Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. K. pneumoniae Isolates
2.3. Statistical Analyses
2.4. Molecular Typing Analysis and Molecular Identification of β-Lactamase
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae: Clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 21 July 2022).
- Pitout, J.D.D. Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 2010, 70, 313–333. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2018, 61, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Blanco, M.; Labarca, J.A.; Villegas, M.V.; Gotuzzo, E.; Latin America Working Group on Bacterial Resistance. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz. J. Infect. Dis. 2014, 18, 421–433. [Google Scholar] [CrossRef]
- Ghenea, A.E.; Zlatian, O.M.; Cristea, O.M.; Ungureanu, A.; Mititelu, R.R.; Balasoiu, A.T.; Vasile, C.M.; Salan, A.I.; Iliuta, D.; Popescu, M.; et al. TEM, CTX-M, SHV genes in ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from clinical samples in a county clinical emergency hospital: Romania predominance of CTX-M-15. Antibiotics 2022, 11, 503. [Google Scholar] [CrossRef]
- Strahilevitz, J.; Jacoby, G.A.; Hooper, D.C.; Robicsek, A. Plasmid-mediated quinolone resistance: A multifaceted threat. Clin. Microbiol. Rev. 2009, 22, 664–689. [Google Scholar] [CrossRef]
- Genovese, C.; La Fauci, V.; D’Amato, S.; Squeri, A.; Anzalone, C.; Costa, G.B.; Fedele, F.; Squeri, R. Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: A review of the literature. Acta Biomed. 2020, 91, 256–273. [Google Scholar]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef]
- Ocampo, A.M.; Chen, L.; Cienfuegos, A.V.; Roncancio, G.; Chavda, K.D.; Kreiswirth, B.N.; Jiménez, J.N. A two-year surveillance in five Colombian tertiary care hospitals reveals high frequency of non-cg258 clones of carbapenem-resistant Klebsiella pneumoniae with distinct clinical characteristics. Antimicrob. Agents Chemother. 2016, 60, 332–342. [Google Scholar] [CrossRef]
- Dropa, M.; Lincopan, N.; Balsalobre, L.C.; Oliveira, D.E.; Moura, R.A.; Fernandes, M.R.; da Silva, Q.M.; Matté, G.R.; Sato, M.I.Z.; Matté, M.H. Genetic background of novel sequence types of CTX-M-8- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae from public wastewater treatment plants in São Paulo, Brazil. Environ. Sci. Pollut. Res. Int. 2016, 23, 4953–4958. [Google Scholar] [CrossRef]
- Sartori, L.; Sellera, F.P.; Moura, Q.; Cardoso, B.; Cerdeira, L.; Lincopan, N. Multidrug-resistant CTX-M-15-positive Klebsiella pneumoniae ST307 causing urinary tract infection in a dog in Brazil. J. Glob. Antimicrob. Resist. 2019, 19, 96–97. [Google Scholar] [CrossRef]
- Bocanegra-Ibarias, P.; Garza-González, E.; Morfín-Otero, R.; Barrios, H.; Villarreal-Treviño, L.; Rodríguez-Noriega, E.; Garza-Ramos, U.; Petersen-Morfin, S.; Silva-Sanchez, J. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS ONE 2017, 12, e0179651. [Google Scholar] [CrossRef]
- Villacís, J.E.; Reyes, J.A.; Castelán-Sánchez, H.G.; Dávila-Ramos, S.; Lazo, M.A.; Wali, A.; Bodero, L.A.; Toapanta, Y.; Naranjo, C.; Montero, L.; et al. OXA-48 carbapenemase in Klebsiella pneumoniae sequence type 307 in Ecuador. Microorganisms 2020, 8, E435. [Google Scholar] [CrossRef]
- Wyres, K.L.; Hawkey, J.; Hetland, M.A.K.; Fostervold, A.; Wick, R.R.; Judd, L.M.; Hamidian, M.; Howden, B.P.; Löhr, I.H.; Holt, K.E. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J. Antimicrob. Chemother. 2019, 74, 577–581. [Google Scholar] [CrossRef]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Husain, F.M.; Al-Kheraif, A.A.; Ali, A.; Haq, Q.M.R. Colistin interaction and surface changes associated with mcr-1 conferred plasmid mediated resistance in E. coli and A. veronii strains. Pharmaceutics 2022, 14, 295. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef]
- Gomez, S.A.; Rapoport, M.; Piergrossi, N.; Faccone, D.; Pasteran, F.; De Belder, D.; ReLAVRA-Group; Petroni, A.; Corso, A. Performance of a PCR assay for the rapid identification of the Klebsiella pneumoniae ST258 epidemic clone in Latin American clinical isolates. Infect. Genet. Evol. 2016, 44, 145–146. [Google Scholar] [CrossRef]
