Assessment of In-Vitro Synergy of Fosfomycin with Meropenem, Amikacin and Tigecycline in Whole Genome Sequenced Extended and Pan Drug Resistant Klebsiella Pneumoniae: Exploring A Colistin Sparing Protocol
Abstract
:1. Introduction
2. Material and Methods
2.1. Whole Genome Sequencing (WGS)
2.2. Minimal Inhibitory Concentrations (MIC)
2.3. Antimicrobial Synergy Testing
2.3.1. Checkerboard Assay
2.3.2. Time-Kill Assay
2.4. Statistical Analysis
3. Results
3.1. Clinical Profile
3.2. Distribution of Resistance Genes
3.3. Mortality and Resistance Determinants
3.4. Minimal Inhibitory Concentrations
3.5. Synergy Outcomes
3.5.1. Fosfomycin-Meropenem Combination Outcome by Checkerboard Assay
3.5.2. Assessment of Fosfomycin- Meropenem Combination Outcome by Time Kill Assay
3.6. Fosfomycin-Amikacin Combination Outcome by Checkerboard and Time Kill Assay
3.7. Fosfomycin-Tigecycline Combination Outcome by Checkerboard and Time Kill Assay
3.8. Synergy in PDR Strains
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordmann, P.; Cuzon, G.; Naas, T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect. Dis. 2009, 9, 228–236. [Google Scholar] [CrossRef]
- Dortet, L.; Poirel, L.; Al Yaqoubi, F.; Nordmann, P. NDM-1, OXA-48 and OXA-181 carbapenemase-producing Enterobacteriaceae in Sultanate of Oman. Clin. Microbiol. Infect. 2012, 18, E144–E148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poirel, L.; Potron, A.; Nordmann, P. OXA-48-like carbapenemases: The phantom menace. J. Antimicrob. Chemother. 2012, 67, 1597–1606. [Google Scholar] [CrossRef] [Green Version]
- Soman, R.; Bakthavatchalam, Y.D.; Nadarajan, A.; Dwarakanathan, H.T.; Venkatasubramanian, R.; Veeraraghavan, B. Is it time to move away from polymyxins?: Evidence and alternatives. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 40, 461–475. Available online: http://link.springer.com/10.1007/s10096-020-04053-w (accessed on 21 August 2021). [CrossRef]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [Green Version]
- Sastry, S.; Clarke, L.G.; Alrowais, H.; Querry, A.M.; Shutt, K.A.; Doi, Y. Clinical Appraisal of Fosfomycin in the Era of Antimicrobial Resistance. Antimicrob. Agents Chemother. 2015, 59, 7355–7361. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100 Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 30 July 2021).
- Green, M.R.; Sambrook, J. Isolating DNA from Gram-Negative Bacteria. Cold Spring Harb. Protoc. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Kaas, R.S.; Leekitcharoenphon, P.; Aarestrup, F.M.; Lund, O. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms. Friedrich A, editor. PLoS ONE 2014, 9, e104984. [Google Scholar] [CrossRef] [Green Version]
