LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electrochemical Investigation
2.2. Liver Microsomes Assay
3. Materials and Methods
3.1. Chemicals
3.2. ECR/ESI-HRMS
3.3. Microsomal Assay
3.4. LC-HRMS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huczynski, A. Salinomycin—A New Cancer Drug Candidate. Chem. Biol. Drug Des. 2012, 79, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Kevin, I.D.A.; Meujo, D.A.F.; Hamann, M.T. Polyether ionophores: Broad-spectrum and promising biologically active molecules for the control of drug-resistant bacteria and parasites. Expert Opin. Drug Discov. 2009, 4, 109–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.B.; Onder, T.T.; Jiang, G.; Tao, K.; Kuperwasser, C.; Weinberg, R.A.; Lander, E.S. Identification of Selective Inhibitors of Cancer Stem Cells by High-Throughput Screening. Cell 2009, 138, 645–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoszczak, M.; Huczyński, A. Salinomycin and its derivatives—A new class of multiple-targeted “magic bullets”. Eur. J. Med. Chem. 2019, 176, 208–227. [Google Scholar] [CrossRef] [PubMed]
- Bletsou, A.A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N.S. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC Trends Anal. Chem. 2015, 66, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Pico, Y.; Barcelo, D. Transformation products of emerging contaminants in the environment and high-resolution mass spectrometry: A new horizon. Anal. Bioanal. Chem. 2015, 407, 6257–6273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotthoff, L.; Keller, J.; Lörchner, D.; Mekonnen, T.F.; Koch, M. Transformation products of organic contaminants and residues—Overview of current simulation methods. Molecules 2019, 24, 753. [Google Scholar] [CrossRef] [Green Version]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; de Lourdes Bastos, M.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Kolar, B.; et al. Safety and efficacy of Sacox® microGranulate (salinomycin sodium) for chickens for fattening and chickens reared for laying. EFSA J. 2017, 15, e04670. [Google Scholar] [CrossRef] [Green Version]
- Olejnik, M.; Radko, L.; Jedziniak, P. Identification of metabolites of anticancer candidate salinomycin using liquid chromatography coupled with quadrupole time-of-flight and hybrid triple quadrupole linear ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 2018, 32, 629–634. [Google Scholar] [CrossRef]
- Radko, L.; Olejnik, M.; Posyniak, A. Primary Human Hepatocytes, But not HepG2 or Balb/c 3T3 Cells, Efficiently Metabolize Salinomycin and Are Resistant to Its Cytotoxicity. Molecules 2020, 25, 1174. [Google Scholar] [CrossRef] [Green Version]
- Radko, L.; Olejnik, M. Cytotoxicity of anticancer candidate salinomycin and identification of its metabolites in rat cell cultures. Toxicol Vitr. 2018, 52, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Vertesy, L.; Heil, K.; Fehlhaber, H.W.; Ziegler, W. Microbial decomposition of salinomycin. J. Antibiot. 1987, 40, 388–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munaretto, J.S.; Yonkos, L.; Aga, D.S. Transformation of ionophore antimicrobials in poultry litter during pilot-scale composting. Environ. Pollut. 2016, 212, 392–400. [Google Scholar] [CrossRef]
- Sun, P.; Cabrera, M.L.; Huang, C.H.; Pavlostathis, S.G. Biodegradation of veterinary ionophore antibiotics in broiler litter and soil microcosms. Environ. Sci. Technol. 2014, 48, 2724–2731. [Google Scholar] [CrossRef] [PubMed]
- Schlusener, M.P.; von Arb, M.A.; Bester, K. Elimination of macrolides, tiamulin, and salinomycin during manure storage. Arch. Environ. Contam. Toxicol. 2006, 51, 21–28. [Google Scholar] [CrossRef]