- Peyclit, L.; Baron, S.A.; Rolain, J.M. Drug Repurposing to fight colistin and carbapenem-resistant bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 193. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2022. [Google Scholar]
- Brisse, S.; Fevre, C.; Passet, V.; Issenhuth-Jeanjean, S.; Tournebize, R.; Diancourt, L.; Grimont, P. Virulent clones of Klebsiella pneumoniae: Identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS ONE 2009, 4, e4982. [Google Scholar] [CrossRef]
- Institut Pasteur. Klebsiela pneumoniae Sequence Typing. Available online: https://bigsdb.pasteur.fr/cgi-bin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef (accessed on 3 May 2022).
- Gundran, R.S.; Cardenio, P.A.; Villanueva, M.A.; Sison, F.B.; Benigno, C.C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended-spectrum β-Lactamase-producing E. coli isolates from broiler farms in the Philippines. BMC Vet. Res. 2019, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Gonggrijp, M.A.; Santman-Berends, I.M.G.A.; Heuvelink, A.E.; Buter, G.J.; Van Schaik, G.; Hage, J.J.; Lam, T.J.G.M. Prevalence and risk factors for extended-spectrum β-lactamase-and AmpC-producing Escherichia coli in dairy farms. J. Dairy Sci. 2016, 99, 9001–9013. [Google Scholar] [CrossRef] [PubMed]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Dierikx, C.M.; van Duijkeren, E.; Schoormans, A.H.W.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.W.; Van Der Zwaluw, K.; Wagenaar, J.A.; Mevius, D.J. Occurrence and characteristics of extended-spectrum-β-lactamase-and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Hsueh, P.R.; Jacoby, G.A.; Hooper, D.C. Risk factors and clinical characteristics of patients with qnr-positive Klebsiella pneumoniae bacteraemia. J. Antimicrob. Chemother. 2013, 68, 2907–2914. [Google Scholar] [CrossRef][Green Version]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Peirano, G.; van der Bij, A.K.; Freeman, J.L.; Poirel, L.; Nordmann, P.; Costello, M.; Tchesnokova, V.L.; Pitout, J.D.D. Characteristics of Escherichia coli sequence type 131 isolates that produce extended-spectrum β-lactamases: Global distribution of the h30-rx sublineage. Antimicrob. Agents Chemother. 2014, 58, 3762–3767. [Google Scholar] [CrossRef]
- Núñez-Samudio, V.; Pecchio, M.; Pimentel-Peralta, G.; Quintero, Y.; Herrera, M.; Landires, I. Molecular epidemiology of Escherichia coli clinical isolates from Central Panama. Antibiotics 2021, 10, 899. [Google Scholar] [CrossRef]
- Villa, L.; Feudi, C.; Fortini, D.; Brisse, S.; Passet, V.; Bonura, C.; Endimiani, A.; Mammina, C.; Ocampo, A.M.; Jiménez, J.N.; et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb. Genom. 2017, 3, e000110. [Google Scholar] [CrossRef]
- Lowe, M.; Kock, M.M.; Coetzee, J.; Hoosien, E.; Peirano, G.; Strydom, K.A.; Ehlers, M.M.; Mbelle, N.M.; Shashkina, E.; Haslam, D.B.; et al. Klebsiella pneumoniae ST307 with blaOXA-181, South Africa, 2014–2016. Emerg. Infect. Dis. 2019, 25, 739–747. [Google Scholar] [CrossRef]
- Vega, S.; Acosta, F.; Landires, I.; Morán, M.; Gonzalez, J.; Pimentel-Peralta, G.; Núñez-Samudio, V.; Goodridge, A. Phenotypic and genotypic characteristics of carbapenemase- and extended spectrum β-lactamase-producing Klebsiella pneumoniae ozaenae clinical isolates within a hospital in Panama City. Ther. Adv. Infect. Dis. 2021, 8, 20499361211054918. [Google Scholar] [CrossRef]
- Ghenea, A.E.; Cioboată, R.; Drocaş, A.I.; Țieranu, E.N.; Vasile, C.M.; Moroşanu, A.; Țieranu, C.G.; Salan, A.I.; Popescu, M.; Turculeanu, A.; et al. Prevalence and antimicrobial resistance of Klebsiella strains isolated from a county hospital in romania. Antibiotics 2021, 10, 868. [Google Scholar] [CrossRef]
- Pan-American Health Organization. Magnitud y Tendencias de la Resistencia a Los Antimicrobianos en Latinoamérica. ReLAVRA 2014, 2015, 2016. Available online: https://www.paho.org/es/documentos/magnitud-tendencias-resistencia-antimicrobianos-latinoamerica-relavra-2014-2015-2016 (accessed on 3 May 2022).