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontén, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Cockerill, F.; Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically: Approved Standard; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Rizvi, M.; Ahmed, J.; Khan, F.; Shukla, I.; Malik, A. Assessment of combination therapy by time kill curve analysis and chequerboard assay for treatment of multi-drug resistant Pseudomonas aeruginosa isolates. J. Glob. Antimicrob. Resist. 2013, 1, 103–108. [Google Scholar] [CrossRef]
- Saiman, L. Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: ‘the motion for’. Paediatr. Respir. Rev. 2007, 8, 249–255. [Google Scholar] [CrossRef]
- Rizvi, M.; Ahmad, J.; Khan, F.; Shukla, I.; Malik, A.; Sami, H. Synergy of drug combinations in treating multidrug-resistant Pseudomonas aeruginosa. Australas. Med. J. 2015, 31, 1–6. [Google Scholar] [CrossRef]
- Sonnevend, Á.; Ghazawi, A.; Hashmey, R.; Haidermota, A.; Girgis, S.; Alfaresi, M.; Omar, M.; Paterson, D.L.; Zowawi, H.M.; Pál, T. Multihospital Occurrence of Pan-Resistant Klebsiella pneumoniae Sequence Type 147 with an ISEcp1-Directed blaOXA-181 Insertion in the mgrB Gene in the United Arab Emirates. Antimicrob. Agents Chemother. 2017, 61, e00418-17. [Google Scholar] [CrossRef] [Green Version]
- Flamm, R.K.; Rhomberg, P.R.; Lindley, J.M.; Sweeney, K.; Ellis-Grosse, E.J.; Shortridge, D. Evaluation of the Bactericidal Activity of Fosfomycin in Combination with Selected Antimicrobial Comparison Agents Tested against Gram-Negative Bacterial Strains by Using Time-Kill Curves. Antimicrob. Agents Chemother. 2019, 63, e02549-18. Available online: https://journals.asm.org/doi/10.1128/AAC.02549-18 (accessed on 30 July 2021). [CrossRef] [Green Version]
- Bakthavatchalam, Y.D.; Shankar, A.; Muthuirulandi Sethuvel, D.P.; Asokan, K.; Kanthan, K.; Veeraraghavan, B. Synergistic activity of fosfomycin–meropenem and fosfomycin–colistin against carbapenem resistant Klebsiella pneumoniae: An in vitro evidence. Future Sci. OA 2020, 6, FSO461. [Google Scholar] [CrossRef]
- Evren, E.; Azap, Ö.K.; Çolakoğlu, Ş.; Arslan, H. In vitro activity of fosfomycin in combination with imipenem, meropenem, colistin and tigecycline against OXA 48–positive Klebsiella pneumoniae strains. Diagn. Microbiol. Infect. Dis. 2013, 76, 335–338. [Google Scholar] [CrossRef]
- Samonis, G.; Maraki, S.; Karageorgopoulos, D.E.; Vouloumanou, E.K.; Falagas, M.E. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 695–701. [Google Scholar] [CrossRef]
- Delattre, I.K.; Taccone, F.S.; Jacobs, F.; Hites, M.; Dugernier, T.; Spapen, H.; Laterre, P.-F.; Wallemacq, P.E.; van Bambeke, F.; Tulkens, P.M. Optimizing β-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets: Are first conventional doses effective? Expert Rev. Anti Infect. Ther. 2017, 15, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Docobo-Pérez, F.; Drusano, G.L.; Johnson, A.; Goodwin, J.; Whalley, S.; Ramos-Martín, V.; Ballestero-Tellez, M.; Rodriguez-Martinez, J.M.; Conejo, M.C.; van Guilder, M.; et al. Pharmacodynamics of Fosfomycin: Insights into Clinical Use for Antimicrobial Resistance. Antimicrob. Agents Chemother. 2015, 59, 5602–5610. [Google Scholar] [CrossRef] [Green Version]
