National Monitoring of Veterinary-Dispensed Antimicrobials for Use on Pig Farms in Austria: 2015–2020
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Overall Antimicrobials Dispensed
2.2.1. Mass-Based Metrics (mg/PCU)
2.2.2. Comparison of Mass-Based and Dose-Based Metrics
2.3. Antimicrobials of Critical Importance to Human Medicine
2.4. Route of Administration for the Dispensed Antimicrobials
2.5. Antimicrobial Use on Piglet production/Breeding Units
2.6. Antimicrobial Use on Farrow-To-Finish Farms
2.7. Antimicrobial Use on Fattening Farms
2.8. Antimicrobial Use on Piglet-Rearing Farms
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Pig Population Data
5.2. Antimicrobial Use Data
5.3. Classification into Prudent Use Categories
5.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Neill, J. Antimicrobials in Agriculture and the Environment: Reducing Unnecessary Use and Waste; The Wellcome Trust: London, UK, 2015; Available online: https://amr-review.org/ (accessed on 14 January 2022).
- EU Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Available online: https://eur-lex.europa.eu/eli/reg/2019/6/oj (accessed on 3 December 2021).
- Jensen, H.H.; Hayes, D.J. Impact of Denmark’s ban on antimicrobials for growth promotion. Curr. Opin. Microbiol. 2014, 19, 30–36. [Google Scholar] [CrossRef]
- EMA Trends in the Sales of Veterinary Antimicrobial Agents in Nine European Countries: Reporting Period 2005–2009. Available online: www.ema.europa.eu/docs/en_GB/document_library/Report/2011/09/WC500112309.pdf (accessed on 30 June 2018).
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 19 EU/EEA Countries in 2010-Second ESVAC Report; European Medicines Agency: Amsterdam, The Netherlands, 2012.
- European Medicines Agency. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020 (11th ESVAC Report); European Medicines Agency: Amsterdam, The Netherlands, 2021.
- BMG. Verordnung des Bundesministers für Gesundheit, mit der ein System zur Überwachung des Vertriebs und Verbrauchs von Antibiotika im Veterinärbereich eingerichtet wird (Veterinär-Antibiotika-Mengenstr. 2014. Available online: https://www.ris.bka.gv.at/Dokumente/BgblAuth/BGBLA_2014_II_83/BGBLA_2014_II_83.html (accessed on 14 January 2022).
- BMGF Tierarzneimittelkontrollgesetz-TAKG [Control of Veterinary Medicinal Products Law]. Available online: https://www.ris.bka.gv.at/GeltendeFassung/Bundesnormen/20001741/TAKG, Fassung vom 06.10.2016.pdf (accessed on 1 June 2017).
- BMG. Verordnung des Bundesministers für Gesundheit über die Anerkennung und den Betrieb von Tiergesundheitsdiensten (Tiergesundheitsdienst-Verordnung 2009-TGD-VO 2009); Bundesministerium für Gesundheit: Vienna, Austria, 2009; pp. 1–26. [Google Scholar]
- Statistik Austria Table: Livestock 2011 to 2021 (Dated 3 September 2021). Available online: https://www.statistik.at/web_en/statistics/Economy/agriculture_and_forestry/livestock_animal_production/livestock/index.html (accessed on 12 January 2022).
- BMLRT Tabelle 2.2.2.4-Struktur viehhaltender Betriebe Laut Veterinärinformationssystem (VIS) (Structure of Livestock-Keeping Agricultural Holdings according to Official Veterinary Authorities (VIS)). Available online: https://j1dev.agrarforschung.at/index.php?option=com_rsfiles&folder=Gruener_Bericht&Itemid=477&lang=de&limitstart=20 (accessed on 12 January 2022).
- Fuchs, R.; Fuchs, K. Bericht über den Vertrieb von Antibiotika in der Veterinärmedizin in Österreich 2016–2020 (Report on Veterinary Antimicrobial Sales/Dispensing in Austria 2016–2020); AGES: Graz, Austria, 2021. [Google Scholar]
- EMA Defined Daily Doses for Animals (DDDvet) and Defined Course Doses for Animals (DCDvet): European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2016/04/WC500205410.pdf (accessed on 1 July 2021).