- Sun, P.; Yao, H.; Minakata, D.; Crittenden, J.C.; Pavlostathis, S.G.; Huang, C.H. Acid-catalyzed transformation of ionophore veterinary antibiotics: Reaction mechanism and product implications. Environ. Sci. Technol. 2013, 47, 6781–6789. [Google Scholar] [CrossRef]
- Wells, J.L.; Bordner, J.; Bowles, P.; McFarland, J.W. Novel degradation products from the treatment of salinomycin and narasin with formic acid. J. Med. Chem. 1988, 31, 274–276. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Pavlostathis, S.G.; Huang, C.H. Photodegradation of veterinary ionophore antibiotics under UV and solar irradiation. Environ. Sci. Technol. 2014, 48, 13188–13196. [Google Scholar] [CrossRef]
- Hansen, M.; Bjorklund, E.; Krogh, K.A.; Brandt, A.; Halling-Sorensen, B. Biotic transformation of anticoccidials in soil using a lab-scale bio-reactor as a precursor-tool. Chemosphere 2012, 86, 212–215. [Google Scholar] [CrossRef]
- Herl, T.; Matysik, F.-M. Recent Developments in Electrochemistry–Mass Spectrometry. ChemElectroChem 2020, 7, 2498–2512. [Google Scholar] [CrossRef]
- Hoffmann, T.; Hofmann, D.; Klumpp, E.; Küppers, S. Electrochemistry-mass spectrometry for mechanistic studies and simulation of oxidation processes in the environment. Anal. Bioanal. Chem. 2011, 399, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Portychova, L.; Schug, K.A. Instrumentation and applications of electrochemistry coupled to mass spectrometry for studying xenobiotic metabolism: A review. Anal. Chim. Acta 2017, 993, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Göldner, V.; Fangmeyer, J.; Karst, U. Development of an electrochemical flow-through cell for the fast and easy generation of isotopically labeled metabolite standards. Drug Test. Anal. 2021, 1–7. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, G.; Ding, X.; Lu, C. Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm. Sin. B 2012, 2, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Bruins, A.P. An overview of electrochemistry combined with mass spectrometry. TrAC Trends Anal. Chem. 2015, 70, 14–19. [Google Scholar] [CrossRef]
- Miao, X.S.; March, R.E.; Metcalfe, C.D. Fragmentation study of salinomycin and monensin A antibiotics using electrospray quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 149–154. [Google Scholar] [CrossRef]
- Ortiz de Montellano, P.R. Hydrocarbon Hydroxylation by Cytochrome P450 Enzymes. Chem. Rev. 2010, 110, 932–948. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
Transformation Reaction | Experiment | References |
---|---|---|
m/z 531 (C-C cleavage, β-hydroxy-ketone position) | degradation by poultry litter | [13] |
degradation by broiler litter | [14] | |
manure storage | [15] | |
hydrolysis (acid-catalyzed) | [16] | |
treatment with formic acid | [17] | |
photodegradation | [18] | |
transformation in soil | [19] | |
microbial decomposition | [12,14] | |
m/z 265 (C-C cleavage) | hydrolysis (acid-catalyzed) | [16] |
treatment with formic acid | [17] | |
photodegradation | [18] | |
Hydroxylation (+O) | human hepatoma cells (HepG2) | [9] |
primary human hepatocytes (PHH) | [10] | |
rat primary hepatocytes (PRH) | [11] | |
rat hepatoma cells (FaO) | [11] | |
Hydroxylation + Demethylation | photodegradation | [18] |
human hepatoma cells (HepG2) | [9] | |
primary human hepatocytes (PHH) | [10] | |
Di-/Tri-hydroxylation | photodegradation | [18] |
primary human hepatocytes (PHH) | [10] | |
rat primary hepatocytes (PRH) | [11] | |
Dehydrogenation | rat primary hepatocytes (PRH) | [11] |
Isomeric changes | hydrolysis (acid-catalyzed) | [16] |
EC-TP | Mass Meas. | Mass Calc. | Sum Formula | Suggested Modification | Intensity |
---|---|---|---|---|---|
1 * | 791.4801 | 791.4795 | C41H70O12NNa | −CO, +2O, −4H, +NH4 | vw |