- Abdul Momin, M.H.F.; Liakopoulos, A.; Wareham, D.W. Draft Genome Sequence of a Multidrug-Resistant Sequence Type 231 Outbreak-Associated Clone of Klebsiella pneumoniae, KP41-2015, Producing OXA-232 Carbapenemase. Genome Announc. 2017, 5, e00604-17. [Google Scholar] [CrossRef] [Green Version]
- Shankar, C.; Mathur, P.; Venkatesan, M.; Pragasam, A.K.; Anandan, S.; Khurana, S.; Veeraraghavan, B. Rapidly disseminating blaOXA-232 carrying Klebsiella pneumoniae belonging to ST231 in India: Multiple and varied mobile genetic elements. BMC Microbiol. 2019, 19, 137. [Google Scholar] [CrossRef]
- Castañeda-García, A.; Blázquez, J.; Rodríguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics 2013, 2, 217–236. [Google Scholar] [CrossRef] [Green Version]
- Walsh, C.C.; McIntosh, M.P.; Peleg, A.Y.; Kirkpatrick, C.M.; Bergen, P.J. In vitro pharmacodynamics of fosfomycin against clinical isolates of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2015, 70, 3042–3050. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Fu, Y.; Chen, Q.; Ruan, Z.; Hua, X.; Zhou, H.; Yu, Y. Tigecycline Susceptibility and the Role of Efflux Pumps in Tigecycline Resistance in KPC-Producing Klebsiella pneumoniae. PLoS ONE 2015, 10, e0119064. [Google Scholar] [CrossRef]
- Tseng, S.-P.; Wang, S.-F.; Ma, L.; Wang, T.-Y.; Yang, T.-Y.; Siu, L.K.; Chuang, Y.; Lee, P.-S.; Wang, J.-T.; Wu, T.-L.; et al. The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant Klebsiella pneumoniae isolates in Taiwan. J. Microbiol. Immunol. Infect. 2017, 50, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Erturk Sengel, B.; Altinkanat Gelmez, G.; Soyletir, G.; Korten, V. In vitro synergistic activity of fosfomycin in combination with meropenem, amikacin and colistin against OXA-48 and/or NDM-producing Klebsiella pneumoniae. J. Chemother. 2020, 32, 237–243. [Google Scholar] [CrossRef]
- Yu, W.; Shen, P.; Bao, Z.; Zhou, K.; Zheng, B.; Ji, J.; Guo, L.; Huang, C.; Xiao, Y. In vitro antibacterial activity of fosfomycin combined with other antimicrobials against KPC-producing Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2017, 50, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Kulengowski, B.; Rutter, W.C.; Campion, J.J.; Lee, G.C.; Feola, D.J.; Burgess, D.S. Effect of increasing meropenem MIC on the killing activity of meropenem in combination with amikacin or polymyxin B against MBL- and KPC-producing Enterobacter cloacae. Diagn. Microbiol. Infect. Dis. 2018, 92, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Doi, Y.; Wachino, J.; Arakawa, Y. Aminoglycoside Resistance. Infect. Dis. Clin. N. Am. 2016, 30, 523–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalopoulos, A.S.; Livaditis, I.G.; Gougoutas, V. The revival of fosfomycin. Int. J. Infect. Dis. 2011, 15, e732–e739. [Google Scholar] [CrossRef] [Green Version]