- Sanders, P.; Vanderhaeghen, W.; Fertner, M.; Fuchs, K.; Obritzhauser, W.; Agunos, A.; Carson, C.; Borck Høg, B.; Dalhoff Andersen, V.; Chauvin, C.; et al. Monitoring of Farm-Level Antimicrobial Use to Guide Stewardship: Overview of Existing Systems and Analysis of Key Components and Processes. Front. Vet. Sci. 2020, 7, 540. [Google Scholar] [CrossRef]
- BMLRT. Table 6.3.3—Umrechnungsschlüssel für landwirtschaftliche Nutztiere (Conversion table for farm animals (LSU). In Grüner Bericht 2021; Bundesministerium für Landwirtschaft, Regionen und Tourismus (BMLRT): Vienna, Austria, 2021; p. 243. [Google Scholar]
- Sanders, P.; Mevius, D.; Veldman, K.; van Geijlswijk, I.; Wagenaar, J.A.; Bonten, M.; Heederik, D. Comparison of different antimicrobial use indicators and antimicrobial resistance data in food-producing animals. JAC-Antimicrob. Resist. 2021, 3, 1–4. [Google Scholar] [CrossRef]
- O’Neill, L.; Rodrigues da Costa, M.; Leonard, F.; Gibbons, J.; Calderón Díaz, J.A.; McCutcheon, G.; Manzanilla, E.G. Does the Use of Different Indicators to Benchmark Antimicrobial Use Affect Farm Ranking? Front. Vet. Sci. 2020, 7, 558793. [Google Scholar] [CrossRef]
- European Medicines Agency Categorisation of Antibiotics Used in Animals Promotes Responsible Use to Protect Public and Animal Health. Available online: https://www.ema.europa.eu/en/news/categorisation-antibiotics-used-animals-promotes-responsible-use-protect-public-animal-health (accessed on 23 June 2021).
- European Medicines Agency Categorisation of Antibiotics in the European Union. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 29 December 2021).
- Stebler, R.; Carmo, L.P.; Heim, D.; Naegeli, H.; Eichler, K.; Muentener, C.R. Extrapolating Antibiotic Sales to Number of Treated Animals: Treatments in Pigs and Calves in Switzerland, 2011–2015. Front. Vet. Sci. 2019, 6, 318. [Google Scholar] [CrossRef]
- Trauffler, M.; Griesbacher, A.; Fuchs, K.; Köfer, J. Antimicrobial drug use in Austrian pig farms: Plausibility check of electronic on-farm records and estimation of consumption. Vet. Rec. 2014, 175, 402. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, L.; Rodrigues da Costa, M.; Leonard, F.C.; Gibbons, J.; Calderón Díaz, J.A.; McCutcheon, G.; Manzanilla, E.G. Quantification, description and international comparison of antimicrobial use on Irish pig farms. Porc. Health Manag. 2020, 6, 30. [Google Scholar] [CrossRef]
- Veterinary Medicines Directorate. UK Veterinary Antibiotic Resistance and Sales Surveillance Report; Veterinary Medicines Directorate: Addlesone, UK, 2021.
- Tarakdjian, J.; Capello, K.; Pasqualin, D.; Santini, A.; Cunial, G.; Scollo, A.; Mannelli, A.; Tomao, P.; Vonesch, N.; Martino, G. Di Antimicrobial use on Italian Pig Farms and its Relationship with Husbandry Practices. Animals 2020, 10, 417. [Google Scholar] [CrossRef] [Green Version]
- Echtermann, T.; Muentener, C.; Sidler, X.; Kümmerlen, D. Antimicrobial Drug Consumption on Swiss Pig Farms: A Comparison of Swiss and European Defined Daily and Course Doses in the Field. Front. Vet. Sci. 2019, 6, 240. [Google Scholar] [CrossRef] [Green Version]
- Collineau, L.; Belloc, C.; Stärk, K.D.C.; Hémonic, A.; Postma, M.; Dewulf, J.; Chauvin, C. Guidance on the Selection of Appropriate Indicators for Quantification of Antimicrobial Usage in Humans and Animals. Zoonoses Public Health 2017, 64, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Vet. Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef]
