Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. K. pneumoniae Isolates
2.3. Statistical Analyses
2.4. Molecular Typing Analysis and Molecular Identification of β-Lactamase
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae: Clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 21 July 2022).
- Pitout, J.D.D. Infections with extended-spectrum beta-lactamase-producing Enterobacteriaceae: Changing epidemiology and drug treatment choices. Drugs 2010, 70, 313–333. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2018, 61, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Blanco, M.; Labarca, J.A.; Villegas, M.V.; Gotuzzo, E.; Latin America Working Group on Bacterial Resistance. Extended spectrum β-lactamase producers among nosocomial Enterobacteriaceae in Latin America. Braz. J. Infect. Dis. 2014, 18, 421–433. [Google Scholar] [CrossRef] [Green Version]
- Ghenea, A.E.; Zlatian, O.M.; Cristea, O.M.; Ungureanu, A.; Mititelu, R.R.; Balasoiu, A.T.; Vasile, C.M.; Salan, A.I.; Iliuta, D.; Popescu, M.; et al. TEM, CTX-M, SHV genes in ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from clinical samples in a county clinical emergency hospital: Romania predominance of CTX-M-15. Antibiotics 2022, 11, 503. [Google Scholar] [CrossRef]
- Strahilevitz, J.; Jacoby, G.A.; Hooper, D.C.; Robicsek, A. Plasmid-mediated quinolone resistance: A multifaceted threat. Clin. Microbiol. Rev. 2009, 22, 664–689. [Google Scholar] [CrossRef] [Green Version]
- Genovese, C.; La Fauci, V.; D’Amato, S.; Squeri, A.; Anzalone, C.; Costa, G.B.; Fedele, F.; Squeri, R. Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: A review of the literature. Acta Biomed. 2020, 91, 256–273. [Google Scholar]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef]
- Ocampo, A.M.; Chen, L.; Cienfuegos, A.V.; Roncancio, G.; Chavda, K.D.; Kreiswirth, B.N.; Jiménez, J.N. A two-year surveillance in five Colombian tertiary care hospitals reveals high frequency of non-cg258 clones of carbapenem-resistant Klebsiella pneumoniae with distinct clinical characteristics. Antimicrob. Agents Chemother. 2016, 60, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Dropa, M.; Lincopan, N.; Balsalobre, L.C.; Oliveira, D.E.; Moura, R.A.; Fernandes, M.R.; da Silva, Q.M.; Matté, G.R.; Sato, M.I.Z.; Matté, M.H. Genetic background of novel sequence types of CTX-M-8- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae from public wastewater treatment plants in São Paulo, Brazil. Environ. Sci. Pollut. Res. Int. 2016, 23, 4953–4958. [Google Scholar] [CrossRef]
- Sartori, L.; Sellera, F.P.; Moura, Q.; Cardoso, B.; Cerdeira, L.; Lincopan, N. Multidrug-resistant CTX-M-15-positive Klebsiella pneumoniae ST307 causing urinary tract infection in a dog in Brazil. J. Glob. Antimicrob. Resist. 2019, 19, 96–97. [Google Scholar] [CrossRef]
- Bocanegra-Ibarias, P.; Garza-González, E.; Morfín-Otero, R.; Barrios, H.; Villarreal-Treviño, L.; Rodríguez-Noriega, E.; Garza-Ramos, U.; Petersen-Morfin, S.; Silva-Sanchez, J. Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS ONE 2017, 12, e0179651. [Google Scholar] [CrossRef]
- Villacís, J.E.; Reyes, J.A.; Castelán-Sánchez, H.G.; Dávila-Ramos, S.; Lazo, M.A.; Wali, A.; Bodero, L.A.; Toapanta, Y.; Naranjo, C.; Montero, L.; et al. OXA-48 carbapenemase in Klebsiella pneumoniae sequence type 307 in Ecuador. Microorganisms 2020, 8, E435. [Google Scholar] [CrossRef] [Green Version]
- Wyres, K.L.; Hawkey, J.; Hetland, M.A.K.; Fostervold, A.; Wick, R.R.; Judd, L.M.; Hamidian, M.; Howden, B.P.; Löhr, I.H.; Holt, K.E. Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. J. Antimicrob. Chemother. 2019, 74, 577–581. [Google Scholar] [CrossRef] [Green Version]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Husain, F.M.; Al-Kheraif, A.A.; Ali, A.; Haq, Q.M.R. Colistin interaction and surface changes associated with mcr-1 conferred plasmid mediated resistance in E. coli and A. veronii strains. Pharmaceutics 2022, 14, 295. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [Green Version]
- Gomez, S.A.; Rapoport, M.; Piergrossi, N.; Faccone, D.; Pasteran, F.; De Belder, D.; ReLAVRA-Group; Petroni, A.; Corso, A. Performance of a PCR assay for the rapid identification of the Klebsiella pneumoniae ST258 epidemic clone in Latin American clinical isolates. Infect. Genet. Evol. 2016, 44, 145–146. [Google Scholar] [CrossRef]