- Craig, W.A.; Redington, J.; Ebert, S.C. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J. Antimicrob. Chemother. 1991, 27 (Suppl. C), 29–40. [Google Scholar] [CrossRef]
- Ku, Y.-H.; Chen, C.-C.; Lee, M.-F.; Chuang, Y.-C.; Tang, H.-J.; Yu, W.-L. Comparison of synergism between colistin, fosfomycin and tigecycline against extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates or with carbapenem resistance. J. Microbiol. Immunol. Infect. 2017, 50, 931–939. [Google Scholar] [CrossRef]
- Curcio, D. Off-label use of antibiotics in hospitalized patients: Focus on tigecycline. J. Antimicrob. Chemother. 2009, 64, 1344–1346. [Google Scholar] [CrossRef] [Green Version]
- De Pascale, G.; Montini, L.; Pennisi, M.; Bernini, V.; Maviglia, R.; Bello, G.; Spanu, T.; Tumbarello, M.; Antonelli, M. High dose tigecycline in critically ill patients with severe infections due to multidrug-resistant bacteria. Crit. Care 2014, 18, R90. [Google Scholar] [CrossRef] [Green Version]
Isolate | Age | Sex | Complaint | Sample | Carba-Penemase | MLST | Treatment | LOS (days) | Prior Hospital-ization | Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Kp1 | 62 | M | Acute right sided basal ganglia haemorrhage | TA | OXA-232 | ST-231 | Ceftriaxone 2g Q24H | 134 | No | Expired |
Kp2 | 26 | F | Sepsis following Chronic renal failure | TA | OXA-232 | ST-231 | FOS 2g Q48H + MEM 500 mg Q24H + CL 9 MU loading dose then 2MU Q12H | 81 | Yes | Improved |
Kp3 | 75 | F | Stroke | Urine | OXA-232 | Amikacin 15 mg/kg Q24 H (900 mg Q24H) | 13 | No | Improved | |
Kp4 | 87 | M | Pyelonephritis | Urine | NDM-1 | Fosfomycin 6g Q6H (24 g per day) | 10 | No | Improved | |
Kp5 | 79 | M | Pancreatic carcinoma Urinary incontinence | Urine | OXA-232 | ST-231 | None | 26 | No | Improved |
Kp6 | 83 | M | Aspiration pneumonia, UTI, on suprapubic catheter | Urine | OXA-232 | ST-231 | MEM 1g Q12H + CL 9 mU loading dose then 2.5 mU Q12H | 12 | Yes | Expired |
Kp7 | 56 | M | Pyelonephritis | Blood | OXA-48-like | FOS 6g 6H (total 24 g per day) + MEM 1g q8H | 14 | Yes | Improved | |
Kp8 | 56 | M | CRE bacteremia | Urine | OXA-232 | ST-231 | FOS 8 q8H (total 24 g per day) + CL 9 mU loading dose followed by 4.5 mU Q12H + MEM 2g Q8H | 35 | Yes | Expired |
Kp9 | 83 | M | Pyelonephritis | Urine | OXA-232 | FOS 6 gQ6H | 0 | Yes | Improved | |
Kp10 | 76 | M | Bedsores | Wound | OXA-232 | ST-231 | None | 16 | Yes | Improved |
Kp11 | 20 | M | Sepsis, Chronic renal failure | TA | NDM-1 | MEM 1g Q12H + CL 9 mU loading dose followed by 4mU Q8H | 19 | Yes | Expired | |
