Evaluation of CHROMagar™ LIN-R for the Screening of Linezolid Resistant Staphylococci from Positive Blood Cultures and Nasal Swab Screening Samples
Abstract
:1. Introduction
2. Results
2.1. Performance of CHROMagar™ LIN-R on Pure Isolates
2.2. Performance of CHROMagar™ LIN-R on Positive Blood Cultures with Grape Shaped Gram Positives
2.3. Performance of CHROMagar™ LIN-R on Nasal Swab Screening Samples
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Clinical Samples
4.3. CHROMagar™ LIN-R Inoculation Protocols
4.4. Bacterial Identification and Susceptibility Testing
4.5. Evaluation of the Inoculum Artifact
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, J.; Xia, Y. Molecular characteristics and risk factors associated with linezolid-resistant Enterococcus faecalis infection in Southwest China. J. Glob. Antimicrob. Resist. 2020, 22, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Leach, K.L.; Brickner, S.J.; Noe, M.C.; Miller, P.F. Linezolid, the first oxazolidinone antibacterial agent. Ann. N. Y. Acad. Sci. 2011, 1222, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Farrell, D.J.; Mendes, R.E.; Ross, J.E.; Sader, H.S.; Jones, R.N. LEADER Program Results for 2009: An Activity and Spectrum Analysis of Linezolid Using 6414 Clinical Isolates from 56 Medical Centers in the United States. Antimicrob. Agents Chemother. 2011, 55, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Klare, I.; Fleige, C.; Geringer, U.; Thürmer, A.; Bender, J.; Mutters, N.T.; Mischnik, A.; Werner, G. Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients. J. Glob. Antimicrob. Resist. 2015, 3, 128–131. [Google Scholar] [CrossRef]
- Belousoff, M.; Eyal, Z.; Radjainia, M.; Ahmed, T.; Bamert, R.S.; Matzov, D.; Bashan, A.; Zimmerman, E.; Mishra, S.; Cameron, D.; et al. Structural Basis for Linezolid Binding Site Rearrangement in the Staphylococcus aureus Ribosome. mBio 2017, 8, e00395-17. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ripa, L.; Feßler, A.T.; Hanke, D.; Eichhorn, I.; Azcona-Gutiérrez, J.M.; Alonso, C.A.; Pérez-Moreno, M.O.; Aspiroz, C.; Bellés, A.; Schwarz, S.; et al. Mechanisms of Linezolid Resistance Among Clinical Staphylococcus spp. in Spain: Spread of Methicillin- and Linezolid-Resistant S. epidermidis ST2. Microb. Drug Resist. 2021, 27, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Elghaieb, H.; Freitas, A.; Abbassi, M.S.; Novais, C.; Zouari, M.; Hassen, A.; Peixe, L. Dispersal of linezolid-resistant enterococci carrying poxtA or optrA in retail meat and food-producing animals from Tunisia. J. Antimicrob. Chemother. 2019, 74, 2865–2869. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.R.; Tedim, A.P.; Duarte, B.; Elghaieb, H.; Abbassi, M.S.; Hassen, A.; Read, A.; Alves, V.; Novais, C.; Peixe, L. Linezolid-resistant (Tn6246::fexB-poxtA) Enterococcus faecium strains colonizing humans and bovines on different continents: Similarity without epidemiological link. J. Antimicrob. Chemother. 2020, 75, 2416–2423. [Google Scholar] [CrossRef]