- Peyclit, L.; Baron, S.A.; Rolain, J.M. Drug Repurposing to fight colistin and carbapenem-resistant bacteria. Front. Cell. Infect. Microbiol. 2019, 9, 193. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2022. [Google Scholar]
- Brisse, S.; Fevre, C.; Passet, V.; Issenhuth-Jeanjean, S.; Tournebize, R.; Diancourt, L.; Grimont, P. Virulent clones of Klebsiella pneumoniae: Identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS ONE 2009, 4, e4982. [Google Scholar] [CrossRef] [Green Version]
- Institut Pasteur. Klebsiela pneumoniae Sequence Typing. Available online: https://bigsdb.pasteur.fr/cgi-bin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef (accessed on 3 May 2022).
- Gundran, R.S.; Cardenio, P.A.; Villanueva, M.A.; Sison, F.B.; Benigno, C.C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended-spectrum β-Lactamase-producing E. coli isolates from broiler farms in the Philippines. BMC Vet. Res. 2019, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Gonggrijp, M.A.; Santman-Berends, I.M.G.A.; Heuvelink, A.E.; Buter, G.J.; Van Schaik, G.; Hage, J.J.; Lam, T.J.G.M. Prevalence and risk factors for extended-spectrum β-lactamase-and AmpC-producing Escherichia coli in dairy farms. J. Dairy Sci. 2016, 99, 9001–9013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dierikx, C.M.; van Duijkeren, E.; Schoormans, A.H.W.; van Essen-Zandbergen, A.; Veldman, K.; Kant, A.; Huijsdens, X.W.; Van Der Zwaluw, K.; Wagenaar, J.A.; Mevius, D.J. Occurrence and characteristics of extended-spectrum-β-lactamase-and AmpC-producing clinical isolates derived from companion animals and horses. J. Antimicrob. Chemother. 2012, 67, 1368–1374. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.H.; Hsueh, P.R.; Jacoby, G.A.; Hooper, D.C. Risk factors and clinical characteristics of patients with qnr-positive Klebsiella pneumoniae bacteraemia. J. Antimicrob. Chemother. 2013, 68, 2907–2914. [Google Scholar] [CrossRef] [Green Version]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Peirano, G.; van der Bij, A.K.; Freeman, J.L.; Poirel, L.; Nordmann, P.; Costello, M.; Tchesnokova, V.L.; Pitout, J.D.D. Characteristics of Escherichia coli sequence type 131 isolates that produce extended-spectrum β-lactamases: Global distribution of the h30-rx sublineage. Antimicrob. Agents Chemother. 2014, 58, 3762–3767. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Samudio, V.; Pecchio, M.; Pimentel-Peralta, G.; Quintero, Y.; Herrera, M.; Landires, I. Molecular epidemiology of Escherichia coli clinical isolates from Central Panama. Antibiotics 2021, 10, 899. [Google Scholar] [CrossRef]
- Villa, L.; Feudi, C.; Fortini, D.; Brisse, S.; Passet, V.; Bonura, C.; Endimiani, A.; Mammina, C.; Ocampo, A.M.; Jiménez, J.N.; et al. Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb. Genom. 2017, 3, e000110. [Google Scholar] [CrossRef]
- Lowe, M.; Kock, M.M.; Coetzee, J.; Hoosien, E.; Peirano, G.; Strydom, K.A.; Ehlers, M.M.; Mbelle, N.M.; Shashkina, E.; Haslam, D.B.; et al. Klebsiella pneumoniae ST307 with blaOXA-181, South Africa, 2014–2016. Emerg. Infect. Dis. 2019, 25, 739–747. [Google Scholar] [CrossRef] [Green Version]
- Vega, S.; Acosta, F.; Landires, I.; Morán, M.; Gonzalez, J.; Pimentel-Peralta, G.; Núñez-Samudio, V.; Goodridge, A. Phenotypic and genotypic characteristics of carbapenemase- and extended spectrum β-lactamase-producing Klebsiella pneumoniae ozaenae clinical isolates within a hospital in Panama City. Ther. Adv. Infect. Dis. 2021, 8, 20499361211054918. [Google Scholar] [CrossRef]
- Ghenea, A.E.; Cioboată, R.; Drocaş, A.I.; Țieranu, E.N.; Vasile, C.M.; Moroşanu, A.; Țieranu, C.G.; Salan, A.I.; Popescu, M.; Turculeanu, A.; et al. Prevalence and antimicrobial resistance of Klebsiella strains isolated from a county hospital in romania. Antibiotics 2021, 10, 868. [Google Scholar] [CrossRef]
- Pan-American Health Organization. Magnitud y Tendencias de la Resistencia a Los Antimicrobianos en Latinoamérica. ReLAVRA 2014, 2015, 2016. Available online: https://www.paho.org/es/documentos/magnitud-tendencias-resistencia-antimicrobianos-latinoamerica-relavra-2014-2015-2016 (accessed on 3 May 2022).