2 | 786.5116 | 786.5108 | C41H74O10NNa2 | −CO, +NH4, + Na | m |
3 | 777.4804 | 777.4764 | C41H70O12Na | −CO, +2O | vw |
4 | 759.4956 | 759.5000 | C42H72O10Na | −O, +2H | vs |
5 § | 745.4859 | 745.4866 | C41H70O10Na | −CO | vs |
6 * | 743.4710 | 743.4710 | C41H68O10Na | −CO, −2H | m |
7 § | 727.4764 | 727.4761 | C41H68O9Na | −CO, −H2O | s |
8 | 717.4552 | 717.4553 | C39H66O10Na | −CO, −C2H4 | vw |
9 | 687.4817 | 687.4811 | C39H68O8Na | −CO, −CO2, −CH2 | w |
10 * | 669.4732 | 669.4706 | C39H66O7Na | −CO, −CO2, −CH2, −H2O | w |
11 * | 651.4621 | 651.4600 | C39H64O6Na | −CO, −CO2, −CH2, −2H2O | vw |
SAL | 773.4816 | 773.4815 | C42H70O11Na |
rt [s] | Mass Meas. | Mass Calc. | Sum Formula | Suggested Modification | Intensity | |
---|---|---|---|---|---|---|
HLM | ||||||
TP-R1 | 65.20 | 821.4456 | 821.4453 | C42H70O13K | −Na, +2O, +K | vw |
TP-R2 | 81.35 | 805.4510 | 805.4504 | C42H70O12K | −Na, +O, +K | m |
TP-R3 | 91.57 | 787.4582 | 787.4608 | C42H68O12Na | −2H, +O | vw |
TP-R4 | 108.00 | 789.4754 | 789.4764 | C42H70O12Na | +O | w |
TP-R5 | 118.56 | 771.4633 | 771.4659 | C42H68O11Na | −2H | vw |
SAL | 142.61 | 773.4815 | 773.4815 | C42H70O11Na | vs | |
RLM | ||||||
TP-H1 | 44.33 | 821.4445 | 821.4453 | C42H70O13K | −Na, +2O, +K | vs |
TP-H2 | 53.60 | 819.4307 | 819.4296 | C42H68O13K | −Na, −2H, +2O, +K | m |
TP-H3 | 61.44 | 821.4439 | 821.4453 | C42H70O13K | −Na, +2O, +K | vs |
TP-H4 | 65.20 | 821.4408 | 821.4453 | C42H70O13K | −Na, +2O, +K | s |
TP-H5 | 69.91 | 819.4313 | 819.4296 | C42H68O13K | −Na, −2H, +2O, +K | w |
TP-H6 | 81.35 | 805.4508 | 805.4504 | C42H70O12K | −Na, +O, +K | vs |
TP-H7 | 86.37 | 803.4409 | 803.4347 | C42H68O12K | −Na, −2H, +O, +K | m |
TP-H8 | 90.00 | 819.4582 | 819.4507 | C42H68O14Na | −2H, +3O | vw |
TP-H9 | 91.57 | 787.4595 | 787.4608 | C42H68O12Na | −2H, +O | vw |
TP-H10 | 102.10 | 787.4577 | 787.4608 | C42H68O12Na | −H2O, +2O | w |
TP-H11 | 108.00 | 789.4707 | 789.4764 | C42H70O12Na | +O | vw |
SAL | 142.61 | 773.4815 | 773.4815 | C42H70O11Na | w |
Experiments Parameters | Mass Range Parameters | ||
---|---|---|---|
gas temperature | 400 °C | collision energy | 40 V |
ion source gas 1 (nitrogen) | 55 L/min | declustering potential | 80 V |
ion source gas 2 (nitrogen | 55 L/min | mass range | 100–800 Da |
curtain gas (nitrogen) | 45 L/min | ||
ion spray voltage floating | +5500 V |
Experiments Parameters | Mass Range Parameters | ||
---|---|---|---|
gas temperature | 400 °C | MS 1 | |
ion source gas 1 (nitrogen) | 50 L/min | collision energy | 10 V |
ion source gas 2 (nitrogen) | 55 L/min | declustering potential | 80 V |
curtain gas (nitrogen) | 45 L/min | mass range | 100–900 Da |
ion spray voltage floating | +5500 V | MS 2 | |
gas temperature | 400 °C | collision energy | 85 V (LM) 70 V (EC) |
collision energy spread | 20 V | ||
declustering potential | 80 V | ||
mass range | 100–900 Da |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoche, L.; Lisec, J.; Schwerdtle, T.; Koch, M. LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome. Antibiotics 2022, 11, 155. https://doi.org/10.3390/antibiotics11020155
Knoche L, Lisec J, Schwerdtle T, Koch M. LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome. Antibiotics. 2022; 11(2):155. https://doi.org/10.3390/antibiotics11020155
Chicago/Turabian StyleKnoche, Lisa, Jan Lisec, Tanja Schwerdtle, and Matthias Koch. 2022. "LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome" Antibiotics 11, no. 2: 155. https://doi.org/10.3390/antibiotics11020155
APA StyleKnoche, L., Lisec, J., Schwerdtle, T., & Koch, M. (2022). LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome. Antibiotics, 11(2), 155. https://doi.org/10.3390/antibiotics11020155