resulted positive for genes encoding the enterotoxins. In particular,
the sei and seg genes were frequently detected together (57.1%), followed by seh present in two isolates
(14.2%), and by sej, tsst-1, and see detected only in one (7.1%). One human-derived isolate (7.1%)
resulted positive for genes encoding the exfoliative toxins, eta and etb. The simultaneous presence
of several virulence genes was found in ten isolates (71.4%) as reported in Table 4. The agr gene was
found in one isolate (7.1%), ica in two isolates (14.2%), and sasC in eight isolates (57.1%).
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Table 4. Presence of the antibiotic resistance mecA gene, virulence (sea-sep, tsst-1, eta, and etb) and
biofilm-related (agr, bap, ica, sasC) genes. ND indicates the analyzed genes were not detected with the
used primers.

Internal
ID

Sample
Virulence Genes Biofilm-related Genes

sea, sec, see seg-i, sej, sep tsst-1, eta, etb, mecA agr, bap, ica, sasC

1 Nail injury ND seg, sei ND ND
2 Generic swab ND ND ND sasC
3 Endoarticular liquid ND sei, seg, sej mecA ica, sasC
4 Urine culture ND seg, sei ND sasC
5 Sore ND seg, sei mecA ND
6 Sputum ND ND ND sasC
7 Sputum ND seg, sei ND ND
8 Pharyngeal swab ND ND ND sasC
9 Pharyngeal swab ND seg, sei mecA ND

10 Pharyngeal swab ND ND tsst-1 agr, ica, sasC
11 Pharyngeal swab ND seh mecA ND
12 Pharyngeal swab ND seh mecA sasC
13 Pharyngeal swab see seg, sei ND sasC
14 Pharyngeal swab ND seg, sei eta, etb ND
15 Cow milk see ND ND ica
16 Cow milk ND ND ND ica
17 Cow milk see ND ND ica, sasC
18 Goat milk sec ND tsst-1 ica
19 Goat milk ND ND etb ica, sasC
20 Sheep milk ND ND ND ica
21 Sheep milk ND ND ND ica
22 Sheep milk ND ND ND ND
23 Sheep milk ND ND ND bap
24 Sheep milk ND ND ND ica, sasC
25 Sheep milk ND ND tsst-1 ND
26 Sheep milk ND ND ND ND
27 Cheese ND ND ND ND
28 Cheese sea ND eta ica, sasC
29 Cheese ND ND ND ica, sasC
30 Cheese sea ND ND ica, sasC
31 Cheese ND ND ND ica
32 Cheese ND ND etb ica, sasC
33 Cheese ND ND tsst-1 ica
34 Cheese ND ND tsst-1 ica
35 Food preparation sea ND tsst-1 bap, ica, sasC

Regarding the animal-derived isolates, none of them resulted positive for mecA gene, while
five isolates presented tsst-1 gene (23.8%), six isolates (28.6%) resulted positive for genes encoding
enterotoxins; specifically, three isolates (14.2%) presented sea gene, two isolates (9.5%) presented see
gene and one isolate (4.8%) presented sec gene. Three isolates resulted positive for both eta and etb
genes, two isolates (9.5%) presented only etb gene, and one isolate (4.8%) presented eta gene. Two
isolates (9.5%) were positive through PCR amplification to bap, eight isolates to sasC (38%), and sixteen
isolates to ica (76.2%).