- Long, K.S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. The Cfr rRNA Methyltransferase Confers Resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A Antibiotics. Antimicrob. Agents Chemother. 2006, 50, 2500–2505. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef] [Green Version]
- Antonelli, A.; D’Andrea, M.M.; Brenciani, A.; Galeotti, C.L.; Morroni, G.; Pollini, S.; Varaldo, P.E.; Rossolini, G.M. Characterization of poxtA, a novel phenicol–oxazolidinone–tetracycline resistance gene from an MRSA of clinical origin. J. Antimicrob. Chemother. 2018, 73, 1763–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, S.A.; Shore, A.C.; O’Connell, B.; Brennan, G.I.; Coleman, D.C. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: High prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J. Antimicrob. Chemother. 2020, 75, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, M.; Gao, Y.; Chen, L.; Wang, L. Emergence of plasmid-mediated oxazolidinone resistance gene poxtA from CC17 Enterococcus faecium of pig origin. J. Antimicrob. Chemother. 2019, 74, 2524–2530. [Google Scholar] [CrossRef]
- Bender, J.K.; Fleige, C.; Klare, I.; Werner, G. Development of a multiplex-PCR to simultaneously detect acquired linezolid resistance genes cfr, optrA and poxtA in enterococci of clinical origin. J. Microbiol. Methods 2019, 160, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Fleige, C.; Klare, I.; Weber, R.E.; Bender, J.K. Validating a screening agar for linezolid-resistant enterococci. BMC Infect. Dis. 2019, 19, 1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Rodríguez-Villodres, A.; Poirel, L. A selective culture medium for screening linezolid-resistant gram-positive bacteria. Diagn. Microbiol. Infect. Dis. 2019, 95, 1–4. [Google Scholar] [CrossRef]
- Layer, F.; Weber, R.E.; Fleige, C.; Strommenger, B.; Cuny, C.; Werner, G. Excellent performance of CHROMagarTM LIN-R to selectively screen for linezolid-resistant enterococci and staphylococci. Diagn. Microbiol. Infect. Dis 2020, 99, 115301. [Google Scholar] [CrossRef]
- Dortet, L.; Glaser, P.; Kassis-Chikhani, N.; Girlich, D.; Ichai, P.; Boudon, M.; Samuel, D.; Creton, E.; Imanci, D.; Bonnin, R.; et al. Long-lasting successful dissemination of resistance to oxazolidinones in MDR Staphylococcus epidermidis clinical isolates in a tertiary care hospital in France. J. Antimicrob. Chemother. 2017, 73, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, P.; Dortet, L.; Poirel, L. Rapid Detection of Extended-Spectrum-β-Lactamase-Producing Enterobacteriaceae. J. Clin. Microbiol. 2012, 50, 3016–3022. [Google Scholar] [CrossRef] [Green Version]
- Gostev, V.; Leyn, S.; Kruglov, A.; Likholetova, D.; Kalinogorskaya, O.; Baykina, M.; Dmitrieva, N.; Grigorievskaya, Z.; Priputnevich, T.; Lyubasovskaya, L.; et al. Global Expansion of Linezolid-Resistant Coagulase-Negative Staphylococci. Front. Microbiol 2021, 12, 661798. [Google Scholar] [CrossRef]