Target | Primer | 5′-3′ Sequence | Temperature (°C) | Amplicon (bp) | Reference |
---|---|---|---|---|---|
CTX-M | CTX-M-F | ATGTGCAGYACCAGTAARGTKATGGC | 55 | 592 | 25 |
CTX-M-R | TGGGTRAARTARGTSACCAGAAYSAGCGG | ||||
TEM | TEM-F | GCGGAACCCCTATTTG | 50 | 963 | 26 |
TEM-R | ACCAATGCTTAATCAGTGAG | ||||
SHV | SHV-F | AGCCGCTTGAGCAAATTAAAC | 60 | 713 | 27 |
SHV-R | ATCCCGCAGATAAATCACCAC | ||||
CTX group1 | CTX group1-F | TTAGGAARTGTGCCGCTGYA | 52 | 688 | 27 |
CTX group1_2-R | CGATATCGTTGGTGGTRCCAT | ||||
CTX group2 | CTX group2-F | CGTTAACGGCACGATGAC | 52 | 404 | 27 |
CTX group1_2-R | CGATATCGTTGGTGGTRCCAT | ||||
CTX group9 | CTX group9-F | TCAAGCCTGCCGATCTGGT | 52 | 561 | 27 |
CTX group9-R | TGATTCTCGCCGCTGAAG | ||||
CTX group8 | CTX group8-F | AACRCRCAGACGCTCTAC | 52 | 326 | 27 |
CTX group8-R | TCGAGCCGGAASGTGTYAT | ||||
CTX M-15 | CTX M-15-F | CACACGTGGAATTTAGGGACT | 50 | 995 | 25 |
CTX M-15-R | GCCGTCTAAGGCGATAAACA | ||||
gyrA | gyrA-F | AAATCTGCCCGTGTCGTTGGT | 58 | 344 | 29 |
gyrA-R | GCCATACCTACGGCGATACC | ||||
parC | parC-F | CTGAATGCCAGCGCCAAATT | 57 | 168 | 29 |
parC-R | GCGAACGATTTCGGATCGTC | ||||
qnrA | qnrA-F | ATTTCTCACGCCAGGATTTG | 53 | 516 | 28 |
qnrA-R | GATCGGCAAAGGTTAGGTCA | ||||
qnrB | qnrB-F | GATCGTGAAAGCCAGAAAGG | 53 | 469 | 28 |
qnrB-R | ACGATGCCTGGTAGTTGTCC | ||||
qnrS | qnrS-F | ACGACATTCGTCAACTGCAA | 53 | 417 | 28 |
qnrS-R | TAAATTGGCACCCTGTAGGC |
Isolate | MLST | Isolation Date | Source | Originating Site | ESBL | β-Lactamases | Resistance (R) or Susceptibility (S) to Antimicrobials | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CEF | CAZ | FEP | ETP | IMI | GEN | AMK | CIP | STX | NI | |||||||
S-1226 | 307 | Oct/2018 | Wound secretion | A/Surg | + | CTS | R | R | R | S | S | S | — | R | R | — |
CC4 a | 307 | Nov/2018 | Urine | B/IM | + | CTS | R | R | R | S | S | R | — | R | R | — |
H18-2354 | 307 | Nov/2018 | Blood | A/Surg | + | CTS | R | R | R | S | S | R | S | R | R | — |
O-3651 | 307 | Nov/2018 | Urine | A/ICU | + | CTS | R | R | R | S | S | R | S | R | R | R |
HR-0054 a | 307 | Feb/2019 | Rectal swab | A/Out | + | CTS | R | R | R | — | I b | R | I | R | R | — |
164605 | 307 | Mar/2019 | Endotracheal secretion | C/ICU | + | CTS | R | R | R | S | S | R | S | R | R | I |
S-0734 a | 152 | May/2019 | Wound secretion | A/Ort | + | CTS | R | R | R | S | S | R | — | R | R | I |
365 | 18 | Jun/2019 | Urine | B/IM | − | ND | S | S | S | S | S | S | S | S | S | R |
O-2659 | 29 | Nov/2019 | Urine | A/IM | − | ND | S | S | S | S | S | S | S | S | S | I |
O-2723 | 405 | Nov/2019 | Urine | A/Neu | + | CTS | R | R | R | S | S | R | S | I | R | — |