3. Discussion

In this study, we report phenotypic and molecular analysis carried out on human- and
animal-derived S. aureus isolates collected in Sicily. Our results demonstrate that S. aureus isolates
from human specimens were multi-resistant to antibiotics and produce more biofilm than the isolates
collected from animal-derived samples. The high percentage (78.6%) of the human-derived isolates
with multiple antibiotic resistance is in accordance with a recent study carried out in Serbia [12].
On the other hand, in other studies the animal-derived isolates showed a higher biofilm production
than human-derived isolates [13]. The percentage of animal-derived isolates (47.6%) displaying
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multidrug-resistance was lower than those found in studies performed on other samples of animal
origin. Indeed, in a study conducted on meat and dairy products collected in Puglia (Italy), 68.8%
of the isolates were resistant to at least one antibiotic [14], and in another study performed on meat
and poultry in the United States, 52% of the isolates were multi-resistant [15]. It is possible that the
prevalence of an extensive and traditional farm management for ruminants in Sicily assures a lower
circulation for multidrug-resistant clones, especially in healthy animals and in food derived from
healthy animals, as in this study. In a previous study, in Ragusa Province in Sicily, on cows with
mastitis reared in semi-intensive management, a higher prevalence of MRSA was detected [16].

In our previous study [17], resistance to penicillin was the most diffused in both human- and
animal-derived isolates, even if a higher percentage (86%) was observed in human-derived isolates.

Besides penicillin, human-derived isolates showed a high prevalence of resistance to erythromycin
(50%), similar to results obtained on isolates collected from patients with early postoperative orthopedic
implant-based infections [18] (erythromycin 82%) and from swine, farmers, and abattoir workers [19]
(penicillin 96%, erythromycin 80.7%), even if the percentage of antibiotic resistant in our isolates
was lower. In addition, we found less MRSA (35.7%) with respect to a study conducted on S. aureus
isolates from skin and soft tissue infection, bloodstream infection, and lower respiratory tract infection
collected from South Italy (40.7%) [20]. By comparing our results with this latter study, we found
an increase of resistance to clindamycin (42.8 vs. 33%) oxacillin (36 vs. 0.9%), tetracycline (21.4 vs.
12.6%), and sulfamethoxazole-trimethoprim (7.1 vs. 3.2%) and a decrease of erythromycin (50 vs. 65%),
moxifloxacin (11 vs. 72.3%), and gentamicin (21.4 vs. 39.5%) resistant isolates. A similar percentage of
vancomycin, linezolid, and tigecycline resistant isolates was obtained.

With regards to animal-derived isolates, most strains showed resistance to penicillin (52%) and
tetracycline (33%) in according with previous works [11,17,20–23]. By comparing our results with
those obtained in a previous study [6] which reported the antimicrobial profile of 80 isolates collected
between 1998–2014, we found an increase of resistance to penicillin (52% vs. 35.7%), tetracycline (33%
vs. 20%), ceftriaxone (14% vs. 3.7%), and gentamicin (14% vs. 4%), which suggested the spread of
resistance. In contrast, the percentage of lincomycin resistant isolates (4.7% vs. 3.7%) was unchanged
and erythromycin resistance was lower in the new isolates (0 vs. 2.5%). We cannot rule out that the low
number of isolates can be a bias for this result. Moreover, we found that 43% of the animal-derived
isolates had an intermediate susceptibility to erythromycin, suggesting that this antibiotic should be
used in a controlled manner even in veterinary practice.

All human-derived isolates are biofilm formers, with the isolates 3, 5, 12, and 13 being the
strongest, whereas, isolates derived from food, dairy products, and animal tissue samples have a
weak/moderate biofilm capability, except for one isolate (28) showing a level comparable to the positive
control. The lowest prevalence of the bap PCR positive animal-derived samples (9.5%) is in accordance
with the low ability of these isolates to produce biofilm, since bap could facilitate biofilm production in
mastitis [24]. Moreover, the higher percentage of animal samples (76.2%) containing the ica locus, with
respect to the 14.2% of human-derived isolates, is in accordance with a study carried out in Iran [13].
In this study, sasC gene is involved, but not essential, in the biofilm formation process in S. aureus in
accordance with Schroeder [25]. In fact, we found this gene in eight human-derived isolates (57%) and
eight isolates derived from food, dairy products, and animal tissue samples (38%).