- Attauabi, M.; Borck Høg, B.; Müller-Pebody, B. DANMAP 2020; DTU, Statens Serum Institut: Copenhagen, Denmark, 2021. [Google Scholar]
- Abe, R.; Takagi, H.; Fujimoto, K.; Sugiura, K. Evaluation of the antimicrobial use in pigs in Japan using dosage-based indicators. PLoS ONE 2020, 15, e0241644. [Google Scholar] [CrossRef] [PubMed]
- Græsbøll, K.; Larsen, I.; Clasen, J.; Birkegård, A.C.; Nielsen, J.P.; Christiansen, L.E.; Olsen, J.E.; Angen, Ø.; Folkesson, A. Effect of tetracycline treatment regimens on antibiotic resistance gene selection over time in nursery pigs. BMC Microbiol. 2019, 19, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renzhammer, R.; Loncaric, I.; Ladstätter, M.; Pinior, B.; Roch, F.F.; Spergser, J.; Ladinig, A.; Unterweger, C. Detection of Various Streptococcus spp. and Their Antimicrobial Resistance Patterns in Clinical Specimens from Austrian Swine Stocks. Antibiotics 2020, 9, 893. [Google Scholar] [CrossRef]
- Renzhammer, R.; Loncaric, I.; Roch, F.; Pinior, B.; Käsbohrer, A.; Spergser, J.; Ladinig, A.; Unterweger, C. Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria. Antibiotics 2020, 9, 208. [Google Scholar] [CrossRef]
- SDA. Usage of Antibiotics in Agricultural Livestock in The Netherlands in 2020-Trends and Benchmarking of Livestock Farms and Veterinarians; The Netherlands Veterinary Medicines Institute: Utrecht, The Netherlands, 2021. [Google Scholar]
- Rhouma, M.; Beaudry, F.; Letellier, A. Resistance to colistin: What is the fate for this antibiotic in pig production? Int. J. Antimicrob. Agents 2016, 48, 119–126. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Laxminarayan, R.; Mendelson, M. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int. J. Infect. Dis. 2017, 54, 77–84. [Google Scholar] [CrossRef] [Green Version]
- van Rennings, L.; von Münchhausen, C.; Ottilie, H.; Hartmann, M.; Merle, R.; Honscha, W.; Käsbohrer, A.; Kreienbrock, L. Cross-Sectional Study on Antibiotic Usage in Pigs in Germany. PLoS ONE 2015, 10, e0119114. [Google Scholar] [CrossRef] [Green Version]
- Burow, E.; Käsbohrer, A. Risk Factors for Antimicrobial Resistance in Escherichia coli in Pigs Receiving Oral Antimicrobial Treatment: A Systematic Review. Microb. Drug Resist. 2017, 23, 194–205. [Google Scholar] [CrossRef]
- Burow, E.; Simoneit, C.; Tenhagen, B.A.; Käsbohrer, A. Oral antimicrobials increase antimicrobial resistance in porcine E. coli – A systematic review. Prev. Vet. Med. 2014, 113, 364–375. [Google Scholar] [CrossRef]
- Collineau, L.; Backhans, A.; Dewulf, J.; Emanuelson, U.; Grosse Beilage, E.; Lehébel, A.; Loesken, S.; Okholm Nielsen, E.; Postma, M.; Sjölund, M.; et al. Profile of pig farms combining high performance and low antimicrobial usage within four European countries. Vet. Rec. 2017, 181, 657. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Blau, K.; Parcina, M.; Sib, E.; Smalla, K.; Schmithausen, R.; Heinemann, C.; Hammerl, J.A.; Kreyenschmidt, J. Colistin-Resistant Enterobacteriaceae Isolated From Process Waters and Wastewater From German Poultry and Pig Slaughterhouses. Front. Microbiol. 2020, 11, 2699. [Google Scholar] [CrossRef]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in pig production: Chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef]
- WHO. Critically Important Antimicrobials for Human Medicine—5th Revision 2016; WHO: Geneva, Switzerland, 2017.