- Kosecka-Strojek, M.; Sadowy, E.; Gawryszewska, I.; Klepacka, J.; Tomasik, T.; Michalik, M.; Hryniewicz, W.; Miedzobrodzki, J. Emergence of linezolid-resistant Staphylococcus epidermidis in the tertiary children’s hospital in Cracow, Poland. Eur. J. Clin. Microbiol. 2020, 39, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The emerging problem of linezolid-resistant Staphylococcus. J. Antimicrob. Chemother. 2012, 68, 4–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejoies, L.; Boukthir, S.; Péan de Ponfilly, G.; Le Guen, R.; Zouari, A.; Potrel, S.; Collet, A.; Auger, G.; Jacquier, H.; Fihman, V.; et al. Performance of commercial methods for linezolid susceptibility testing of Enterococcus faecium and Enterococcus faecalis. J. Antimicrob. Chemother. 2020, 75, 2587–2593. [Google Scholar] [CrossRef]
- Jones, R.N.; Ross, J.E.; Bell, J.M.; Utsuki, U.; Fumiaki, I.; Kobayashi, I.; Turnidge, J.D. Zyvox® Annual Appraisal of Potency and Spectrum program: Linezolid surveillance program results for 2008. Diagn. Microbiol. Infect. Dis. 2009, 65, 404–413. [Google Scholar] [CrossRef]
- Shariati, A.; Dadashi, M.; Chegini, Z.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S.; Darban-Sarokhalil, D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase–negative staphylococci strains: A systematic review and meta-analysis. Antimicrob Resist. Infect Control. 2020, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain Description | CHROMagar™ LIN-R | Mueller-Hinton | ||||
---|---|---|---|---|---|---|
Colony Color | Size and Quantity | Colony Color | Size and Quantity | LZD MICs (mg/L) | ||
24 h | 48 h | |||||
Pure isolates of staphylococci and E. faecium (n = 34) | ||||||
S. epidermidis LZDR a, n = 14 | pink | 0.5 mm Q+ b | 1 mm Q+ | white | Q+ | >4 |
S. aureus LZDR, n = 1 | pink | 0.5 mm Q+ | 1 mm Q+ | white | Q+ | 8 |
E. faecium LZDR, n = 5 | blue | 0.5 mm Q+ | 1 mm Q+ | white | Q+ | 12 and >256 |
S. epidermidis LZDS, n = 3 | NA c | 0 | 0 | white | Q+ | ≤1 |
S. aureus LZDS, n = 5 | NA | 0 | 0 | white | Q+ | ≤2 |
S. capitis LZDS, n = 2 | NA | 0 | 0 | white | Q+ | ≤1 |
S. hominis LZDS, n = 1 | NA | 0 | 0 | white | Q+ | 0.75 |
S. caprae LZDS, n = 1 | NA | 0 | 0 | white | Q+ | 1 |
E. faecium LZDS, n = 2 | NA | 0 | 0 | white | Q+ | ≤2 |
Positive blood cultures with grape shaped gram positives (n = 18) | ||||||
S. epidermidis LZDR, n = 9 | pink | 0.5 mm Q+ | 1.5 mm Q+ | white | 1 mm Q+ | |
S. epidermidis LZDS, n = 4 | white/pink | 0.5 mm q d | 1 mm q | white | 1 mm Q+ | |
S. warneri LZDS, n = 1 | white/pink | 0.5 mm q | 1 mm q | white | 1 mm Q+ | |
Micrococcus luteus LZDS, n = 1 | white | 0.5 mm q | 1 mm q | yellow | 1 mm Q+ | |
S. epidermidis LZDS, n = 1 | NA | 0 | 0 | white | 1 mm Q+ | |
S. haemolyticus LZDS, n = 1 | NA | 0 | 0 | white | 1 mm Q+ | |
S. hominis LZDS, n = 1 | NA | 0 | 0 | grey | 1 mm Q+ | |
Sensitivity for pure isolates and blood cultures 100% (95% CI 80–100%) Specificity for pure isolates and blood cultures 100% (95% CI 79.9–100%) |
Sample n | Identification of Strains/Resistance | Bacterial Colonies on CHROMagar™ LIN-R | LZD MIC (mg/L) | |||
---|---|---|---|---|---|---|
Color | Size and Quantity | 24 h Incubation | 48 h Incubation | |||
24 h Incubation | 48 h Incubation | |||||
Targeted LZDR gram positives (n = 39) | ||||||