Antimicrobial spreading is a significant concern for public health worldwide. We analyzed the
human- and animal-derived isolates for antibiotic resistance and virulence factors. The presence of
the mecA gene was quite diffused (36%) in human-derived isolates and very low in animal-derived
isolates (5%).

Striking differences between human- and animal-derived isolates were also found in the relative
presence of enterotoxin genes. Interestingly, in human-derived isolates the simultaneous presence
of the enterotoxin genes, seg and sei, was quite frequent (50%). In our previous study, only a single
animal-derived isolate and four human-derived isolates derived from a severe poisoning case showed
the simultaneous presence of seg and sei [6]. In another recent study, sei was the second most diffuse
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enterotoxin in humans [12]. In addition, the animal strains showed the simultaneous presence of sea
and see at 14.3%, according to another study on enterotoxin-producing S. aureus isolated from mastitic
cows [26].

It is possible that the main reason for these differences is that human isolates are derived from
symptomatic non-hospitalized patients subjected to microbiological controls while those derived from
animals are part of a systematic screening. However, the results of this study confirm the importance
of controlling antibiotic use in medical and veterinary practice. Although the S. aureus human-derived
isolates could be more virulent for their antibiotic resistance, biofilm production, and presence of
virulence genes, our results suggest monitoring the animal-derived isolates, since they are developing
a greater resistance to the most commonly used antibiotics.

4. Materials and Methods

4.1. Clinical Sampling

Thirty-five S. aureus strains were isolated between December 2017 and February 2019 from different
matrices, following standard laboratory protocols.

Fourteen S. aureus human-derived isolates and twenty-one isolated from animal-derived food
were chosen for this analysis. (Table 5). Isolation was carried out by microbiological and biochemical
methods [6]. Frozen cell glycerol stocks of S. aureus isolates were prepared as described in [27] and
kept at −80 ◦C until use.

Table 5. The 35 S. aureus samples collected from different specimens between December 2017 and
February 2019.

Sample n◦

Cow milk 3
Cheese 8

Endoarticular liquid 1
Food preparation 1

Generic swab 1
Goat milk 2
Nail injury 1

Pharyngeal swab 7
Sheep milk 7

Sore 1
Sputum 2

Urine culture 1

4.2. Antimicrobial Susceptibility Tests of Bacterial Isolates

The susceptibility to antibiotics of the human-derived isolates was evaluated using the automatic
VITEK® 2 system (BioMérieux) following the manufacturer’s instructions. The microbial identification
cards (ID) and the antimicrobial susceptibility tests (AST) were used. The susceptibility to 17 antibiotics
(benzylpenicillin, amoxicillin-clavulanic acid, oxacillin, cefaclor, ceftriaxone, gentamicin, ciprofloxacin,
moxifloxacin, erythromycin, clindamycin, linezolid, teicoplanin, vancomycin, tetracycline, tigecycline,
fusidic acid and sulfamethoxazole-trimethoprim) was determined and interpreted according to the
manufacturer’s instructions. Methicillin Rresistant S. aureus (MRSA) were determined by cefoxitin
screening test.

Regarding the animal-derived isolates, the antimicrobial susceptibility profiles for the main classes
of antibiotics (penicillin, erythromycin, oxacillin, ceftriaxone, gentamicin tetracycline, lincomycin)
were determined by using the Kirby–Bauer method using Mueller–Hinton agar (MHA) medium [6].
The results were interpreted in accordance with the standards for inhibition zone diameters for
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Staphylococcus spp. [28] using the clinical breakpoints compiled by EUCAST (http://www.eucast.org/

clinical_breakpoints/). Vancomycin resistance was evaluated using the serial microdilution method.