Kp12 | 68 | M | Aspiration pneumonia | BW | OXA-232 | PTZ 4.5 g Q8H + TGC 100 mg loading dose then 50 mg Q12H | 12 | Yes | Improved | |
Kp13 | 20 | M | Gastrointestinal basidiobolomycosis | Wound | OXA-232 | ST-395 | CL 9 mU loading dose then 4.5 mu Q12H + MEM 2g q8H + FOS 6g Q6H (total daily dose of 24 g) | 84 | No | Expired |
Kp14 | 69 | M | Aspiration pneumonia | TA | OXA-232 | ST-395 | Tobramycin nebulization 300 mg Q12h , MEM 1g q8H + CL 9 mU loading dose then 4.5 mU Q12H | 44 | Yes | Improved |
Kp15 | 49 | M | Pneumonia | BAL | OXA-232 | ST-231 | PTZ 4.5g Q8H | 10 | Yes | Expired |
Kp16 | 65 | M | Metastatic gastric carcinoma | Urine | OXA-232+ NDM-5 | ST-147 | PTZ 4.5 g Q8H | 8 | No | Improved |
Kp17 | 79 | M | Acute Cystitis | Urine | OXA-48-like | Oral Fosfomycin 3g q3 days for 2 doses | - | Yes | Improved | |
Kp18 | 39 | M | Haemorrhagic stroke, Bedsores | Wound | OXA-232 | ST-395 | PTZ 2.25 g Q8H | 126 | Yes | Expired |
Isolate (Kp) | MLST | Carba | MEM (MIC) | B-Lactams | TZP (MIC) | Amino | AK (MIC) | FOS | FOS (MIC) |
---|---|---|---|---|---|---|---|---|---|
PDR | 8–16 | blaCTX-M-15 | >512 | PDR | |||||
1 | 8 | blaSHV-1 | >512 | 128 | |||||
2 | 16 | blaTEM-1B | aac(6’)-Ib aadA2 | >512 | 32 | ||||
6 | ST231 | blaOXA-232 | 8 | E. coli ampH | >64/4 | aph(3′)-Ic | >512 | FosA6 | ≥256 |
XDR | 16–128 | marA, | (R) | XDR | |||||
3 | blaNDM-1 | 16 | Kpn F, H, G, E | 16 | 32 | ||||
4 | 64 | OmpK37, OmpA | 16 | 64 | |||||
5 | 16 | >512 | 64 | ||||||
7 | 64 | >512 | ≤32 | ||||||
8 | 64 | >512 | 64 | ||||||
9 | ≥64 | >512 | 64 | ||||||
10 | blaNDM-1 | 64 | >512 | 64 | |||||
11 | 64 | >512 | 64 | ||||||
15 | ≤32 | >512 | ≤32 | ||||||
17 | 128 | >512 | 64 | ||||||
blaOXA-1 | |||||||||
XDR | 8–16 | blaCTX-M-15 | aac(3)-lId* | ||||||
13 | ST395 | blaOXA-232 | 16 | blaSHV-11 blaTEM-1B* | >64/4 | aac(6’)-Ib | 16 | FosA6 | 32 |
18 | 8 | E. coli ampH | (R) | aph(3′)-Ic | 8 | 32 | |||
marA, | (S) | ||||||||
Kpn F, H, G, E | |||||||||
OmpK37, OmpA | |||||||||
blaOXA-1 | |||||||||
XDR | blaCTX-M-15 | >64/4 | aac(3)-IId | 8 | |||||
14 | ST395 | blaOXA-232 | 16 | blaSHV-1 | (R) | aac(6’)-Ib aadA2 | (S) | FosA6 | 64 |
blaTEM-1B | |||||||||
E. coli ampH | |||||||||
marA, | |||||||||
Kpn F, H, G, E | |||||||||
OmpK37, OmpA | |||||||||
XDR | blaCTX-M-15 blaSHV-11 | armA | |||||||
16 | ST147 | blaOXA-232, blaNDM-5 | 128 | blaTEM-1B | >64/4 | rmtB | >512 | FosA5 | 64 |
E. coli ampH, | (R) | aadA1 | (R) | ||||||
marA, | aadA2 | ||||||||
Kpn F, H, G, E | aacA4 | ||||||||
OmpK37, OmpA |
Fosfomycin MIC (mg/L) | Meropenem MIC (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|
Isolate | Genotype /MLST | Alone | Combined | Fold Decline | Alone | Combined | Fold Decline | FICI (x−) |
Kp1 | OXA-232/ST-231 | 128 | 16 | 8 | 8 | 1 | 8 | 0.25 |
Kp2 | OXA-232/ST-231 | 32 | 4 | 8 | 16 | 4 | 4 | 0.37 |