Target | Primer | 5′-3′ Sequence | Temperature (°C) | Amplicon (bp) | Reference |
---|---|---|---|---|---|
CTX-M | CTX-M-F | ATGTGCAGYACCAGTAARGTKATGGC | 55 | 592 | 25 |
CTX-M-R | TGGGTRAARTARGTSACCAGAAYSAGCGG | ||||
TEM | TEM-F | GCGGAACCCCTATTTG | 50 | 963 | 26 |
TEM-R | ACCAATGCTTAATCAGTGAG | ||||
SHV | SHV-F | AGCCGCTTGAGCAAATTAAAC | 60 | 713 | 27 |
SHV-R | ATCCCGCAGATAAATCACCAC | ||||
CTX group1 | CTX group1-F | TTAGGAARTGTGCCGCTGYA | 52 | 688 | 27 |
CTX group1_2-R | CGATATCGTTGGTGGTRCCAT | ||||
CTX group2 | CTX group2-F | CGTTAACGGCACGATGAC | 52 | 404 | 27 |
CTX group1_2-R | CGATATCGTTGGTGGTRCCAT | ||||
CTX group9 | CTX group9-F | TCAAGCCTGCCGATCTGGT | 52 | 561 | 27 |
CTX group9-R | TGATTCTCGCCGCTGAAG | ||||
CTX group8 | CTX group8-F | AACRCRCAGACGCTCTAC | 52 | 326 | 27 |
CTX group8-R | TCGAGCCGGAASGTGTYAT | ||||
CTX M-15 | CTX M-15-F | CACACGTGGAATTTAGGGACT | 50 | 995 | 25 |
CTX M-15-R | GCCGTCTAAGGCGATAAACA | ||||
gyrA | gyrA-F | AAATCTGCCCGTGTCGTTGGT | 58 | 344 | 29 |
gyrA-R | GCCATACCTACGGCGATACC | ||||
parC | parC-F | CTGAATGCCAGCGCCAAATT | 57 | 168 | 29 |
parC-R | GCGAACGATTTCGGATCGTC | ||||
qnrA | qnrA-F | ATTTCTCACGCCAGGATTTG | 53 | 516 | 28 |
qnrA-R | GATCGGCAAAGGTTAGGTCA | ||||
qnrB | qnrB-F | GATCGTGAAAGCCAGAAAGG | 53 | 469 | 28 |
qnrB-R | ACGATGCCTGGTAGTTGTCC | ||||
qnrS | qnrS-F | ACGACATTCGTCAACTGCAA | 53 | 417 | 28 |
qnrS-R | TAAATTGGCACCCTGTAGGC |
Isolate | MLST | Isolation Date | Source | Originating Site | ESBL | β-Lactamases | Resistance (R) or Susceptibility (S) to Antimicrobials | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CEF | CAZ | FEP | ETP | IMI | GEN | AMK | CIP | STX | NI | |||||||
S-1226 | 307 | Oct/2018 | Wound secretion | A/Surg | + | CTS | R | R | R | S | S | S | — | R | R | — |
CC4 a | 307 | Nov/2018 | Urine | B/IM | + | CTS | R | R | R | S | S | R | — | R | R | — |
H18-2354 | 307 | Nov/2018 | Blood | A/Surg | + | CTS | R | R | R | S | S | R | S | R | R | — |
O-3651 | 307 | Nov/2018 | Urine | A/ICU | + | CTS | R | R | R | S | S | R | S | R | R | R |
HR-0054 a | 307 | Feb/2019 | Rectal swab | A/Out | + | CTS | R | R | R | — | I b | R | I | R | R | — |
164605 | 307 | Mar/2019 | Endotracheal secretion | C/ICU | + | CTS | R | R | R | S | S | R | S | R | R | I |
S-0734 a | 152 | May/2019 | Wound secretion | A/Ort | + | CTS | R | R | R | S | S | R | — | R | R | I |
365 | 18 | Jun/2019 | Urine | B/IM | − | ND | S | S | S | S | S | S | S | S | S | R |
O-2659 | 29 | Nov/2019 | Urine | A/IM | − | ND | S | S | S | S | S | S | S | S | S | I |