CC5 | 2073 | Nov/2019 | Urine | B/IM | + | CTS | R | R | R | S | S | R | I | S c | R | R |
Isolate | ST | PQMR | QRDR | gyrA | parC | ||
---|---|---|---|---|---|---|---|
83 | 87 | 80 | 87 | ||||
S-1226 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
CC4 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
H18-2354 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
O-3651 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
HR-0054 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
164605 | 307 | qnrB | 2 | Ile (ATC) * | Asp (GAC) | Ile (ATT) * | Glu (GAA) |
S-0734 | 152 | qnrB | 3 | Phe (TTC) * | Ala (GCC) * | Ile (ATC) * | Glu (GAA) |
O-2723 | 405 | qnrB | 0 | Ser (TCC) | Asp (GAC) | Ser (AGC) | Glu (GAA) |
CC5 | 2073 | qnrA | 0 | Ser (TCC) | Asp (GAC) | Ser (AGC) | Glu (GAA) |
Variables | ST307 (n = 6) | Other ST (n = 5) | p Value |
---|---|---|---|
Sex | >0.99 | ||
Female n (%) | 2 (33) | 2 (40) | |
Male n (%) | 4 (67) | 3 (60) | |
Age, years, median (IQR) | 66 (63, 75) | 63 (56, 66) | 0.64 |
Risk factors | |||
Hospitalized ≥2 d in the prior 90 d | 5 (83) | 3 (60) | |
Antibiotic treatment in the prior 90 d | 4 (67) | 2(40) | |
Wound care at home | 2 (33) | 1 (20) | |
Outpatient chemotherapy | 2 (33) | — | |
History of immunosuppressive therapy | 2 (33) | — | |
Hemodialysis in the prior 90 d | — | — | |
At least 1 risk factor | 6 (100) | 3 (60) | 0.18 |
No known risk factors | — | 2 (40) | 0.06 |
ESBL carrier | 6 (100) | 2 (40) | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Samudio, V.; Pimentel-Peralta, G.; Herrera, M.; Pecchio, M.; Quintero, J.; Landires, I. Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. Antibiotics 2022, 11, 1817. https://doi.org/10.3390/antibiotics11121817
Núñez-Samudio V, Pimentel-Peralta G, Herrera M, Pecchio M, Quintero J, Landires I. Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. Antibiotics. 2022; 11(12):1817. https://doi.org/10.3390/antibiotics11121817
Chicago/Turabian StyleNúñez-Samudio, Virginia, Gumercindo Pimentel-Peralta, Mellissa Herrera, Maydelin Pecchio, Johana Quintero, and Iván Landires. 2022. "Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama" Antibiotics 11, no. 12: 1817. https://doi.org/10.3390/antibiotics11121817
APA StyleNúñez-Samudio, V., Pimentel-Peralta, G., Herrera, M., Pecchio, M., Quintero, J., & Landires, I. (2022). Molecular Genetic Epidemiology of an Emerging Antimicrobial-Resistant Klebsiella pneumoniae Clone (ST307) Obtained from Clinical Isolates in Central Panama. Antibiotics, 11(12), 1817. https://doi.org/10.3390/antibiotics11121817