Kp3 | ST-231 OXA-232 | 64 | 16 | 4 | 16 | 4 | 4 | 0.50 |
Kp4 | ST-231 NDM-1 | 64 | 8 | 8 | 64 | 2 | 32 | 0.16 |
Kp5 | OXA-232/ST-231 | 64 | 8 | 8 | 16 | 4 | 4 | 0.37 |
Kp6 | OXA-232/ST-231 | 64 | 8 | 8 | 8 | 2 | 4 | 0.37 |
Kp7 | OXA-232/ST-231 | 64 | 8 | 8 | 16 | 2 | 8 | 0.25 |
Kp8 | OXA-232/ST-231 | 64 | 8 | 8 | 16 | 2 | 8 | 0.25 |
Kp9 | OXA-232/ST-231 | 64 | 16 | 4 | 16 | 4 | 4 | 0.50 |
Kp10 | OXA-232/ST-231 | 64 | 16 | 4 | 8 | 1 | 8 | 0.37 |
Kp11 | ST-231 NDM-1 | 64 | 8 | 8 | 128 | 16 | 8 | 0.25 |
Kp12 | OXA-232/ST-231 | 64 | 16 | 4 | 8 | 2 | 4 | 0.50 |
Kp13 | OXA-232/ST-395 | 64 | 8 | 8 | 16 | 1 | 16 | 0.19 |
Kp15 | OXA-232/ ST-231 | 64 | 8 | 8 | 8 | 2 | 4 | 0.37 |
Kp16 | OXA-232+ NDM-5/ST147 | 64 | 16 | 4 | 128 | 32 | 4 | 0.50 |
Kp17 | OXA-232/ST-231 | 64 | 8 | 8 | 128 | 32 | 4 | 0.37 |
Kp18 | OXA-232/ST-395 | 64 | 8 | 8 | 8 | 2 | 4 | 0.37 |
Genotype/MLST | Fosfomycin MIC (mg/L) | Amikacin MIC (mg/L) | ||||||
---|---|---|---|---|---|---|---|---|
Isolate | Alone | Combined | Fold Decline | Alone | Combined | Fold Decline | FICI/ Interpretation | |
Kp 1 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 128 | 64 | 2 | >1024 | ≤16 | ≥128 | 0.50/S |
Kp 2 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 32 | 16 | 2 | >1024 | ≤8 | ≥256 | 0.50/S |
Kp 3 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 16 | 128 | - | >4/AN |
Kp 4 | ST-231 NDM-1 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 16 | 128 | - | >4/AN |
Kp 5 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | >1024 | ≤8 | ≥256 | 0.50/S |
Kp 6 | OXA-232/ ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤4 | ≥256 | 0.50/S |
Kp 7 | OXA-232/ ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤4 | ≥256 | 0.50/S |
Kp 8 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤4 | ≥256 | 0.50/S |
Kp 9 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤4 | ≥256 | 0.50/S |
Kp10 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤4 | ≥256 | 0.50/S |
Kp 11 | ST-231 NDM-1 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤4 | ≥256 | 0.50/S |
Kp 12 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤4 | ≥256 | 0.50/S |
Kp 13 | ST-395 aac(3)-lId aac(6′)-Ib | 64 | 32 | 2 | 16 | 64 | - | >4/AN |
Kp 14 | ST-395 aac(3)-IId, aac(6′)-Ib aadA2 | 64 | 32 | 2 | 8 | 32 | - | >4/AN |
Kp 15 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤8 | ≥128 | 0.50/S |
Kp 16 | OXA-232 NDM-5/ST147, armA, aadA1,2,rmtB | 64 | 32 | 2 | 1024 | ≤8 | ≥128 | 0.50/S |
Kp 17 | OXA-232/ST-231 aac(6′)-Ib aadA2 | 64 | 32 | 2 | 1024 | ≤8 | ≥128 | 0.50/S |
Kp 18 | ST 395 aac(6′)-Ib | 64 | 32 | 2 | 8 | 64 | - | >4/AN |
Fosfomycin MIC (mg/L) | Tigecycline MIC (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|
Isolate | Genotype/MLST | Alone | Combined | Fold Decline | Alone | Combined | Fold Decline | FICI (x−)/ Interpretation |