O-2723 | 405 | Nov/2019 | Urine | A/Neu | + | CTS | R | R | R | S | S | R | S | I | R | — |
CC5 | 2073 | Nov/2019 | Urine | B/IM | + | CTS | R | R | R | S | S | R | I | S c | R | R |
Isolate | ST | PQMR | QRDR | gyrA | parC | ||
---|---|---|---|---|---|---|---|
83 | 87 | 80 | 87 | ||||
S-1226 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
CC4 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
H18-2354 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
O-3651 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
HR-0054 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
164605 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
S-0734 | 152 | qnrB | 3 | Phe (TTC) * | Ala (GCC) * | Ile (ATC) * | Glu (GAA) |
O-2723 | 405 | qnrB | 0 | Ser (TCC) | Asp (GAC) | Ser (AGC) | Glu (GAA) |
CC5 | 2073 | qnrA | 0 | Ser (TCC) | Asp (GAC) | Ser (AGC) | Glu (GAA) |
Variables | ST307 (n = 6) | Other ST (n = 5) | p Value |
---|---|---|---|
Sex | >0.99 | ||
Female n (%) | 2 (33) | 2 (40) | |
Male n (%) | 4 (67) | 3 (60) | |
Age, years, median (IQR) | 66 (63, 75) | 63 (56, 66) | 0.64 |
Risk factors | |||
Hospitalized ≥2 d in the prior 90 d | 5 (83) | 3 (60) | |
Antibiotic treatment in the prior 90 d | 4 (67) | 2(40) | |
Wound care at home | 2 (33) | 1 (20) | |
Outpatient chemotherapy | 2 (33) | — | |
History of immunosuppressive therapy | 2 (33) | — | |
Hemodialysis in the prior 90 d | — | — | |
At least 1 risk factor | 6 (100) | 3 (60) | 0.18 |
No known risk factors | — | 2 (40) | 0.06 |
ESBL carrier | 6 (100) | 2 (40) | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Samudio, V.; Pimentel-Peralta, G.; Herrera, M.; Pecchio, M.; Quintero, J.; Landires, I. Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. Antibiotics 2022, 11, 1817. https://doi.org/10.3390/antibiotics11121817
Núñez-Samudio V, Pimentel-Peralta G, Herrera M, Pecchio M, Quintero J, Landires I. Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. Antibiotics. 2022; 11(12):1817. https://doi.org/10.3390/antibiotics11121817
Chicago/Turabian StyleNúñez-Samudio, Virginia, Gumercindo Pimentel-Peralta, Mellissa Herrera, Maydelin Pecchio, Johana Quintero, and Iván Landires. 2022. "Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama" Antibiotics 11, no. 12: 1817. https://doi.org/10.3390/antibiotics11121817
APA StyleNúñez-Samudio, V., Pimentel-Peralta, G., Herrera, M., Pecchio, M., Quintero, J., & Landires, I. (2022). Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. Antibiotics, 11(12), 1817. https://doi.org/10.3390/antibiotics11121817