4.3. Detection of SE (sea-see, seg-sei, sej, sep), tsst-1, eta, etb, mecA, and Biofilm Related Genes

Total DNA from S. aureus isolates was extracted by boiling the samples in 200µl of TE buffer (10 mM
Tris HCl, 1 mM EDTA, pH 8). The lysates obtained were numbered with an internal identification
number. Three multiplex PCR assays were carried out to detect virulence genes in S. aureus [6,29].
PCR to detect ica, bap, and sasC genes were carried out following thermal profile and oligonucleotides
reported in other studies [24,29,30]. Detection of femA was used as an internal positive control.
Nucleotide sequences and PCR product sizes for the S. aureus gene-specific oligonucleotide primers
used in this study are reported in Table 6.

Table 6. Nucleotide sequences of primers used in this study. The PCR product size is reported.

Gene Primer Oligonucleotide Sequence Size of Amplified
Product (bp)

sea GSEAR-1 GGTTATCAATGTGCGGGTGG
102GSEAR-2 CGGCACTTTTTTCTCTTCGG

seb
GSEBR-1 GTATGGTGGTGTAACTGAGC

164GSEBR-2 CCAAATAGTGACGAGTTAGG

sec GSECR-1 AGATGAAGTAGTTGATGTGTATGG
451GSECR-2 CACACTTTTAGAATCAACCG

sed
GSEDR-1 CCAATAATAGGAGAAAATAAAAG

278GSEDR-2 ATTGGTATTTTTTTTCGTTC

see GSEER-1 AGGTTTTTTCACAGGTCATCC
209GSEER-2 CTTTTTTTTCTTCGGTCAATC

mecA
GMECAR-1 ACTGCTATCCACCCTCAAAC

163GMECAR-2 CTGGTGAAGTTGTAATCTGG

eta
GETAR-1 GCAGGTGTTGATTTAGCATT

93GETAR-2 AGATGTCCCTATTTTTGCTG

etb
GETBR-1 ACAAGCAAAAGAATACAGCG

226GETBR-2 GTTTTTGGCTGCTTCTCTTG

tst
GTSSTR-1 ACCCCTGTTCCCTTATCATC

326GTSSTR-2 TTTTCAGTATTTGTAACGCC

ica
icaH-1m TATACCTTTCTTCGATGTCG

700icaH-7c CTTTCGTTATAACAGGCAAG

bap sasp-6m CCCTATATCGAAGGTGTAGAATTGCAC
1000sasp-7c GCTGTTGAAGTTAATACTGTACCTGC

sasC
CHsasC1for GCAACGAATCAAGCATTGG

600CHsasC1rev TGACAGCACTTCGTTAGG

agr agrB1 TATGCTCCTGCAGCAACTAA
1070agrC2 CTTGCGCATTTCGTTGTTGA

femA GFEMAR-1 AAAAAAGCACATAACAAGCG
132GFEMAR-2 GATAAAGAAGAAACCAGCAG

4.4. Biofilm Formation Assay

The test for biofilm production was performed as described previously with some minor
modifications [31,32]. In particular, after overnight growth of single colonies in 150 µL TSB at
37 ◦C in agitation for 24 h, the 96 microplates were washed twice with tap water. Then, 150 µL of a
0.1% of crystal violet in 0.9% w/v sodium chloride solution was added to each well and the plate was
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incubated for approximately 15 min at room temperature. After staining, the microplates were washed
again two to three times to remove any trace of dye and then left to dry at room temperature for a few
hours. Then, 150 µL of 33% acetic acid was used to solubilize biofilm forming cells and a microplate
reader (GloMax® multidetection system) was used to read the optical density at a wavelength of
600 nm. The average and standard deviation from a triplicate of each sample were determined. As a
positive control, S. aureus ATCC 25923 was used. The SAS software (version 9.4) was used to calculate
the p value. A p value ≤ 0.05 was considered as statistically significant.

5. Conclusions

Our study demonstrated that S. aureus isolates from human specimens displays more resistance
to antibiotics and produce more biofilm than the isolates collected from animal-derived samples.
However, this study confirmed the importance of controlling antibiotic use in medical and veterinary
practice and of monitoring the animal-derived isolates, since they are developing a greater resistance
to the most commonly used antibiotics.
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