Kp 1 | OXA-232/ ST-231 | 128 | 16 | ≥8 | 2 | ≥32 | - | >4/AN |
Kp 2 | OXA-232/ ST-231 | 32 | 16 | ≥2 | 4 | ≥32 | - | >4/AN |
Kp 3 | ST-231 OXA-232 | 64 | 32 | ≥2 | 4 | ≥32 | - | >4/AN |
Kp 4 | ST-231 NDM-1 | 64 | ≤8 | ≥8 | 4 | 2 | 2 | 0.62/PS |
Kp 5 | OXA-232/ST-231 | 64 | ≤8 | ≥8 | 4 | 2 | 2 | 0.62/PS |
Kp 6 | OXA-232/ ST-231 | 64 | 32 | 2 | 4 | ≥32 | - | >4/AN |
Kp 7 | OXA-232/ST-231 | 64 | ≤8 | ≥8 | 4 | 2 | 2 | 0.62/PS |
Kp 8 | OXA-232/ST-231 | 64 | ≤8 | ≥8 | 4 | 2 | 2 | 0.62/PS |
Kp 9 | OXA-232/ST-231 | 64 | ≤8 | ≥8 | 4 | 2 | 2 | 0.62/PS |
Kp10 | OXA-232/ST-231 | 64 | ≤8 | ≥8 | 2 | 1 | 2 | 0.62/PS |
Kp 11 | ST-231 NDM-1 | 64 | ≤8 | ≥8 | 4 | 2 | 2 | 0.62/PS |
Kp 12 | OXA-232/ST-231 | 64 | ≤8 | ≥8 | 4 | 2 | 2 | 0.62/PS |
Kp 13 | OXA-232/ST-395 | 64 | ≤8 | ≥8 | 2 | 1 | 2 | 0.62/PS |
Kp 14 | OXA-232/ST-395 | 64 | ≤8 | ≥8 | 2 | 1 | 2 | 0.62/PS |
Kp 15 | OXA-232/ST-231 | 64 | ≤8 | ≥8 | 2 | 1 | 2 | 0.62/PS |
Kp 16 | OXA-232+ NDM-5/ST147 | 64 | ≤8 | ≥8 | 4 | 2 | 2 | 0.62/PS |
Kp 17 | OXA-232/ST-231 | 64 | ≤8 | ≥8 | 2 | 1 | 2 | 0.62/PS |
Kp 18 | OXA-232/ST-395 | 64 | ≤8 | ≥8 | 2 | 1 | 2 | 0.62/PS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Quraini, M.; Rizvi, M.; AL-Jabri, Z.; Sami, H.; AL-Muzahmi, M.; AL-Muharrmi, Z.; Taneja, N.; AL-Busaidi, I.; Soman, R. Assessment of In-Vitro Synergy of Fosfomycin with Meropenem, Amikacin and Tigecycline in Whole Genome Sequenced Extended and Pan Drug Resistant Klebsiella Pneumoniae: Exploring A Colistin Sparing Protocol. Antibiotics 2022, 11, 153. https://doi.org/10.3390/antibiotics11020153
AL-Quraini M, Rizvi M, AL-Jabri Z, Sami H, AL-Muzahmi M, AL-Muharrmi Z, Taneja N, AL-Busaidi I, Soman R. Assessment of In-Vitro Synergy of Fosfomycin with Meropenem, Amikacin and Tigecycline in Whole Genome Sequenced Extended and Pan Drug Resistant Klebsiella Pneumoniae: Exploring A Colistin Sparing Protocol. Antibiotics. 2022; 11(2):153. https://doi.org/10.3390/antibiotics11020153
Chicago/Turabian StyleAL-Quraini, Manawr, Meher Rizvi, Zaaima AL-Jabri, Hiba Sami, Muna AL-Muzahmi, Zakariya AL-Muharrmi, Neelam Taneja, Ibrahim AL-Busaidi, and Rajeev Soman. 2022. "Assessment of In-Vitro Synergy of Fosfomycin with Meropenem, Amikacin and Tigecycline in Whole Genome Sequenced Extended and Pan Drug Resistant Klebsiella Pneumoniae: Exploring A Colistin Sparing Protocol" Antibiotics 11, no. 2: 153. https://doi.org/10.3390/antibiotics11020153
APA StyleAL-Quraini, M., Rizvi, M., AL-Jabri, Z., Sami, H., AL-Muzahmi, M., AL-Muharrmi, Z., Taneja, N., AL-Busaidi, I., & Soman, R. (2022). Assessment of In-Vitro Synergy of Fosfomycin with Meropenem, Amikacin and Tigecycline in Whole Genome Sequenced Extended and Pan Drug Resistant Klebsiella Pneumoniae: Exploring A Colistin Sparing Protocol. Antibiotics, 11(2), 153. https://doi.org/10.3390/antibiotics11020153