(n = 28) | Staphylococcus epidermidis LZDR | pink | - | 1.5 mm q to Q+ | 24 to >256 | >256 |
(n = 1) | Staphylococcus epidermidis LZDR | pink | 1 mm Q+ | 1.5 mm Q+ | 24 | >256 |
(n = 10) | Corynebacterium tuberculosis LZDR | pink | - | 1.5 mm q to Q+ | >256 | >256 |
LZDS gram positives (n = 9) | ||||||
(n = 1) | Staphylococcus epidermidis LZDS | pink | - | 2 mm Q+ | 1 | 1.5 |
(n = 4) | Enterococcus faecalis LZDS | blue | - | 0.5 mm Q+ | 1.5 | 2 |
(n = 2) | Lactobacillus gasseri LZDS | blue | - | 0.5 mm Q+ | 1–2 | 1.5–3 |
(n = 1) | Lactococcus lactis LZDS | blue | - | 0.5–2 mm Q+ | 1.5 | 2 |
(n = 1) | Staphylococcus aureus LZDS | yellow | - | 1.5 mm Q+ | 1.5 | 2 |
gram negatives (n = 18) | ||||||
(n = 1) | Achromobacter xylosoxidans | white | - | 1 mm Q+ | NA | NA |
(n = 1) | Acinetobacter baumannii | white | - | 3 mm q | NA | NA |
(n = 3) | Enterobacter cloacae complex | blue | - | 2 mm q | NA | NA |
(n = 1) | Enterobacter cloacae complex | blue | 1.5 mm q | 2 mm q | NA | NA |
(n = 1) | Escherichia coli | blue | - | 2 mm q | NA | NA |
(n = 1) | Klebsiella aerogenes | blue | - | 2 mm q | NA | NA |
(n = 6) | Klebsiella pneumoniae | blue | - | 2 mm q | NA | NA |
(n = 1) | Klebsiella pneumoniae | blue | 1.5 mm q | 2 mm q | NA | NA |
(n = 2) | Pseudomonas aeruginosa | pink | - | 2 mm q | NA | NA |
(n = 1) | Pseudomonas aeruginosa | pink | 1.5 mm q | 2 mm q | NA | NA |
Fungi (n = 5) | ||||||
(n = 4) | Candida tropicalis | pink | - | 0.5 mm Q+ | NA | NA |
(n = 1) | Candida orthopsilosis | pink | - | 1 mm Q+ | NA | NA |
Negative culture (n = 287) | ||||||
Prevalence of LZDR gram positives: 10.9% (CI95% 7.9–14.7%) | ||||||
Specificity of the CHROMagar™ LIN-R: 89.9% (CI95% 86–92.9%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Girlich, D.; Mihaila, L.; Cattoir, V.; Laurent, F.; Begasse, C.; David, F.; Metro, C.-A.; Dortet, L. Evaluation of CHROMagar™ LIN-R for the Screening of Linezolid Resistant Staphylococci from Positive Blood Cultures and Nasal Swab Screening Samples. Antibiotics 2022, 11, 313. https://doi.org/10.3390/antibiotics11030313
Girlich D, Mihaila L, Cattoir V, Laurent F, Begasse C, David F, Metro C-A, Dortet L. Evaluation of CHROMagar™ LIN-R for the Screening of Linezolid Resistant Staphylococci from Positive Blood Cultures and Nasal Swab Screening Samples. Antibiotics. 2022; 11(3):313. https://doi.org/10.3390/antibiotics11030313
Chicago/Turabian StyleGirlich, Delphine, Liliana Mihaila, Vincent Cattoir, Frédéric Laurent, Christine Begasse, Florence David, Carole-Ann Metro, and Laurent Dortet. 2022. "Evaluation of CHROMagar™ LIN-R for the Screening of Linezolid Resistant Staphylococci from Positive Blood Cultures and Nasal Swab Screening Samples" Antibiotics 11, no. 3: 313. https://doi.org/10.3390/antibiotics11030313
APA StyleGirlich, D., Mihaila, L., Cattoir, V., Laurent, F., Begasse, C., David, F., Metro, C. -A., & Dortet, L. (2022). Evaluation of CHROMagar™ LIN-R for the Screening of Linezolid Resistant Staphylococci from Positive Blood Cultures and Nasal Swab Screening Samples. Antibiotics, 11(3), 313. https://doi.org/10.3390/antibiotics11030313