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 9 January 2021).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; D’, L.; Mcgowan, A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
Production System | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|---|
Farrow-to-finish | 34.1 | 34.5 | 35.6 | 35.5 | 35.1 | 35.3 |
Fattening | 36.0 | 38.0 | 36.6 | 37.6 | 38.7 | 40.0 |
Piglet rearing | 1.5 | 1.2 | 0.9 | 1.1 | 1.1 | 0.8 |
Breeding | 23.9 | 23.6 | 23.9 | 22.2 | 22.4 | 23.1 |
Not assignable | 4.6 | 2.7 | 3.1 | 3.7 | 2.8 | 0.8 |
Proportion of Antimicrobials Dispensed in % per Year | ||||||
---|---|---|---|---|---|---|
Antimicrobial Class | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
Tetracyclines | 44.68 | 45.33 | 46.57 | 50.43 | 39.77 | 43.79 |
Penicillins with extend. spectrum | 13.72 | 13.88 | 15.43 | 14.02 | 15.54 | 15.22 |
Polymyxins | 8.01 | 8.63 | 7.65 | 6.93 | 8.18 | 9.51 |
Macrolides | 8.67 | 8.43 | 9.10 | 9.77 | 9.87 | 9.00 |
Aminoglycosides | 1.46 | 1.20 | 1.21 | 3.66 | 10.83 | 8.30 |
Sulfonamides | 3.99 | 3.94 | 4.72 | 4.24 | 4.34 | 3.55 |
Trimethoprim and derivatives | 3.79 | 3.81 | 4.57 | 4.00 | 4.05 | 3.22 |
Fluoroquinolones | 2.15 | 2.35 | 2.57 | 2.30 | 2.57 | 2.83 |
Pleuromutilins | 0.94 | 1.17 | 0.98 | 1.42 | 1.58 | 1.53 |
3rd/4th-gen. cephalosporins | 0.96 | 1.05 | 1.03 | 0.95 | 1.09 | 1.10 |
β-lactamase-sensitive penicillins | 0.94 | 0.96 | 0.93 | 0.82 | 0.90 | 0.94 |
Amphenicols | 0.43 | 0.41 | 0.38 | 0.44 | 0.42 | 0.43 |
Lincosamides | 5.43 | 4.74 | 2.78 | 0.48 | 0.47 | 0.37 |
Other antibacterials | 4.82 | 4.10 | 2.10 | 0.54 | 0.39 | 0.21 |
Proportion of Antimicrobials Dispensed in % per Year | ||||||
---|---|---|---|---|---|---|
Antimicrobial Class | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
Tetracyclines | 63.91 | 63.61 | 61.88 | 64.37 | 56.40 | 59.58 |
Penicillins with extend. spectrum | 14.25 | 14.54 | 16.23 | 14.73 | 18.51 | 17.76 |
Macrolides | 6.36 | 6.20 | 6.47 | 7.02 | 7.63 | 6.86 |
Sulfonamides | 5.92 | 5.78 | 6.84 | 6.07 | 6.91 | 5.34 |
Polymyxins | 3.13 | 3.45 | 3.02 | 2.77 | 3.67 | 4.19 |
Aminoglycosides | 1.14 | 1.08 | 0.96 | 1.10 | 2.17 | 1.90 |
Pleuromutilins | 0.62 | 0.78 | 0.64 | 0.86 | 1.13 | 1.08 |
Trimethoprim and derivatives | 1.13 | 1.15 | 1.37 | 1.21 | 1.38 | 1.07 |
β-lactamase-sensitive penicillins | 0.78 | 0.80 | 0.77 | 0.69 | 0.85 | 0.87 |
Fluoroquinolones | 0.32 | 0.36 | 0.38 | 0.36 | 0.43 | 0.46 |
Amphenicols | 0.28 | 0.27 | 0.24 | 0.29 | 0.31 | 0.31 |
3rd/4th-gen. cephalosporins | 0.15 | 0.17 | 0.16 | 0.15 | 0.20 | 0.20 |
Lincosamides | 0.84 | 0.76 | 0.46 | 0.13 | 0.17 | 0.19 |
Other antibacterials | 1.19 | 1.06 | 0.58 | 0.26 | 0.23 | 0.19 |
European Medicines Agency Category | |||
---|---|---|---|
A (“Avoid”) | B (“Restrict”) | C (“Caution”) | D (“Prudent use”) |
Not authorised for veterinary use in the European Union | Critically important for human health | Alternatives exist in human medicine | First line treatments but only when medically necessary |
|
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Firth, C.L.; Fuchs, R.; Fuchs, K. National Monitoring of Veterinary-Dispensed Antimicrobials for Use on Pig Farms in Austria: 2015–2020. Antibiotics 2022, 11, 216. https://doi.org/10.3390/antibiotics11020216
Firth CL, Fuchs R, Fuchs K. National Monitoring of Veterinary-Dispensed Antimicrobials for Use on Pig Farms in Austria: 2015–2020. Antibiotics. 2022; 11(2):216. https://doi.org/10.3390/antibiotics11020216
Chicago/Turabian StyleFirth, Clair L., Reinhard Fuchs, and Klemens Fuchs. 2022. "National Monitoring of Veterinary-Dispensed Antimicrobials for Use on Pig Farms in Austria: 2015–2020" Antibiotics 11, no. 2: 216. https://doi.org/10.3390/antibiotics11020216
APA StyleFirth, C. L., Fuchs, R., & Fuchs, K. (2022). National Monitoring of Veterinary-Dispensed Antimicrobials for Use on Pig Farms in Austria: 2015–2020. Antibiotics, 11(2), 216. https://doi.org/10.3390/antibiotics11020216